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Abstract: Accurate building construction cost prediction is critical, especially for sustainable projects
(i.e., green buildings). Green building construction contracts are relatively new to the construction
industry, where stakeholders have limited experience in contract cost estimation. Unlike conventional
building construction, green buildings are designed to utilize new technologies to reduce their
operations’ environmental and societal impacts. Consequently, green buildings’ construction bidding
and awarding processes have become more complicated due to difficulties forecasting the initial
construction costs and setting integrated selection criteria for the winning bidders. Thus, robust green
building cost prediction modeling is essential to provide stakeholders with an initial construction
cost benchmark to enhance decision-making. The current study presents machine learning-based
algorithms, including extreme gradient boosting (XGBOOST), deep neural network (DNN), and
random forest (RF), to predict green building costs. The proposed models are designed to consider
the influence of soft and hard cost-related attributes. Evaluation metrics (i.e., MAE, MSE, MAPE, and
R2) are applied to evaluate and compare the developed algorithms’ accuracy. XGBOOST provided
the highest accuracy of 0.96 compared to 0.91 for the DNN, followed by RF with an accuracy of 0.87.
The proposed machine learning models can be utilized as a decision support tool for construction
project managers and practitioners to advance automation as a coherent field of research within the
green construction industry.

Keywords: green buildings; cost prediction; machine learning; extreme gradient boosting (XGBOOST);
deep neural network (DNN); random forest (RF)

1. Introduction

With the growing demand for green buildings worldwide, it has become necessary
to develop a new adequate research field to create practical evaluation approaches for
green building bidders to guarantee that the selected bid winner has practical experience
and knowledge of all the required stages, which are vital to finish such projects with the
required time, cost, quality, safety, and environmental aspects. In addition, influential
research ensures the ability to successfully leave space for the green construction industry
to cope with emerging technologies [1]. Thus, accurate construction cost prediction models
need to consider all influential attributes. Considering that evaluating the cost of traditional
buildings is utterly different from that of green buildings designed to be environmentally
friendly through the production of zero greenhouse gases, it is necessary to design cost
forecasting models differently and innovatively [2–4]. Although the current literature
contains various cost prediction models for traditional buildings, minimal efforts have
been directed toward green building cost estimation modeling. Green construction cost
biddings contain more detailed requirements when compared to traditional ones. Having
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such detailed comprehensiveness makes it complicated for stakeholders to use the rule of
thumb for cost estimation [5]. Consequently, various indicators should be considered when
selecting the bid winner, including green building management, environmental aspects,
material use, water use and water protection, land and construction site protection, and
energy use.

The commonly adopted procedure in bid winner selection is the lowest price. Such
an approach may be adopted with minimal adverse impact on traditional building con-
struction, yet it is hazardous to employ such an approach for green building construction
bidding awards. Thus, improving the policy of the public and private sectors for select-
ing bid winners is crucial for maximizing construction quality and the added value [6].
Furthermore, adopting robust and accurate cost prediction methodologies is expected to
strengthen the competition between the bidders and enhance the awarding process to
ensure successful green construction. Therefore, effective construction cost forecasting has
positive practical implications on economic, social, and environmental levels.

The inability to appropriately manage the selection of the bid winner results in signif-
icant delays in project delivery; hence, the bid winner must be carefully picked [7]. The
current study opens up new possibilities for developing innovative and integrated models
for green building cost prediction that consider various influencing factors and may be
used in the bidding awarding procedures to reduce the financial and legal conflicts among
contractual parties for such projects. Construction project delivery techniques are critical
in forecasting bidding costs and, accordingly, in updating the bid winner selection policy
by adhering to regulations, assizes, and guidelines to avoid patronage. Consequently,
in forecasting the total cost of green building construction projects, it is challenging to
establish a suitable balance in the bid cost in anticipation of the actual cost. As a result,
a new method incorporating the primary aspects influencing the cost of green building
construction should be developed. In this study, a machine learning-based model for
predicting green building construction costs was developed, which is critical for paving the
way to selecting the best bidder to fulfill the required conditions, expanding the benefits of
green construction, and accommodating rapid changes along with future change orders.

2. Literature Review

Green buildings are designed to meet current and future generations’ needs in protect-
ing planet Earth. Since the nineteenth century, the demand for such a green construction
approach has become necessary for efficient pollution reduction, dynamic use of materials,
and more social inclusiveness by reducing the ripple effect of the construction process and
maintaining environmentally friendly building operations [8]. Several green building de-
sign approaches have been proposed to simplify green building deliveries (e.g., LEED and
the Building Research Establishment Environmental Assessment Method). For instance,
in 2021, LEED-certified green buildings were up to over 100,000 in the United States and
69,800 in Canada [9,10]. Public construction biddings are part of the public procurement
structure that seizes a significant portion of the public expense yearly, which is estimated
to be about ten percent of total incomes in most countries in North America [11].

In most traditional bids, the winner is determined based only on the bid price aspect
following the law, which is called the lowest-priced bid. If such a winner cannot perform
the bid, the bid is awarded directly to the second-lowest price [12]. This is the second
type of bidding adopted in the market. This approach increases the bid price compared
to the lowest-bid approach [13]. These approaches are impractical for the owner as all
bidders try to make their estimate lower than others and lower the actual cost to win the
bid [14]. Most private and public firms adopt such an approach in bidding in the United
States and European countries [15,16]. However, applying the lowest price approach
in bidding creates various issues regarding work quality, construction delays, disputes,
and claims [17,18].

Though the lowest price approach is the best for cost reduction purposes and is widely
used in the construction industry, it is a recipe for conflict, primarily when intense competi-
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tion exists [19–21]. For instance, in Turkey, most contractors who have won construction
bids via a lower-price approach have faced trouble in the construction project delivery.
In one study, about 430 questionnaires were analyzed after being sent to contractors in
Turkey. The results indicated that such consequences have occurred because contractors
are trying to continue in the market regardless of inaccurate bidding and little experience
in contract pricing [22].

Change order costs also increase when the lowest-price approach is adopted, especially
in green building construction. In addition, the “multiattribute” is used at the best price
in the construction industry to achieve the best value [23,24]. Another approach utilized
is the average bid, where the winner is selected by applying a single criterion. First, the
price is compared with the average of all the bidders’ prices and then the one that is closest
to the average bid is adopted [25–27]. The Peruvian approach has also been applied to
construction project bids by removing outliers’ bid values that have a price increase or
decrease of 10% of the actual average bid price from the submitted list. The new average
is determined in the next step to choose the bidder that meets both conditions closest to
and below the new average price [28]. Bidders are classified based on several aspects,
such as quality, profitability, leverage, and expertise, to determine who is eligible to win
the bid. A neural network technique was employed in the same vein to decide on such
a concept [29]. In addition, several experimental methods have been used for bidding
selection. For instance, the non-competitive method was implemented in construction bids,
and various identification strategies were evaluated experimentally [30]. Additionally, an
analytical model was developed based on game theory to address construction project
claims and opportunistic bidding [26].

Moreover, risk possibility and competition for projects were measured using a case-
based reasoning method [31]. Using general regression and classification networks, choos-
ing the fittest bid closest to the actual construction project price was studied [15]. The bid
scoring formula is a realistic approach to selecting the winner and is still valid for providing
a promotional result that meets the needs of the owner and contractor [32].

Green building bids are converting from traditional contracts in choosing a winner
to smarter contracts that meet all the sustainability requirement changes in public bid-
ding [33,34]. The design-build (DB) approach has been used in green and traditional
buildings. It maintains a high integration of the design stages for sustainability in green
buildings [5]. DB is a practical approach to incentivize bidders and make them more famil-
iar with maintaining sustainable goals during the construction and design processes [35–37].
The dynamic and practical connection between the contractor and the design group is
a significant feature of improving the concept of all aspects of green buildings, such as
quality, cost, and time [33,38,39]. Compared to the traditional approach, such as the low-bid
approach to choosing a winner, DB seems to have significant advantages for sustainable
green building objectives [40,41]. Many approaches have been improved since the 1990s to
find a rating approach to handle green buildings properly [42]. To achieve a comprehensive
vision of all aspects of the bid details and to meet the required conditions written in the
contract to satisfy all parties, when determining the bid winner, it is vital to consider the
quality, environment, technical aspects, reputation, and price. This approach ensures that
more work and effort is put into enforcing adequate and acceptable criteria for choosing
the winner to attain the optimal advantage [16,41,42]. Many factors must be considered for
the conceptual phase in the design and planning stages of the green building to acquire
practical work [43]. In addition, effective green building design must employ efficient
natural and ecologic resource management processes [44]. To fulfill such a need, selecting
the best bidder is required.

3. Methodology

The main aim of this study was to develop a forecast model for providing accurate
green building project costs. Data collection, feature selection, machine learning algorithm
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formulation, and model evaluation are the four major stages of the suggested methodology.
The methodology flowchart is illustrated in Figure 1.

 
Figure 1. Methodology flowchart for predicting green building project costs. 

 

Figure 1. Methodology flowchart for predicting green building project costs.

3.1. Data Collection

General information on the initial costs of green building construction was gathered
from various sources, including journals, the green building council website, and other
related websites. The original cost data for the 283 LEED-certified green buildings under
consideration (placed at various locations across North America) were gathered from vari-
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ous sources and fed into the constructed models. Some of the primary data sources for this
study were the websites of green building councils in the United States and Canada [9,10].
Such data were captured and exported into MS Excel sheets to prepare for the analytical
procedure. The information was gathered between 2010 and 2020. However, about two
years were required to ensure that the obtained data were enough and usable for the ML
approach. Emphasis was placed on quantifying and comparing the economic performance
of each building in the dataset. The data were modified depending on location to create
consistent results for comparison. Furthermore, the designs of the erected structures were
compared to make future cost forecasts and comparisons.

3.2. Factor Selection

Hard and soft costs are associated with construction projects [44]. Land costs are
expenses associated with land ownership, such as the transfer of ownership, land purchase,
and site clearance. In addition, land costs include the actual and direct costs of building
implementation, such as civil and structural works, architectural work, and other physical
construction activities [45]. Soft costs are indirect expenses associated with the non-physical
parts of a building project, such as administration, planning, documentation, and market-
ing [46]. Soft expenses are linked with activities outside the scope of building costs and
typically vary from 1 to 5% of the total construction costs [47]. In summary, hard costs are
associated with construction, while soft costs are associated with design and certification
services. Thus, soft expenses are any costs that are not directly related to the building cost.

Various studies have been conducted to determine if the cost of green projects will
increase or decrease when green elements are introduced to fulfill green building standards
compared to regular structures [48,49]. Green buildings are estimated to cost 5 to 10% more
than regular structures. According to certain studies, the costs of green buildings increase
by 1 to 2%. However, according to another study, the cost of green buildings is raised by
less than 2% compared to typical structures [50,51]. The inconsistent findings complicate
the investigation into green building costs, and therefore, this matter is a concerning issue.
In conclusion, green building costs can be separated into the main types (i.e., hard and soft
costs). These types have been further divided into categories, as shown in Table 1.

Table 1. Categories of green building costs.

Green Building Costs

C
at

eg
or

ie
s

Hard Soft
Architectural design Professional engagement
Material and labor
Building services

ProceduresCivil and structural
Plants and equipment Legal requirements
Building requirements

The factors that influence the cost of green building projects are listed as follows:
people, technical, technological, and specific requirements, and external support. For more
detail, Table 2 presents a description of these features. All features impact the total building
project cost in terms of hard and soft costs. In addition, Figure 2 is included to provide a
better view of these features that affect the overall cost of green building projects.
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Table 2. Feature descriptions.

Feature Symbol Definition

People

People directly impact the project as they are engaged in its
delivery and set its context, where their primary responsibilities

play a crucial role in planning, design, delivery, and
maintenance [52].

Technical aspects

Technical aspects are related to the methodological aspects of
green building construction. Technical aspects include process
and procurement issues, regulations and rules, and scarcity of

green building materials and expertise [53].

Technology

Technology indicates the utilization of a product during or after
its execution. For example, technology might be used throughout
the execution process or be included as part of the final product.
Equipment, materials, and industrial operations are exampled of

technology [54].

Specific requirement

As there is a need to focus on the green features of the projects,
additional construction specialists, such as green building
facilitators and green building certifiers, are expected to be
involved in green building projects. For example, a regular
consultant group will be augmented by one or more green

building consultants [55].

 

Figure 2. Description of green building cost influential factors. Figure 2. Description of green building cost influential factors.

3.3. Data Preprocessing

The use of ML algorithms requires data preparation. Variable selection selects vari-
ables that will be relevant for predicting green building performance. Outlier cleansing,
data noise reduction, normalization, and standardization are part of pre-processing. The
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information gathered includes numerical values for all variables. Once the proper vari-
ables have been chosen, pre-processing is necessary, including outlier removal and dataset
normalization. Outliers are removed from the gathered data in this initial data prepara-
tion phase. This study used interquartile ranges to identify extreme and outlier results.
Appropriate graphical methods, such as boxplots for outlier elimination, were also used.
Null indicators were also used to represent and remove missing values from the obtained
data. When data points were missing from the original database, reliability difficulties
arose. As a result, missing values in the dataset (values represented by the “Null” or “-”
indicators) were considered. Pre-processing was necessary for a small amount of missing
data (i.e., 9 missing values representing about 3.2% of the original database). These missing
data points were replaced with the average and median values of relevant properties. The
statistical analysis of the utilized datasets is listed in Table 3. In addition, Figure 3 depicts
the data normality presentation for the main features of the green building cost prediction,
which is vital for determining how well the distribution curve fits the collected datasets.

Table 3. Statical analysis of collected data.

Features

Statistical Methods

Mean Standard
Deviation Minimum Maximum

People 1,563,257 1,334,043 43,280 4,404,400
Technical 416,644 381,155 11,080 1,258,400

Technology 1,686,579 1,524,620 47,320 5,033,600
Specific requirement 669,967 571,732 19,120 1,887,600
Green building cost 4,466,449 3,811,552 120,800 12,584,000Sustainability 2022, 14, x FOR PEER REVIEW 8 of 21 
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3.4. Machine Learning Algorithm

Three ML techniques were employed in this study to estimate the green building costs.
Training and testing processes were also conducted to check the suggested ML algorithm’s
efficiency. The training applied 70% of the database to train the proposed model, and the
testing part applied 30% of the database to carry out the test process. We utilized 5-fold
cross-validation to ensure the robustness and effectiveness of the suggested prediction
models.

This study used three prediction algorithms (i.e., XGBoost, DNN, and RF). These
are the most contemporary and efficient machine learning-based prediction algorithms
available. A review was conducted of the many ML prediction algorithms published in the
literature. These two methods were chosen for various reasons, including the fact that they
are scalable, accurate, relatively quick, versatile, and give regularized model formalization
to control overfitting [56–58].

3.4.1. Extreme Gradient Boosting (XGBOOST)

XGBoost technology is a scalable tree optimization machine learning technology that
has recently been widely used in data analysis disciplines. The XGBOOST technique was
proposed as a one-of-a-kind applied gradient boosting machine, particularly in regression
and classification trees. The “boosting” concept is the root of XGBOOST, which merges
the forecasting of weak learners with additive training methods to develop a strong learner.
In addition, this process helps to avoid overfitting and improves mathematical ability. The
XGBOOST architecture is shown in Figure 4, where the objective functions are simplified
by allowing the prediction and regularization terms to be combined while preserving the
fastest possible processing speed. The general function of the forecasting is set up at step p,
as shown in Equation (1)

f (p)
i =

p

∑
k=1

fk(xi) = f (p−1)
i + fp(xi) (1)

where fp(xi) denotes the learner at step p, f (p)
i denotes the prediction at p, f (p−1)

i denotes
the prediction at p − 1, and xi denotes the input features.

To make the overfitting reasonable while reducing the model’s mathematical speed,
the analytical formula was created by XGBOOST, as shown in Equation (2), to estimate
the model’s “goodness” for the original function.

Objective(p) =
n

∑
k=1

l(yi, yi) +
p

∑
k=1

σ( fi) (2)

where l presents the loss function, n presents the number of observations utilized, and σ
presents the regularization term as represented in Equation (3).

σ( f ) = ΥT + 0.5λω2 (3)

where ω expresses vector scores in leaves, Υ expresses the minimal loss necessary to divide
the leaf node further, and λ expresses the regularization parameters.
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3.4.2. Deep Neural Network (DNN)

DNN is a subset of deep learning algorithms that employ multi-layered neural net-
work training and testing to learn complex structures and achieve appropriate abstraction
levels. The dataset is directed in one direction within the network, passing the four hid-
den layers [57]. Such movement improves the memory of the neural network to process
sequential data naturally. The DNN technique has two stages: The first stage (training) is
applied to optimize the network parameters to complete the expected goal (prediction).
The second stage (testing) assesses whether the trained model can process a new dataset.
The six layers in this study (i.e., the input layer, four hidden layers, and the output layer)
were employed to retain the best prediction model accuracy, as presented in Figure 5.
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Unique weights were assigned to the inputs by the activation function (rectified linear
unit (ReLU) [59]. Then, these weights were associated with the model’s variables to reduce
the error between the observed and predicted values. As a result, the hidden layers were
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employed after the prediction was run to extract a new raw descriptor representation, as
shown in Equation (4).

xi+1 = f (wixi + bi), i = 1, 2, . . . I (4)

where f denotes the activation function, wi denotes the weight matrix, and bi denotes the
bias of the ith hidden layer. The parameters were chosen based on (ReLU), as presented in
Figure 6.
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3.4.3. Random Forest (RF)

This algorithm has been frequently utilized in data mining applications to cope with
classification and regression issues [60]. The RF is a classification and regression technique
that uses a set of classification trees, a bootstrap sample of the data applied to create these
sets. The variables are chosen at random at each split as the candidate set of variables for
tree building. Employing bagging is the second way that can be used to integrate unsteady
learners successfully. The RF is a robust algorithm with several merits, such as forecasting
accuracy, dealing with many features, fast simulation speed, high performance, and free
applications [58]. In this study, two primary indicators (i.e., the number of grown trees and
leaf size) determined the accuracy and proficiency of the RF. The number of grown trees
and leaf size ranged from 0 to 3000 and 1 to 20, respectively. The model became more stable
with reliable results in the case of 400 grown trees and two leaf sizes. In addition, in this
study, “bootstrap samples” (S1, S2, . . . Sn) were created from the original dataset, and
then these random samples were used to construct trees (R1, R2, . . . Rn). Finally, these
trees were combined, as shown in Figure 7.
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4. ML Model Results
4.1. Experimental Setup

The K-fold cross-validation process was applied to develop the model’s accuracy by
examining the ML algorithm performance on various datasets. In addition, the model
hyperparameters were tuned using a K-fold cross-validation technique. First, the database
must be separated into subsets for training and testing the ML modeling process. During
this process, the training dataset is partitioned into multiple ‘k’ smaller portions. The term
‘K-fold’ was coined as a result. Then, testing is done with K-fold, while training is done
with k-1. Both are also based on a random dataset. In addition, the model hyperparameters
are tuned using a K-fold cross-validation technique. The prediction model is then fitted to
the training set using the best possible hyperparameter configuration. Consequently, each
fold is only utilized as a validation set once. Finally, the accuracy measures for each fold
may be compared, and if they are similar, the model is likely to generalize well, as shown
in Figure 8.
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4.1.1. Hyperparameter Optimization

The hyperparameters of the proposed ML algorithms used in this study had to be
tuned, as shown in Table 4. These hyperparameters were modified depending on the actual
dataset rather than the manual determinations. Thus, the investigation was carried out with
k = 1 to k = 10 for K-fold cross-validation. Each K represents the grid search for the optimum
ML model selection and hyperparameter tuning. As a result, five-fold cross-validation had
the best prediction accuracy, as discussed the in the performance evaluation.

Table 4. Results of hyperparameter optimization for the ML models.

ML Models Hyperparameters Optimal Values

XGBOOST

Number of trees 1000
Learning rate 0.08

Maximum depth 12
Number of needed leaves 16

RF

Number of trees 800
Learning rate 0.11

Maximum depth 17
Number of needed leaves 20

DNN

Number of neurons 4
Learning rate 0.13

Batch size 10
Epochs 300

Number of hidden layers 4
Activation function ReLU

4.1.2. Feature Importance Analysis

Pearson’s correlation process was conducted between the selected features and the
cost values of green building projects to assess the influence of these features on each other
and the observed values, as presented in Figure 9.
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Better insight and understanding of the model’s features help decision-makers plan
and formulate policies effectively. As a result, a feature importance process was carried out
using the XGBoost, DNN, and RF techniques to identify the importance degree of each



Sustainability 2022, 14, 6651 13 of 20

feature included in forecasting green building costs. As illustrated in Figure 10, the feature
scale plot was implemented to calculate a relative score for each variable. In addition, as
presented in Figure 10, the features were ranked in descending order of importance: people,
technological, technical, and specific requirements.
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4.2. Performance Evaluation

After testing the primary model assumptions, it was vital to evaluate the suggested
models’ usefulness and predictive capability. Thus, the assessment measurements were
utilized to evaluate the proposed models’ proficiency. Four statistical measures (i.e., RMSE,
MAE, MAPE, and R2) were employed to investigate the efficiency of the suggested ML
models, as presented in Equations (5)–(9).

MAE =
1
m

m

∑
i=1

∣∣Yi − Yi
∣∣ (5)

RMSE =

√
1
m

m

∑
i=1

(
Yi − Yi

)2 (6)

MAPE =
1
m

m

∑
i=1

∣∣∣∣Yi − Yi
Yi

∣∣∣∣× 100 (7)

R2 = 1 − ∑m
i=1
(
Yi − Yi

)2

∑m
i=1
(
Yi − Y

)2 (8)

R2
Adjusted = 1 −

[
∑m

i=1
(
Yi − Yi

)2

∑m
i=1
(
Yi − Yi

)2

]
×
[

(m − 1)
(m − d − 1)

]
(9)

where Yi symbolizes the actual (measured) values of the overstrength ratio of short links,
Yi symbolizes the forecasted outcome, Y symbolizes the mean of the Yi, m symbolizes the
number of datasets utilized, and d is an independent variable. The model accuracy is
increased if the R2 value approaches 1 and the RMSE, MAE, and MAPE values approach
0. A set of random, nonoverlapping partitioned folds were used as training and test
datasets for k = 3, k = 5, and k = 7, together with their corresponding performance measures.
Therefore, the effectiveness of the suggested ML models was assessed utilizing a stratified
five-fold cross-validation technique, as shown in Table 5.
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Table 5. Performance evaluation for different K-folds.

K-Fold
Cross-Validation

Regression
Model

Performance Evaluation Metrics

MAE MSE MAPE R2

k = 3
XGBoost 132.0 152.5 27.9 94.0

DNN 238.0 316.0 51.1 89.0
RF 408.0 527.9 56.9 86.0

k = 5
XGBoost 92.0 132.5 19.9 96.0

DNN 196.5 284.0 32.4 91.0
RF 378.0 507.9 40.4 87.0

k = 7
XGBoost 118 141 23.3 95.0

DNN 212.5 301.1 43.8 90.0
RF 389.4 516.6 50.7 86.0

The comparison of the efficiency of ML algorithms (i.e., XGBOOST, DNN, and RF)
to predict the cost of the green building projects was implemented for k = 5. Accordingly,
the results of the evaluation measures were computed, as shown in Table 6.

Table 6. Performance measure comparison of ML models at k = 5.

Performance Metrics
Prediction Models

XGBOOST DNN RF

MAE 92.0 196.5 378.0
RMSE 132.5 284.0 507.9
MAPE 19.9 32.4 40.4

R2 96.0 91.0 87.0
R2

Adjusted 95.9 90.9 86.8

The comparison outcomes show that XGBOOST and DNN had higher R2 values
(more than 0.90) and lower MAE, RMSE, MAPE values than the RF model in predicting
green building costs. All assessment metrics results also revealed that XGBOOST had
excellent prediction capability and had the highest R2 value. Furthermore, XGBOOST
had the lower values for the rest of the evaluation metrics (i.e., MAE, RMSE, and MAPE)
compared to the DNN model, as shown in Figure 11. Moreover, the forecasted outputs of
the XGBOOST model illustrate that its prediction values were very close to the values of
green building project costs. It is worth noting the progress of the R2

Adjusted estimate for

each developed model. The XGBOOST’s decisive R2 value was 0.96, implying that the
XGBOOST model was somewhat mounted to the datasets since it was close to 1. Given
that the forecast R2 was considerably superior to the regular R2

Adjusted, this means that the
XGBOOST model did forecast new interpretations and fit the existing dataset. Therefore,
the XGBOOST model had a better fit and slight deviation from the actual values of the
green building costs. Consequently, the XGBOOST was the most effective and competent
model for predicting green building costs.
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4.3. Experimental Results

The current study was designed to expand and augment the literature in forecasting
green building costs. First, the four main features that affect the cost of green buildings
were thoroughly investigated and disaggregated into its primary sub-attributes. Then these
factors were evaluated according to their acquired data record by developing machine
learning-based prediction models in combination with accuracy evaluation matrices to
focus on the uncertainty coupled with the cost forecasting. The current research findings
reveal that people primarily affect green building cost features, followed by technological,
technical, and special requirements, which implies that spreading the “green” culture
amongst involved personnel is critical to minimizing the construction cost. In addition,
green building contractors need to utilize cutting-edge technologies that can facilitate the
deployment of efficient technical approaches necessary for cost objective optimization
purposes, reflecting the importance of applying prediction models to produce accurate cost
predictions. In line with the adopted methodology, the results reveal the significance of
examined attributes and their sub-categories, such as people, technological, technical, and
other specific requirements, which demonstrates the consequence of changes in the cost
objective functions of alternatives. For example, the cost function was an average of 88%
compared to the people, technological, technical, and special requirements at 93%, 90%,
96%, and 82%. Furthermore, variation in the cost objective function was analyzed through
various sub-attributes, implying a high dependency and influencing the proficiency of the
decision-making process.

Consequently, the cost prediction models utilize the cost-effective frontline approach
to affect this matter and streamline the proper decision-making process. The established
cost prediction models showed that XGBOOST outperformed the DNN and RF by 5%
and 9.4%, respectively. Thus, the XGBOOST prediction model represents the most attrac-
tive alternative for decision-makers from both an economical and sustainable point of
view for the most accurate prediction with the lowest cost objective function and lowest
correlated risk.

5. Discussion

This study’s cost prediction models offer an insightful perception of the correlation
between influential features and green buildings’ green cost premium. The cost of each
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building was forecasted via up-to-date machine learning approaches to reflect the cost
function variation based on datasets recovered from 283 green building projects that were
examined in North America. The proposed models can be used by green building vendors,
designers, stakeholders, and decision-makers to predict the green cost objective function
of their new green buildings based on the characteristics of the main influential factors. It
ought to be stated that the scope of the current research is partial to green buildings in the
United States. It is also limited in the quantity of the collected data and the number of the
main attributes considered. Thus, it is critical to consider the impact of governmental and
non-governmental external support.

It should also be explained that the current research was restricted to economic and
sustainable assessments and did not consider social and environmental dimensions. Addi-
tionally, the emphasis of the current research was on comparing the predicted cost objective
function against the actual construction cost without considering the construction life cycle
cost analysis elements or the reimbursement cycle. Therefore, further research is required to
combine the current research with additional data, more attributes, various green buildings,
and recently LEED-accredited green buildings.

Decision-makers are increasingly relying on technological findings to upgrade and
build policies. The current study develops a robust machine learning framework for pre-
dicting green building construction costs from recorded datasets, which can be utilized as
a general model to simulate all associated characteristics. This provides a good founda-
tion for investigating how different feature interconnectivity might share insight on green
building construction cost forecasting. Furthermore, as contemporary machine learning
algorithms grow, increasingly sophisticated forecast models provide ways to develop more
valuable and exact modeling for green building construction cost prediction, which many
construction business practitioners may then use. Finally, consistent with what is currently
emerging in the construction engineering and management research fields, the authors
are confident in the proposed models’ ability to provide stakeholders with more precise
forecasts to fit accessible datasets as advantageous preceding information to feed machine
learning-based models.

The current research aims to minimize the knowledge gap in predicting green building
costs. Thus, the proposed models were designed after an intensive investigation of the
currently available related models. For example, one of the main gaps is the lack of
an integrated representation of how the main attributes affect the green building cost
interconnectedly. One of the main issues with the already available green building cost
prediction models is that they lack integrity. Not considering all of the influential features
of green building costs has ripple effects on the developed model’s dependability. For
example, some studies have focused on the features of green building technologies while
relaxing the people, technical, and specific requirements [61]. This has a detrimental impact
on the accuracy of green building cost forecasts since a high level of uncertainty frequently
accompanies the major qualities. In addition, little effort has been put into establishing
analytical or machine learning-based models for green construction cost prediction. Many
existing models use survey and questionnaire methodologies to describe the practice
case for green building costs. There is always a need for more quantitative and objective
techniques for projecting green construction costs [3,61].

Some studies have provided models that partially forecast the cost of only green
building-certified residences [2]. In addition, other research papers have focused on the
green certification of office buildings and the cost of equity capital of green buildings [4,62].
Consequently, a holistic model for green building cost estimation is required to provide
reliable forecasting tools for practitioners.

Furthermore, historical green construction cost data are scarce. The established data
gathering processes and dataset comprehensiveness have also been a significant impedi-
ment for researchers in developing reliable and general prediction models, especially for
large-budget building contracts. As a result, building a prediction model that can be used ef-
fectively and independently of the construction cost value is critical. Several academics have
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attempted to anticipate green construction costs; however, their conclusions were limited to
a single location since only a few relevant features were evaluated [2,3,63]. Such problems
prove that decision-making tools are in great demand in the construction industry [64–69].

The contradictory findings hampered the assessment of green construction costs,
making this a worrying problem. Furthermore, to the best of the authors’ knowledge,
no appropriate model for predicting green construction costs is available in the present
literature. As a result, a general and worldwide model for green cost prediction is required.
The created green building cost prediction models have an advantage over comparable
modeling techniques available in the literature because of their different processing chrono-
logical sequence, where forecasts are less impacted by the number of classes and can be
analyzed consistently. The created models produce fewer discriminant nodes, lowering the
number of class dimensions to be evaluated progressively. The generated prediction models
have been discovered to be expert short-running models with high forecast precision and
low memory consumption with superior performance.

Furthermore, it was discovered that generated models might be classified as realistic
decision support tools in several sectors of the construction business when compared to
other accessible models. The suggested models may be an integrated, general, practical,
and accurate prediction tool. The current study covers several significant traits employed
in bidding and awarding procedures to reduce financial and legal concerns among con-
tractual parties. As a result, the proposed models are expected to play a critical role in
reducing potential conflict among stakeholders in the green building construction industry,
particularly when decision-makers face significant challenges and difficulties in estimating
acceptable green building costs that all contractual parties can agree on.

6. Conclusions

Will a green building cost more than a traditional building? Are the costs of the peo-
ple, technological, technical, and other specific requirements quantifiable and predictable?
Is this objective cost function affected by sub-attributes? Do the developed prediction
models consider ambiguity in cost function? Do the developed cost forecasting models
empower practitioners to take effective cost-related decisions? These research questions can
be addressed by developing accurate and robust machine learning-based models for cost
prediction to reduce the cost-related risk. The proposed models have been demonstrated to
provide decision-makers with a support decision tool to forecast the green buildings’ con-
struction costs of new green buildings and pave the road towards having green buildings
LEED-certified based on economic and sustainable aspects. Four primary green build-
ing cost attributes and twenty sub-features were considered, and different feasible green
construction approaches were investigated utilizing thorough cutting-edge forecasting
models for cost prediction and associated risk minimization. ML-based cost prediction
modeling approaches were utilized to improve decision-making superiority amongst the
best practices. XGBOOST, DNN, and RF prediction models were designed, and they
were evaluated using MAE, RMSE, MAPE, and R2. The evaluation results indicate that
the XGBOOST and DNN prediction performance was superior, where low values for all
performance appraisal measures were evaluated, indicating excellent performance. The
RF had a lower forecast accuracy, but it still had an acceptable level of precision. The
most accurate green building costs can be predicted based on the embraced machine
learning models.

The current study revealed that green building costs could be accurately predicted via
machine learning approaches and smoothly compared with conventional building costs. In
addition, the key attributes that influence green building costs were considered. Moreover,
the developed cost prediction models are expected to pave the road toward a smoother
LEED certification process. Additionally, decision-makers are provided with support
decision tools that can predict green buildings’ total operational and life cycle costs. Future
research efforts should reflect the inclusion of more datasets, more accurate collection,
pre-processing and post-processing, and different types of buildings in various locations.
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The external support attribute needs to be considered, as it is expected to significantly
influence green building costs. Additionally, in future work, the economic assessment
of the LEED certification can be expanded beyond construction costs to incorporate the
influence on the overall life cycle cost analysis.
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