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Abstract: An accurate assessment of the type and extent of sewer damage is an important prerequisite
for maintenance and repair. At present, distinguishing drainage pipe defect types in the engineering
field mainly relies on the human eye, which is time consuming, labor intensive, and subjective.
Some studies have used deep learning to classify the types of pipe defects, but this method can only
identify one main pipe defect. However, sometimes a combination of defects, such as corrosion and
precipitation on a section of pipe wall, can be classified as one category by picture classification,
which is significantly different from the reality. Furthermore, the deep learning method for defect
classification is unable to pinpoint the precise location and severity of a defect or estimate the
number of flaws and the cost of maintenance and repair. Therefore, an image segmentation method
based on deep convolutional neural networks is proposed to achieve pixel-level image segmentation
of defect regions while classifying pipe defects. Compared with the deep learning network for
defect classification, it can segment a variety of defects and reduce the number of samples, which
is convenient for defect measurement. First, the image defect locations of seven typical defects
were manually labeled to create the dataset. Then, a model based on the SegNet network was used
to label defect areas automatically in an image. The pipeline image dataset was used to test the
previously trained model using the CamVid dataset. Finally, the model was applied to drainage pipe
network images that were provided by periscope and closed-circuit television inspection cameras,
and the pixel accuracy of image segmentation reached 80%. From the results, it can be concluded that
image segmentation and annotation technology based on deep learning is applicable to sewer defect
detection. The identification results of pipeline defects were accurate. The SegNet model is a reliable
method for image analysis of pipeline defects, which can accurately evaluate the type and degree of
sewer damage.

Keywords: sewer defect; deep learning; image segmentation; SegNet network

1. Introduction

Sewer pipes are critical to the smooth operation of modern communities. On the one
hand, they are an important infrastructural component and vital to a city’s operations. On
the other hand, their performance seriously affects the normal lives of citizens. Therefore, it
is especially important to check existing drainage pipes regularly, to discover sewer defects
in time, and to take reasonable and effective maintenance measures.

At present, closed-circuit television (CCTV) [1] is one of the most widely used pipeline
detection methods. Although this method can obtain images of the inner wall of a sewer, it
requires knowledgeable technicians to analyze the internal conditions, and this process is
subjective and less automated. Image processing research in deep learning has advanced
significantly in recent years, with significant progress made in a variety of domains. Some
researchers have used deep learning to classify defects automatically, but most classifi-
cations based on deep learning are single-label classifications. A very recent study [2]
provides a multilabel classification framework, but this classifier does not perform well
enough. Moreover, determining specific information about the defect (such as location,
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engineering quantity, etc.) remains difficult with artificial estimation methods and cannot
be fully automated.

This paper proposes an automated defect segmentation and annotation method based
on deep convolutional networks. The method uses a large amount of detection data to
train a deep convolution network using the SegNet network as the backbone network. The
resulting network was used to classify and segment various defects with image labels. The
main objective was to meet the needs of large-scale sewage network survey work and to
achieve intelligent defect detection. The results provide a basis and reference for further
quantitative evaluation of sewer defects.

2. Related Work

Various methods exist for detecting the condition of sewers, with the most commonly
used being CCTV. In recent years, sewer robots [3] have also been put into use in pipeline
inspection. These methods can obtain high-quality sewer images. Therefore, many re-
searchers have begun to study image-based automated defect detection methods. Two
main methods are currently available: algorithm-based image processing technology and
deep learning technology that relies on supervised learning.

2.1. Image Processing Methods

Zhun Fan et al. [4] overcame the limitations of established image processing-based
crack detection methods and proposed a new automatic pavement crack detection and
measurement method. Motamedi et al. [5] performed grayscale, filtering, and morpho-
logical processing on sewer images, which provided a certain theoretical basis for the
nondestructive detection of urban drainage pipeline defects, although practical applica-
tions were more complicated. Kirstein et al. [6] detected drainage pipe defects using the
shortest path algorithm, the Hough transform algorithm, and the Canny edge detector.
This method combines optimal theory with traditional image processing technology to
detect sewer defects. It has certain theoretical research significance, but the method is too
cumbersome to be suitable for practical rapid-detection applications. Hawari et al. [7] pro-
posed a complex algorithm combining image processing and shape analysis to distinguish
sewer defects. As a result of the limitations of its dataset, the effectiveness of this method
needs further determination.

2.2. Deep Learning Methods

Deep learning is an emerging method in the field of sewer inspection. In 1943, McCul-
loch and Pitts [8] first proposed the concept of artificial neural networks and mathematical
models of artificial neurons. In 1989, LeCun [9] and colleagues presented the basic model of
convolutional neural networks, which is one of the basic types of deep learning networks.

In 2006, Hinton and Salakhutdinov [10] first proposed the concept of deep learning
and improved the neural network model algorithm. Ever since, deep learning technology
has been developing rapidly, and deep learning algorithms have shown great advantages
in the fields of voice, image, and natural language processing. In the 2012 ImageNet
competition, Professor Hinton’s students increased the depth of their convolutional neural
network and used this model to achieve the highest score in the history of the competition.
Ever since, deep learning has attracted more and more attention. After Long et al. [11]
proposed the principle of fully convolutional networks (FCN), the classification objectives
of deep convolutional neural networks extended from the object to the pixel and to the
field of semantic segmentation. In 2015, Cambridge [12] proposed SegNet, an image
semantic segmentation network designed to support autonomous driving or intelligent
robots, which also achieved very good results in multiclass segmentation. Subsequently,
semantic separation networks such as DeepLab [13] and PSPNet [14] came into being.

With the continuous development of deep learning, the deep convolutional neural net-
work model began to be applied to detect sewer defects. Rahman [15] trained multiple deep
neural networks to distinguish between single defects and normal images and achieved an
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overall accuracy of 90%, but the dataset type was relatively simple. Sinha and Fieguth [16]
proposed a neuro-fuzzy classifier that combined fuzzy logic testing with neural networks
(ANN) to test the classification of defects in pipelines. Recently, Li et al. [17] proposed a
hierarchical classification method for sewer defects based on deep convolutional neural
networks, which is superior to traditional methods in classifying unbalanced datasets. At
present, pipeline detection methods based on deep learning mainly include automatic
classification methods. After the defect has been automatically classified, information,
such as defect position and engineering quantity, still needs the judgment of professional
technicians, meaning that the whole process of defect detection cannot be automated.
Therefore, the image segmentation method based on deep learning is a new idea for sewer
defect detection.

3. Image Segmentation
3.1. Comparison of Image Classification and Image Segmentation

Previously proposed automatic defect methods typically use feature extraction, re-
sulting in poor generalization. Meijer D et al. [2] designed a convolutional neural network
(CNN) to classify the sewer image set for defects and to automatically detect the 12 most
common types of defects. Kumar et al. [18] developed an automatic defect classification
framework using multiple binary CNNs to classify defects, such as root intrusion, deposits,
and cracks, with an average detection accuracy of 86.2%. However, Kumar realized that he
could not locate the defect, so he researched further. In 2020, Kumar [19] proposed another
deep learning detection model to automatically classify and locate the defect location.

Image classification is the analysis of an image as a whole to classify it into one of
several categories to replace human visual interpretation. Since an image may contain
multiple objects belonging to different classes, the need to locate and identify them has led
to further developments in image segmentation.

Image segmentation is a prediction of different features of an image: there may be
multiple objects, people, or even multiple layers of background in an image, and people
want to be able to predict which part of the image any pixel point belongs to. Image
segmentation is the foundation of image processing. The accuracy of image segmentation
directly influences the result of subsequent image processing. Therefore, obtaining good
image segmentation results is more challenging and complex than image classification.

3.2. Image Segmentation Method

At present, there are thousands of image segmentation methods in the field of image
processing. With the wide application of image segmentation methods and the rapid
development of other related scientific fields, new image segmentation algorithm theories
have emerged one after another. Different image segmentation algorithms each have
their corresponding theoretical basis. The most common image segmentation algorithms
are as follows: (1) threshold-based; (2) image segmentation based on edge detection;
(3) region-based image segmentation; and (4) image segmentation based on neural network
technology. Xu et al. [20] first used an image segmentation algorithm for the automatic
detection of sewer defects. More recently, Sinha [21] used morphological methods in
image segmentation to accurately extract the features of crack defects, but this algorithm
requires high image quality, can only identify a few types of defects, and cannot meet the
requirements of real-time detection.

The threshold-based image segmentation algorithm is simple and computationally
efficient. The edge detection-based image segmentation method is fast, and the edge is
accurate. The region-based image segmentation algorithm overcomes the defect of small
image space segmentation associated with other segmentation algorithms. However, all
these three methods have the disadvantage of poor antinoise performance. As a result, an
image segmentation approach based on the entire convolutional neural network structure
was created in this study. For transfer learning based on the pre-training network, the full
convolutional neural network can be employed, which reduces training time and improves
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model robustness and parallelism. In this study, we constructed a model based on the
SegNet deep convolutional neural network to realize automatic segmentation and labeling
of sewer defect areas in images.

4. Image Segmentation Model Based on Deep Learning

The SegNet network is an open-source image segmentation project developed by the
University of Cambridge team, which separates the areas of objects in an image, such as
cars, roads, pedestrians, etc., onto the pixel level. SegNet networks circumvent the issues of
computational convolution and pixel block storage. They are similar to traditional neural
networks in that they are trained end-to-end to classify sets of pixels. The difference is that
the SegNet network is made up of a coding layer and a decoding layer.

On the basis of semantic division of the full convolutional neural network, the network
achieves end-to-end pixel-level image segmentation by constructing a symmetric encoder–
decoder structure, in which the encoder uses pooling for downsampling and the decoder
uses inverse convolution to gradually recover the detail and spatial dimension of the
original image.

4.1. Encoders–Decoder Construction

The SegNet network is a full convolutional neural network. The main components
of the central structure are a coding network, a decoding network, and a pixel-level
classification layer that is connected after the decoding network. The structure of the coding
network is identical to the topology of the 13 convolutional layers of VGG16 [22], resulting
in low-resolution features. It retains feature maps with high resolution by rounding off
the coded output position of the fully connected layer. For pixel-level classification, the
decoding network simply substitutes the pooling layer in the coding network with the
upsampling layer and maps the low-resolution features onto the whole input image-level
resolution feature map. Figure 1 shows the SegNet network structure.
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Figure 1. SegNet network structure.

In general, the network is divided into two parts. On the left is the encoding layer, in
which the image is made smaller by pooling and the high-dimensional information and
features in the graph are extracted. On the right is the decoding layer, which includes
deconvolution and upsampling. Upsampling restores the original image size while decon-
volution allows the image to be categorized and the features to be recreated. Finally, the
softmax classifier is used to obtain the final segmentation map.

4.2. Pooling Indices

The aggregate of data for features at various locations in a particular region of an
image is known as pooling. The SegNet network performs max pooling operations, which
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means it is downsampled, and the corresponding index position is stored at the encoding
time and upsampled at that position at the decoding time.

The three main functions of pooling are as follows: (1) The perceptual region is
enlarged; one pixel can equate to an area in the original image; (2) due to translational in-
variance, pooling abstracts regional characteristics without regard for position; (3) reducing
the difficulty and parameters of optimization.

Upsampling using a properly designed pooling index is utilized in the SegNet model’s
upsampling procedure, which lowers information loss caused by the pooling operation. In
addition, the layer jumping connection is used to transfer low-layer features, increasing
the amount of information included in the features. In conclusion, the model effectively
improves the image segmentation rate.

4.3. Structural Analysis of the SegNet Network

The coding layer uses the VGG network as part of the coding. As can be seen from
Figure 2, the subsample is divided into five parts, consisting of 13 layers [22]. The first
and second parts are composed of two 3 × 3 convolution layers and a 2 × 2 pooling layer,
and the third, fourth, and fifth parts are composed of three 3 × 3 convolution layers and
a 2 × 2 pooling layer. Batch normalization is required for each result after each convolu-
tion operation and is triggered through activation functions. The pooling layer extracts
the feature information in the image through the maximum pooling operation, saves its
maximum index in the course of each pooling operation, such as the position information
of the maximum feature value, and then releases its index during the upsampling process.
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The decoding layer employs a mapping technique to convert a single high-order,
low-resolution feature graph into a full-resolution feature map. The encoding layer records
the largest index in the pooling operation through the encoding process. The decoding
network uses a pooled index in the largest pooling layer to perform nonlinear upsampling
on the image, as shown in Figure 3, which does not require learning [12]. As can be
seen from Figure 2, the decoding process corresponds to the encoding process, and the
decoding process is also divided into five parts. The first and second parts consist of a
2 × 2 deconvolution layer and two 3 × 3 convolutional layers. The third, fourth, and fifth
parts are composed of a 2 × 2 deconvolution layer and three 3 × 3 convolutions, and finally
each pixel is predicted in the obtained feature image by a softmax classifier. Not only can
the encoder increase edge characterization, but it can also minimize the amount of network
training parameters and speed up training.
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5. Experimental
5.1. Data Preparation and Training

Detection images of an underground pipe network in an old city in northwest China
were collected, and 700 images taken by CCTV were selected as datasets. To simplify the
analysis, only sediment, scum, corrosion, roots, mismatch, obstacles, and branch pipes were
discriminated separately, as shown in Figure 4. These seven types of defects are obvious
characteristics with a high probability of occurrence and a significant impact. The dataset
image was processed in advance to improve training outcomes. A histogram equalization
procedure was applied to the image, and the outcome is displayed in Figure 5. The primary
purpose of histogram equalization was to average the histogram of the original image in
order to increase the gray value range of the image, thereby enhancing the image contrast
and optimizing the visual effect.
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After histogram equalization processing, a labeled image of each defect was created,
the information of which is shown in Table 1. The above seven types of defects were
marked by using Photoshop, and each picture was labeled with one major defect. To save
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Pixel information from the labeled dataset is shown in Table 2 and Figure 7. It can be
seen that the distribution of the various defect pixels is unbalanced. Because learning was
oriented towards the dominant class, the imbalance may have had a negative impact on
the learning process [23,24]. This problem was addressed by class weighting. The formula
is shown in Equations (1) and (2), and the weights, after calculation, are shown in Table 3.

imageFreq =
PixelCount

ImagePixelCount
(1)

classWeights =
median(imageFreq)

imageFreq
(2)

Table 2. Statistical table of defect pixels.

Name Pixel Count Image Pixel Count

FS 2.99 × 106 1.08 × 107

CD 2.938 × 106 2.36 × 107

ZG 3.93 × 104 4.30 × 106

FZ 3.63 × 106 1.44 × 107

SG 2.53 × 106 1.69 × 107

CK 5.7633 × 105 1.46 × 107

ZAW 3.3152 × 105 4.32 × 106
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Table 3. Class weights of defect pixels.

Name Class Weights

FS 0.45
CD 1.00
ZG 13.60
FZ 0.49
SG 0.83
CK 3.14

ZAW 1.62

After preprocessing was complete, the dataset was randomly divided into three
subsets for training, verification, and testing. A total of 70% of the data was used for
training, and the remaining 30% was divided into verification and test sets. To improve
network accuracy and avoid overfitting, certain data augmentation methods, such as
random left/right reflections and random left/right conversions, +/– 10 pixels, were
used to provide more data. Six enhanced images were generated for each sample in the
training set.

In the MATLAB platform, we used the vgg-16 network’s initialization weights to
create the SegNet network. The sewage dataset was trained using the SegNet network
pre-trained with the CamVid dataset, with the stochastic gradient descent with momentum
(SGDM) optimizer as the training technique. The specific parameter settings were as
follows: momentum 0.9, initial learning rate 0.01, L2 regularization factor 0.0005, maximum
number of epochs for training 90, and mini-batch size 4. As can be seen from Figure 8, as
the number of iterations increases, the training loss tends to flatten out, and the model
tends to converge.
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5.2. Results and Evaluation

After 90 iterations of training, test results were obtained, and a sample of these is
shown in Figure 9. Comparing the test results with the labeled image, it is apparent that
the network correctly identified the defect of scum. Only the main defect in the picture
was marked in the label, but the defects not marked in the label were also identified by the
network after training.
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Figure 9. Comparison of single defect original image and segmented image. (a) represents the
test chart of all marked colors, (b) an original map of the pipeline, and (c) the defect map of the
segmentation mark, the defect is scum.

We further processed the image by processing the background to black, making it
easier to identify the color of the segmented image in order to identify the type of defect in
Figure 10. Figure 10 shows the original image and the segmented image, where the defects
can be clearly seen.

For the segmented defect image, the accuracy, MIoU, and MeanBFscore were used as
evaluation indicators.

Pixel accuracy (PA) is the ratio of the number of correctly segmented pixels to the total
number of pixels, defined as in Equation (3). Mean pixel accuracy (MPA) is a simple im-
provement of PA. The proportion of correctly segmented pixels in each class is determined,
and the average of all classes is calculated. The definition is shown in Equation (4):

PA =
TP + TN

TP + TN + FP + FN
(3)

MPA =
1
k

k

∑
i=0

TP + TN
TP + TN + FP + FN

(4)
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where TP, TN, FP, and FN represent the numbers of true positives, true negatives, false
positives, and false negatives, respectively, and k indicates the number of categories.
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Table 4 presents the PAs and MPAs from the experiments performed in this study. The
PAs were 82.77% and 79.59% on the validation and test sets, respectively, and the MPAs
were 74.09% and 69.74% on the validation and test sets, respectively. Table 5 shows the
PAs of each class in the test set. Among them, five types of defect segmentation (FS, CD,
ZG, FZ, and SG) achieved 80% or more precision, but the effectiveness of CK and ZAW
segmentation needs to be improved.

Table 4. Statistical Table 1 of recognition results.

Indicators PA (%) MPA (%) MIoU BFScore

Valid 82.77 74.09 0.61 0.75
Test 79.59 69.74 0.55 0.72

Table 5. Statistical Table 2 of recognition results.

Name PA (%) IoU BFScore

FS 86.36 0.78 0.73
CD 86.27 0.68 0.69
ZG 79.46 0.64 0.55
FZ 81.64 0.72 0.62
SG 80.97 0.62 0.71
CK 47.09% 0.29 0.81

ZAW 26.38% 0.12 0.35

MIoU is a commonly used evaluation index for semantic segmentation. Its definition
is given in Equation (5), where k indicates the number of categories. It calculates the
intersection and union ratio of two sets. In semantic segmentation, these two sets are the
labeled image and the predicted image, and the MIoU reflects the degree of coincidence
between the two sets. The closer the MIoU is to 1, the higher the coincidence degree and the
higher the quality of semantic segmentation. MIoU is presented in Table 4, and the MIoU
of each class in the test set is shown in Table 5. The MIoUs were 0.61 and 0.55, respectively,
on the validation and test sets, and the MIoU of each class in the test set is presented in
Table 5. The IoU of FS, CD, ZG, FZ, and SG was above 0.60, but the IoU of CK and ZAW
was relatively low.

MIoU =
1
k

k

∑
i=0

TP
FP + TP + FN

(5)

Another widely used metric for semantic segmentation is the Boundary F1 (BF)
score [25] (Equations (6)–(8)). The BF score is the contour matching score between the
predicted segmentation and the true segmentation in the labeled set. The BFScores were
0.75 and 0.72, respectively, on the validation and test sets, and the BFScore of each class in
the test set is presented in Table 5.

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1Score =
2 × Precision × Recall

Precision + Recall
(8)

The evaluation described above revealed that the FS, CD, ZG, FZ, and SG classes were
easier to separate, but that it was difficult to separate CK and ZAW from the other classes.
The reason for the poorer performance on ZAW was that there are many types of obstacles
in the sewer and their division is usually based on object size, whereas the network used
here is based on pixels.
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6. Engineering Applications

Using a pipeline periscope and a CCTV inspection system, the sewers of 18 communi-
ties in a city in southern China were measured, focusing on drainage canals with a long
construction time, a large diameter, and hidden dangers. A total of 700 images of pipes
were taken. Figure 10 shows some of the pictures. The dataset photos were cropped to a
uniform size of 360 × 480 pixels and subjected to a histogram equalization process.

The next stage was to determine whether the model is feasible in practice. The dataset
was manually labeled before the trained network segmentation could be performed. Then,
the model’s automatic segmentation was compared with the manually labeled defects to
evaluate network performance. The detailed information of the labels is shown in Table 1,
and the labeling effect is shown in Figure 11.
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Finally, the original and processed images were fed into the trained deep learning
network. Table 6 presents the evaluation results. The PA was 80.09%, the MIoU was 0.67,
and the BFScore was 0.73. This shows that the network performed satisfactorily in an actual
sewer inspection project.

Table 6. Evaluation results.

PA (%) MIoU BFScore

Total 80.09% 0.61 0.73

7. Conclusions and Future Work

This paper proposes a method for automatically classifying and segmenting sewer
defects based on deep convolutional neural networks. The SegNet network was used as the
backbone network, and the CamVid dataset was pretrained and migrated to the collected
pipeline defect image dataset.

To improve segmentation accuracy and reduce data imbalance, histogram equalization
processing was first performed on the images in the dataset to enhance contrast. Then, a
weighting method was used to balance defect pixels, and finally, an image data augmen-
tation method was used to increase the number of training sets. Good performance was
obtained on the verification and test sets, with PAs of 82.77% and 79.59% on the validation
and test sets, respectively. When the trained network was applied to actual engineering
project detection images, the PA was 80.09%, the MIoU was 0.67, the BFScore was 0.73, and
the segmentation result was ideal, which demonstrates that the model is well suited for use
in practical engineering.
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A deep learning model was used for intelligent defect classification and region labeling
in sewers, and good detection results were achieved, but the data volume was small, and
the single machine operating speed was slow. Therefore, it will be necessary to further
expand the sample base and improve segmentation effectiveness. In the present study,
only seven defect types were classified and segmented. Future research may segment more
kinds of defects. Comparative experimental analyses can be carried out in the future using
a number of different networks. Moreover, FNC, DeepLab, and other networks can be used
to classify and segment defects to obtain better performance.
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