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Abstract: Rapid population growth, economic development, land-use modifications, and climate 

change are the major driving forces of growing hydrological disasters like floods and water stress. 

Reliable flood modelling is challenging due to the spatiotemporal changes in precipitation intensity, 

duration and frequency, heterogeneity in temperature rise and land-use changes. Reliable high-res-

olution precipitation data and distributed hydrological model can solve the problem. This study 

aims to develop a distributed hydrological model using Machine Learning (ML) algorithms to sim-

ulate streamflow extremes from satellite-based high-resolution climate data. Four widely used bias 

correction methods were compared to select the best method for downscaling coupled model inter-

comparison project (CMIP6) global climate model (GCMs) simulations. A novel ML-based distrib-

uted hydrological model was developed for modelling runoff from the corrected satellite rainfall 

data. Finally, the model was used to project future changes in runoff and streamflow extremes from 

the downscaled GCM projected climate. The Johor River Basin (JRB) in Malaysia was considered as 

the case study area. The distributed hydrological model developed using ML showed Nash–Sut-

cliffe efficiency (NSE) values of 0.96 and 0.78 and Root Mean Square Error (RMSE) of 4.01 and 5.64 

during calibration and validation. The simulated flow analysis using the model showed that the 

river discharge would increase in the near future (2020–2059) and the far future (2060−2099) for 

different Shared Socioeconomic Pathways (SSPs). The largest change in river discharge would be 

for SSP-585. The extreme rainfall indices, such as Total Rainfall above 95th Percentile (R95TOT), 

Total Rainfall above 99th Percentile (R99TOT), One day Max Rainfall (R×1day), Five-day Max Rain-

fall (R×5day), and Rainfall Intensity (RI), were projected to increase from 5% for SSP-119 to 37% for 

SSP-585 in the future compared to the base period. The results showed that climate change and 

socio-economic development would cause an increase in the frequency of streamflow extremes, 

causing larger flood events. 
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1. Introduction 

The hydrological system involves a complicated interaction between various compo-

nents [1]. The human interaction with some of these components has made it more intri-

cate over time [2,3]. Hence, the hydrological system is a dynamically complex system that 

remained difficult to understand and a challenge to model due to its complexity [4]. Hy-

drological disasters like floods and water stress have become an every-year phenomenon 

in many other countries across the globe [5]. Floods in a catchment are triggered when 

precipitation becomes more than the storage and drainage capacity of the catchment [6,7]. 

Due to rapid population growth, economic development, land-use modifications, and cli-

mate change, many catchments across the world have become highly prone to hydrolog-

ical disasters [8,9]. This is particularly true for Malaysia, where land use and climate 

changes are often mentioned as the responsible factors for the increased frequency and 

severity of urban water scarcity and floods [10,11]. This has caused major concern among 

scientists and policymakers in the context of global environmental changes.  

The increase in atmospheric greenhouse gases (GHG) caused a significant rise in 

global temperature [12]. The changes in precipitation patterns, including intensity, dura-

tion, and frequency, have been recorded with the rise in temperature over the last few 

decades, resulting in frequent hydrological extremes [13]. Water is the most important 

resource for the survival of living beings [14]. Almost 80% of the world’s population lives 

under different forms of water scarcity [15]. Increasing hydrological disasters may cause 

a quick depletion of the available water resources [16]. The water management system 

needs to be advanced with better management policy to attain sustainable development 

and management of water resources to adapt to climate change [17]. This needs reliable 

information on climate change projections and implications in catchment hydrological 

processes. 

Rainfall–runoff models simulate the relationships between rainfall and the runoff 

generated in a catchment [18]. Various methods and techniques have been developed to 

simplify this complex relationship, ranging from a simple mathematical model to a com-

plex “black box” and physical models [19–21]. According to the methods used to develop 

the relationship between rainfall and runoff, the models are categorized as empirical, con-

ceptual, and physical [22]. They are also categorized as lumped, semi-distributed, and 

distributed models based on their ability to consider the spatial variability of catchment 

properties. Devia et al. conducted a comparative study to compare various rainfall–runoff 

models [22]. The study revealed that the empirical models require fewer input data but 

are limited to a certain region or a boundary, whereas the conceptual models are paramet-

ric. The parameters are catchment dependent, and thus, their derivations need large hy-

drological and meteorological data [23]. The physical-based model establishes the rain-

fall–runoff relationship based on the governing physical laws [24]. These models are most 

accurate but suffer from scale-related issues and require extensive data [22]. Therefore, 

they are considered the most complex rainfall–runoff models. The uncertainties associated 

with extensive data and the parameters used to develop models are specific to the region, 

making these models more time-consuming and site-specific [25]. 

In recent years, soft computing or machine learning (ML) methods, such as Artificial 

Neural Network (ANN), Support Vector Regression (SVR), and Fuzzy Logic and Genetic 

Algorithm (GA), have been employed to develop rainfall–runoff and other hydrological 

applications [26–29]. However, these approaches cannot completely manage the dynam-

ics of hydrological processes because of their inherent limitations in the approaches [30]. 

Potential challenges also arise as these methods require long-term, continuous historical 

records of hydrological and other variables [31,32]. Furthermore, many of these ap-

proaches simplify the multi-factors and often make the nonlinear systems linear, reducing 

the simulation accuracy [33,34]. The hybridization of ML and conventional physical or 

conceptual model can improve the capability to model complex interactions. Such an ap-

proach also can replicate the functional relationship between input and output by enhanc-

ing the original methodologies by data processing, parameter estimation, and routing 
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using machine learning algorithms [35]. The application of such complex problem-solving 

methodologies in hydrology and water resources can help to provide a technique for re-

liable simulation of hydrological disasters, particularly water scarcity and floods, due to 

the changes in land use driven by physical and socio-economic factors and climate. Incor-

porating quantitative information on complex interactions of runoff with land use and 

climate can enhance the model’s accuracy in simulating hydrological disasters [36].  

The projection of water-related hazards in a catchment is very intricate due to the 

complex relationship of climate and land use with various ecological and socio-economic 

factors, including population growth, economic development, urbanization, and policy-

related factors, like water management strategies and legislation [37]. Therefore, recipro-

cating actual hydrological conditions using hydrological models is always challenging 

[38]. A hydrological model requires a lot of observed data and optimizing different pa-

rameters [39]. The data availability or mismatch of any data leads to errors in simulation 

[40]. Therefore, the major challenge is finding the relationship among the water cycle com-

ponents that affect a system in various dimensions. Successful simulation of a hydrologi-

cal cycle using a dynamic approach can address hydrological modelling challenges. The 

solution to this problem is extremely important for Malaysia, where rapid population and 

economic growth along with climate and land-use changes have caused a significant 

change in hydrological disasters. Consequently, a moderate dry spell often forces water 

rationing, and moderate or extreme rainfall causes floods, especially in rapidly develop-

ing urban catchments of Malaysia [13]. 

The influence of land-use changes, water consumption, temperature rise and ground-

water level causes changes in the hydrology of an area [12,41]. Deficiencies are found in 

studying the impact of climate changes, which are (i) the effect of changes due to a single 

component, (ii) statistical analysis of time series rather than assessing through a hydro-

logical model, and (iii) not using the updated data for the study. There is a need to analyze 

the changes in hydrology with the combined effect of all such variables along with the 

hypothetical climate scenarios based on long-term climate observation of the specific re-

gion. 

Modelling the dynamics of different factors individually and jointly can help under-

stand the complex nonlinear interrelations and interactions among different elements in 

the complex physical, environmental, and behavioural systems [42]. The incorporation of 

quantitative information on complex interactions of various factors can enhance the pre-

diction accuracy of the hydrological model to simulate hydrological disasters. It is ex-

pected that the application of complex problem-solving methodologies in hydrology and 

water resources will provide a reliable simulation of hydrological disasters, particularly 

water scarcity and floods, due to the changes in land use, climate and other physical and 

socio-economic aspects factors. Therefore, in this study, we develop an entity-based, dis-

tributed hydrological model based on state-of-the-art machine learning algorithms to in-

corporate various components of the environment to analyze the effect of climate and 

land-use changes on the flood susceptibility in the Johor River basin, Malaysia. Further-

more, this study includes the projection of rainfall and flood extremes under various SSP 

scenarios of CMIP6 GCM future projections. 

2. Study Area and Data Description  

2.1. Study Area 

The study area opted in this research is Johor River Basin (JRB). It is situated in the 

south-eastern part of the state of Johor. The total catchment area of JRB is approximately 

1652 km2. JRB is situated in Peninsular Malaysia (Figure 1), also known as West Malaysia. 

West Malaysia covers 130,598 km2 and lies between latitudes of 1.20°–6.40° N and longi-

tudes of 99.35°–104.20° E [43]. The JRB has undulating land with elevations ranging up to 

366 meters in height. The topography comprises forests and irregular mountains sloping 

towards the South China Sea. The central and northern regions of JRB are covered with 
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swamps and natural forests; however, in the southern region, rubber and oil palm plan-

tations are the dominant landuse. Approximately 64% of the JRB have a slope angle rang-

ing from 0 to 50 [44]. The total length of JRB is 122.7 km with major tributaries of Penggeli 

River, Linggiu River, Sayong River, Jengeli River, and Belitong River [45]. 

 

Figure 1. Location of the study area. 

Malaysia’s climate is humid and hot due to its proximity to the equator. The region’s 

rainforest climate is heavily influenced by Asian–Australian atmospheric dynamics and 

land–sea interaction, varying topography, and monsoon winds [46]. The average daily 

temperature ranges between 21 and 32 degrees Celsius, with an annual variation of 3 de-

grees Celsius. The annual average rainfall is approximately 2000–4000 mm, with 150 to 

200 rainy days per year [47]. The regional precipitation distribution pattern is determined 

by the combined response of local topography and wind flow direction. 

Peninsular Malaysia experiences two seasons throughout the year: The Southwest 

Monsoon (SWM) from May to August and the Northeast Monsoon (NEM) from Novem-

ber to February. During NEM, extreme rainfall events are common, but the weather is dry 

during SWM. Coastal places are affected by the NEM, whilst higher altitude areas are less 

affected by the monsoon. Peninsular Malaysia has humid weather, with the highest pre-

cipitation recorded during the ‘inter-monsoon period.’ 

2.2. Data Description  

River gauge data of JRB was collected from the Department of Drainage and Irriga-

tion (DID) Malaysia. Daily discharge data of the main tributary was used to calibrate and 

validate the model. The details of the river gauge are given in Table 1. 

Table 1. Description of River Flow data. 

Station ID Station Name River Basin 
Catchment 

Area (km2) 
Analysis Period 

1737451 
SG. JOHOR at RANTAU 

PANJANG 
Sg Johor 1130 2007–2017 
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ERA-5-Land is a post-processed reanalysis of the European Commission, the Euro-

pean Centre for Medium-Range Weather Forecasts (ECMWF). It has a higher resolution 

than the previous products, such as the ERA-interim and ERA-5. This product provides 

complete information on various climates and land variables over a longer period with 

higher resolution. Physical laws govern the model output generated to produce a con-

sistent set of data by using observed data across the globe as an input. ERA-5 land contains 

the data of 50 variables which helps to study the energy and water cycles with a one-hour 

temporal resolution spread globally at a 9km resolution spatial resolution [48]. ERA-5-

Land data contains over 50 climate variables. Downscaling the CMIP6 GCMs, long term 

continuous higher-resolution data is required. Therefore rainfall and temperature data of 

ERA-5-Land for the period 1981–2014 were used to downscale GCMs, whereas soil mois-

ture was used for the development of the distributed hydrological model. All these data 

are freely available at https://cds.climate.copernicus.eu (accessed on 16 November 2021). 

The CMIP6 GCMs were employed in this study for the simulation of the future runoff 

in the basin. The new multi-model ensemble of CMIP6 was used in this study. The model 

ensemble allows climate change evaluation and regional projections under various future 

socio-economic scenarios. The fourth and fifth IPCC reports of the Erath System model 

(ESM) and Atmosphere-Ocean General Circulation Models (AOGCMs) were coupled as 

an input for CMIP6, which are known as General Circulation Model (GCM). The GCMs 

were selected by Iqbal et al. [49] for (Mainland South East Asia) MSEA using a robust 

selection method that uses the categorical and spatial indices. They selected three GCMs 

for the region. These GCMs were downscaled in this study to use as an input to the hy-

drological model to simulate future floods. Further details on the GCMs used can be found 

in the article [49]. 

Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG) 

performed better among five other satellite products for precipitation over Peninsular Ma-

laysia. Iqbal et al. [50] bias corrected the IMERG data using rain gauge station data. They 

developed a two-step bias correction method to improve the performance of IMERG data 

up to 55% in RMSE. The method was also found better than the conventional bias correc-

tion method such as Linear scaling and quantile regression [50]. The details of the study 

and method can be found in Iqbal et al. [50]. This bias corrected IMERG dataset was used 

in this study to develop the distributed hydrological model over Johor River Basin.  

The details of various other datasets used in this modelling are given in Table 2. 

Table 2. Details of various parameters used in this study. 

 Data Set Resolution Source 

Land use  

MODTBGA (MODIS/Terra 

Thermal Bands Daily L2G-Lite 

Global 1km SIN Grid V006 

1 km 

https://lpdaac.usgs.gov/(

accessed on 13 June 

2021) 

Rainfall 

MOD16A2 (MODIS/Terra Net 

Evapotranspiration 8-Day L4 

Global 500 m SIN Grid V006) 

500 m 
https://lpdaac.usgs.gov/(

accessed on 13 June2021) 

Land Surface 

Temperature 

MOD11A1-MODIS/Terra Land 

Surface Temperature/Emissivity 

Daily L3 Global 1km SIN Grid 

1 km 

https://lpdaac.usgs.gov/(

accessed on 14 June 

2021) 

Elevation  ALOS/PALSAR DEM 12.5 m  12.5 m 
https://asf.alaska.edu/(ac

cessed on 19 July 2021)  

Soil Type   SoilGrids250m version 2.0 250 m 
https://soilgrids.org/(acc

essed on 22 July 2021) 

  

https://cds.climate.copernicus.eu.(accessed/
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3. Methodology 

3.1. Procedure 

The methodology adopted in this study consists of the following steps: 

1. The catchment is divided into grids of 10 km each. 

2. All the data sets are interpolated to 10 km to achieve a similar resolution. 

3. The distributed hydrological model is developed using bias Corrected IMERG data 

for the catchment. 

4. The model is calibrated and validated with the observed river flow data (details 

given in Table 1). 

5. The selected GCMs are downscaled to 10 km resolution for the basin.  

6. The downscaled GCMs data is used in the distributed model to simulate the future 

flow condition under different SSP scenarios. The details of the methods used to 

complete the analysis are given below. 

3.2. K-Nearest Neighbour  

The KNN is an efficient nonparametric classification algorithm that assigns data to a 

class based on its nearest neighbours [51]. In the particular classification problem, assum-

ing that 𝑇 =  {𝑥𝑛  ∈  𝑅𝑑}𝑛=1
𝑁  indicates a training set comprises of N samples within each 

M class in d-dimension; the sample 𝑥𝑛 is assigned the class mark “𝑐𝑛”, the distance be-

tween the unknown point 𝑥 and 𝑥𝑖
𝑁𝑁 is estimated using Euclidean distance method as 

shown in Equation (1). 

𝑑(𝑥, 𝑥𝑖
𝑁𝑁) =  √(𝑥 − 𝑥𝑖

𝑁𝑁)𝑇(𝑥 − 𝑥𝑖
𝑁𝑁) (1) 

Next, the class name of the query point x is estimated based on the majority voting 

of its neighbours, as shown in Equation (2). 

�́� = arg 𝑚𝑎𝑥𝑐 ∑ 𝛿(𝑐 = 𝑐𝑖
𝑁𝑁)

(𝑥𝑖
𝑁𝑁,𝑐𝑖

𝑁𝑁)∈ �̅�
 

 
(2) 

where 𝑐 is a class label and 𝑐𝑖
𝑁𝑁 is the class label of i-th nearest neighbour. 𝛿(𝑐 = 𝑐𝑖

𝑁𝑁), 

an indicator function, can have a value of one of the class 𝑐𝑖
𝑁𝑁 of the neighbour 𝑥𝑖

𝑁𝑁. This 

research used KNN to interpolate different data sets to a specific grid. 

3.3. Downscaling of GCMs 

GCM simulations were downscaled to a finer spatial scale for their use by end-users. 

This study used the MOS approach to downscaling the selected GCMs into fine resolution. 

In MOS, the statistical calibration between simulated and observed predictors is usually 

done [52]. The advantage of using this method is that it improves reliability while keeping 

the original accuracy. The MOS has been found more advantageous in studies related to 

climate change [53].  

The bias correction using MOS can be expressed as in Equations (3) and (4). 

𝐵𝑖𝑎𝑠 =
1

𝑁
 ∑[𝐹(𝑡) − 𝑂(𝑡)]

𝑁

𝑡=1

 (3) 

where F = Forecast; O = Observations and N = days in training sample. 

𝐹′ = 𝐹(𝑡) − 𝐵𝑖𝑎𝑠 (4) 

where F’= Corrected Value. 

3.3.1. Gamma Quantile Mapping 

Gamma Quantile mapping (GammaQM) was introduced by Piani et al. [54]. This 

method assumes that a gamma distribution approximates the observed and simulated 
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intensity distribution well. GammaQM builds a model variable Pm using probability inte-

gral transform to make the new build distribution equal to the distribution of the observed 

variable Po. The mathematical expression of this method is given in Equation (5) 

𝑃𝑜=𝐹−1𝑜(𝐹𝑚(𝑃𝑚)) (5) 

where Fm= Cumulative function of Pm; and 𝐹−1𝑜 = inverse cumulative function of Po. 

𝑝𝑑𝑓(𝑥) =  
𝑒(−

𝑥
𝜃

)𝑥(𝑘−1)

𝑇(𝑘)𝜃𝑘
 (6) 

where in Equation (6), k signifies the form parameter, x denotes the Normalized daily 

precipitation, while θ denotes the scaling parameter.  

GammaQM could not be applied if the k value is less than 1 or 0; therefore, the value 

is presumed greater than 1. GammaQM deliberates mean and extreme values, making it 

an effective bias-correction method [54–56]. GammaQM is only valid for precipitation 

data. 

3.3.2. Power Transformation 

Power Transformation (PowerTr) considers the bias in the mean and the differences 

in the variance for the correction of data [57]. In power transformation, a nonlinear cor-

rection in the exponential form such as 𝑎𝑃𝑏 is used for the adjustment of variance. Ac-

cording to this method daily precipitation of P was transformed into a corrected amount 

of P* using Equation (7). 

𝑃∗  =  𝑎𝑃𝑏 (7) 

A distribution-free approach can calculate the parameter, b. It is first identified by 

matching the coefficient of variation (CV) corrected daily GCM precipitation (Pb) with the 

CV of observed daily precipitation for each month of training. The value of b was deter-

mined iteratively. Data grouping was done every five days to reduce sampling variability 

[58]. The value of b was used to calculate the transformed precipitation by Equation (8):  

𝑃∗  =  𝑃𝑏 (8) 

A parameter is subjected to the observed and the transformed mean values. It is a 

dependent parameter to the value of b parameter and subsequently b is a dependent to 

the magnitude of CV Both a and b are differed for every block-annual of 5 days. 

3.3.3. Generalized Quantile Mapping 

Generalized quantile mapping (GenQM) is a kind of parametric quantile mapping. 

Its main differ is the implementation of gamma distribution and generalized Pareto dis-

tribution (GPD). Mathmatically, GenQM can be expressed as follows: 

𝑃𝑜 = 𝐹𝑜
−1(𝐹𝑚(𝑃𝑚)) (9) 

The pdf is chnaged with the value of GPD and gamma distribution. The value of the 

GPD is tailed the extreme distribution [59], as expressed in Equation(10). 

Pr(𝑋 − 𝑢 ≤ 𝑥 | 𝑋 > 𝑢) =  {
1 − (1 +

ξ x

𝜎
~ ) ,                        𝑖𝑓 ξ ≠ 0 

1 − exp (−
ξ x

𝜎
~ ) ,                      𝑖𝑓 ξ = 0

 (10) 

Here, the u value is the 95th% threshold, 𝜎
~

= 𝜎 + ξ(𝑢 − 𝜇), 𝜎
~

 is the scale parameter. 

ξ is presented the shape parameter. In this equation, gamma distribution was employed 

on a smaller threshold. In addition, the GPD was employed on values larger than this 

threshold, as given in Equation (11): 
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𝑦 = {
𝐹obs,gamma

−1 (𝐹CCLM,gamma)

𝐹obs,GPD
−1 (𝐹CCLM,GPD)  

,     if  𝑥 < 95thpercentile
     ,               if  𝑥 ≥ 95thpercentile

 (11) 

3.3.4. Linear Scaling 

The Linear Scaling (LS) approach was introduced by Lenderink et al. [60]. This bias 

correction method utilizes the monthly correction values “the difference modeled and ob-

served daily dataset”. The monthly scaling factor is then applied to uncorrected daily 

data. The daily precipitation P was corrected by the following Equations (12) and (13). 

𝑃∗ = 𝛼𝑃 (12) 

While the temperature, T, is corrected using the following equation, 

𝑇∗ = 𝛼𝑇 (13) 

whereas α is the monthly scaling factor for precipitation is calculated by Equation (14), 

𝛼 =  
𝑃𝑜

𝑃 𝑠
 (14) 

𝑃𝑜 is the observed monthly mean and 𝑃𝑠 is the simulated monthly mean. 

For the bias correction of temperature, the scaling factor is calculated by Equation (15). 

𝛼 =  𝑇𝑜 − 𝑇𝑠 (15) 

𝑇𝑜 is the observed temperature mean whereas, 𝑇𝑠 is the monthly mean simulated tem-

perature. The LS method is simple and requires less information, such as only monthly 

data is required to calculate the scaling factor [61].  

3.4. Hydrological Model Development  

Hydrological interactions, such as transpiration, evaporation, streamflow, rainfall, 

groundwater flow, and infiltration constitute a hydrological system. The interaction 

among the hydrological system’s components is complex and variable in space and time. 

However, four major components mostly govern the hydrological cycle: precipitation, in-

filtration, runoff, and evapotranspiration. Various methods are adopted to develop the 

relationships between these major hydrological components and understand the hydrol-

ogy of any region. The major interacting components of a hydrological cycle are shown in 

Figure 2. The study is divided into several grid boxes to model the distributed nature of 

hydrological processes. The divisions of the study area into grid boxes are also shown in 

Figure 2. 

3.4.1. Concept of the Distributed Model 

A multiple bucket modelling approach was used in this research to account for the 

spatial variability of the land and climate variables in the catchment. The study area was 

divided into grids of 10 km each to calculate the cumulative flow in the catchment, con-

sidering the variability of soil and climate inputs at a coarser scale. Each bucket was sub-

divided based on the major hydrological processes. The unsaturated region, evapotran-

spiration, and surface runoff simulate the flow generation. The model was developed for 

JRB on a daily time scale using the bias-corrected satellite data. A simple water balance 

equation was used for each bucket, including rainfall, evaporation, and saturated excess 

flow. A nonlinear storage discharge relationship was established to generate surface run-

off using near-real-time RS data for creating an early flood hazard system to minimize the 

flood causalities.  
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Figure 2. Distribution of the study area into grids. 

The main water balance equation used to calculate the discharge from each bucket is 

given in Equation (16). 

𝑑𝑠(𝑡)

𝑑𝑡

= 𝑅(𝑡) − 𝑓𝑠𝑠(𝑡) − 𝑓𝑠𝑒(𝑡) − 𝑒𝑡(𝑡) (16) 

where 𝑅(𝑡) is the amount of rainfall at a certain timestep 𝑡. 𝑞𝑠𝑠(𝑡) and 𝑞𝑠𝑒(𝑡) are the 

runoff at subsurface and a surface scale, whereas 𝑒𝑡 represents the evapotranspiration 

for the pertinent bucket. 
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3.4.2. Excess Saturation Runoff Rate 

The overland flow or saturated excess flow of a bucket was calculated by Equation 

(17), given the following conditions were fulfilled.  

𝑓𝑠𝑒 =
𝑉 − 𝑉𝑏

𝛥𝑡
     𝑖𝑓 𝑉 >  𝑉𝑏 

𝑓𝑠𝑒 = 0      𝑖𝑓 𝑉 <  𝑉𝑏 
(17) 

where 𝑉 is the volume of soil water storage and 𝑉𝑏 is the soil moisture storage capacity. 

𝑉𝑏 depends on the average soil depth (L) and the average soil porosity Φ.  

3.4.3. Subsurface Runoff 

The subsurface runoff is the function of soil storage and catchment response time. 

The function to calculate the subsurface runoff depends on the values of soil water storage 

capacity and the soil water storage at the pertinent grid, as given in Equation (18) below. 

𝑓𝑠𝑠 =
𝑉 − 𝑉𝑓

𝑡𝑐
       𝑖𝑓 𝑉 >  𝑉𝑓 

𝑓𝑠𝑠 = 0      𝑖𝑓 𝑉 <  𝑉𝑓 
(18) 

where 𝑉 represents the soil water storage and 𝑉𝑓 is the threshold storage assumed to be 

equal to 𝑉𝑓 = 𝑓𝑐𝐿 , the product of soil field capacity and the average soil depth. Darcy’s 

Law is used to calculate the catchment response time considering the hydraulic gradient 

equal to the hillslope of the ground calculated using the DEM. The equation for the calcu-

lation of catchment response time is given in Equation (19), 

𝑡𝑐 =  
𝐿 𝛷

2 𝐾𝑠 𝑡𝑎𝑛𝛽
 (19) 

where L is the hillslope length, 𝑡𝑎𝑛𝛽 is the average ground surface slope, and 𝐾𝑠 is the 

average saturated hydraulic conductivity. 

3.4.4. Evapotranspiration 

The evapotranspiration in the water balance model is calculated using an empirical 

relationship that uses minimum parameters. The FAO Blaney–Criddle was used in this 

study to find the evapotranspiration using the precipitation and temperature at a specific 

grid [62], using Equation (20) below. 

𝑒𝑡𝑜(𝑖) = 𝑝(𝑖) (0.46 𝑇𝑚𝑒𝑎𝑛(𝑖) + 8.13) (20) 

where, 𝑝(𝑖) is the average precipitation and 𝑇𝑚𝑒𝑎𝑛(𝑖) is the mean temperature of the grid 

(i).  

3.4.5. Flow Routing 

This distributed hydrological model’s flow routing relies on the “Eight Direction 

Pour point model”. It calculates the direction of flow of a single grid based on the differ-

ence in elevation of the surrounding eight grids. Furthermore, the flow direction of each 

cell is determined using the “Direction of steepest descent” method. The steps to calculate 

the flow routing are as follows: 

1. The average elevation of each grid is calculated for all the cells. 

2. The flow direction of each cell is calculated using the Eight Direction Pour point 

model. 

3. The flow accumulation in each cell is calculated using the bucket model developed 

in Section 3.3.1. 

4. Flow accumulation is calculated by adding the cumulated flow of the grids flowing 

into the particular grid 

5. The flow route is calculated by connecting the low water accumulated cells with high 

water accumulated cells.  
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A machine learning model was used to generate runoff from rainfall in each grid cell. 

R-packages “r.watershed” tool and “rdwplus” were used to estimate the routing of the 

generated runoff from the cell to the catchment outlet. 

3.4.6. Projections of Climate Change Impacts on Hydrological Extremes 

The framework to analyze the impact of climate changes on hydrological extremes is 

shown in Figure 3. The extremes in the flow at Ratu Panjang station were simulated for 

historical and future scenarios. To simulate the flow using the spatially distributed hydro-

logical model developed in this study, the downscaled GCMs data was used as an input. 

The model generated the flow for historical and future scenarios for various SSPs. The 

output was used to calculate various flow quantiles, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 

0.9. The changes in each quantile were calculated by taking the difference between simu-

lated future flow to the historical flow by each GCM. 

 

Figure 3. Framework to analyze the impact of climate change on hydrological extremes. 

The downscaled GCMs data was used to analyze various rainfall extremes, as given 

in Table 3. These indices were calculated for historical and each SSP. The difference in 

these indices was calculated with the historical period as the reference. The details of each 

index are shown in Table 3. 

Table 3. WMO hydrological extreme indices used in this study. 

Indices Symbol Description Formula 

Total rainfall 

above 95th 

Percentile 

R95pTOT 
Annual total rainfall when 

rainfall > 95p 

𝑅95𝑝 =  ∑ 𝑅𝑅𝑤𝑗
∗𝑊

𝑤=1  where 

𝑅𝑅𝑤𝑗 >  𝑅𝑅𝑤𝑛95 

Total Rainfall 

above 99th 

Percentile 

R99pTOT 
Annual total rainfall when 

rainfall > 99p 

𝑅99𝑝 =  ∑ 𝑅𝑅𝑤𝑗
∗𝑊

𝑤=1  where 

𝑅𝑅𝑤𝑗 >  𝑅𝑅𝑤𝑛99 

One day Max 

Rainfall 
R×1day 

Annual maximum 1-day 

rainfall 
𝑅𝑥1𝑑𝑎𝑦𝑗 =  max (𝑅𝑅𝑖𝑗

∗∗) 

Five-day Max 

Rainfall 
R×5day 

Annual maximum 5-day 

rainfall 
𝑅𝑥5𝑑𝑎𝑦𝑗 =  max (𝑅𝑅𝑖𝑗

∗∗) 

Rainfall 

Intensity 
RI 

Average rainfall on the 

rainy days 
𝑅𝐼 =  

∑ 𝑅𝑅𝑤𝑗
𝑤
𝑤=1

𝑊∗∗∗
 

* Daily Rainfall amount on wet days (Rainfall > 0). ** Daily rainfall amount on the day, i, in period 

j. *** Number of wet days (Rainfall > 0). 
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4. Application Results  

4.1. Downscaling of GCMs 

4.1.1. Downscaling of Precipitation  

ERA-5-Land data was used as the reference data to downscale the precipitation and 

temperature of EC-Earth, EC-Earth-Veg, and MRI-ESM2. LS, GammaQM, PowerTr, and 

GenQM were used to downscale the historical GCMs. Index of agreement (d), Normalized 

Root Mean Square Error (NRMSE), Percentage Bias (Pbias), and Skill Score (SS) of the 

downscaled precipitation are shown in Figure 4. The downscaled result of one out of three 

GCMS are shown below. The results of the remaining GCMs are provided as Supplemen-

tary Material for further reference (Figures S1, S2, S5, S6, S9 and S10). The results showed 

that LS performs better than the other bias correction methods. Compared to the other 

methods, LS has improved the d values by up to 20% for each GCM. 

The error in downscaling was compared using NRMSE %. Plots between ERA-5 and 

GCM with different bias correction methods are shown in Figure 4. The results show that 

the NRMSE of raw GCM ranges between 120 and 130%, whereas the LS reduced the 

NRMSE by 100−110%. GammaQM, PowerTr, and GenQM showed poor performance in 

reducing the NRMSE.  

The PBIAS in the bias-corrected outputs is shown in Figure 4. The results showed 

that the raw GCM biases range from −40 to −45% compared to ERA-5 data. The most suit-

able model which reduced the bias very close to zero was the LS and PowerTr. The SS of 

the raw and the bias-corrected GCMs were also compared to show the model’s accuracy. 

The best SS was found for the LS. The raw GCM of EC-Earth showed a mean SS of 0.42, 

whereas it improved to 0.63 using LS, 0.48 using GammaQM and 0.53 using PowerTr, and 

it reduced to 0.25 for GenQM, as shown in Figure 4. Similar improvements were observed 

for EC-Earth-Veg and MRI-ESM2 using the LS method. 

Taylor diagram was used to compare the degree of correspondence between the bias-

corrected data, as shown in Figure 5. The figure shows the bias-corrected outputs for the 

EC-Earth during calibration and validation periods. The results showed that, in terms of 

three statistical matrices (Standard Deviation, Correlation and RMSE), the LS method per-

formed better to reduce the bias in both the calibration and validation periods. The LS 

showed a correlation coefficient higher than 0.4 during calibration and validation, while 

all other methods showed less than 0.4. The root-mean-square error of LS corrected data 

was less than the other models, while the standard deviation was nearer to the observed 

one as it is radially nearer to the observation (hollow circle on the x-axis). The Taylor dia-

grams of the remaining GCMs are provided as Supplementary Materials (Figures S3, S4, 

S7, S8, S11 and S12). 

4.1.2. Downscaling of Maximum Temperature 

The comparison of d in Figure 6 showed that the PowerTr downscaling method im-

proved the d value from 0.48 to 0.56, a comparison of NRMSE % values showed that the 

GammaQM and GenQM methods failed to downscale the GCM because the NRMSE % 

values increased for these two models. However, LS and PowerTr showed a slight im-

provement in the NRMSE % by 5–10%. 
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Figure 4. The statistical performance of the downscaled and raw GCMs. 
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Figure 5. Taylor diagram shows bias correction methods’ performance to correct EC-Earth during 

(a) calibration; (b) validation periods. 

The output of the downscaling models is compared in Figure 6. The average percent-

age biases in downscaled data compared to the ERA-5 ranged from 0.1 to 0.4. The results 

showed that the PowerTr model reduced the biases in the three GCM by an average of 

20−30%. Similar results were demonstrated by the LS method, whereas the GenQM and 

GammaQM showed unsatisfactory performance in the bias correction. The SS of the mod-

els was also compared to the ERA-5 data, as shown in Figure 6. The SS of raw GCM was 

0.995, which was further improved up to 0.999 by the PowerTr method in most cases. 

However, the SS was reduced in the case of GammaQM and GenQM. Therefore, in terms 

of improving these indices, the PowerTr downscaling method proved to be a better model 

than the others. 

Figure 7 shows the Taylor diagram for EC-Earth GCM. The calibration and validation 

period results showed that the best model to downscale the EC-Earth is the PowerTr as it 

reduced the RMSE and increased the correlation. The results of EC-Earth-Veg and MRI-

ESM2 are given in appendices. 

4.1.3. Downscaling of Minimum Temperature 

The results for downscaling minimum temperature are presented in this section. Fig-

ure 8 shows the efficacy of the downscaling models in terms of the d. The EC-Earth raw 

values showed a d value of 0.5, whereas the downscaling models showed improvement, 

specially PowerTr increased the d values up to 0.57. Figure 8 shows the NRMSE % values 

of GCM and other downscaled output compared to the ERA-5 historical data. The NRMSE 

% values of the GCM were observed between 0 and 50% for all the three GCMs. However, 

the improvement in MRI-ESM2 using PowerTr and LS was up to 10% for NRMSE %. 

The biases in the downscaling GCMs are compared in Figure 8. The average biases 

in these models compared to the ERA-5 were in the range of −0.2 to 0.7%. The results 

showed that the PowerTr model reduced the biases in the three GCM by an average of 

20−30%. Similar results were shown by the LS method, whereas the GammaQM and 

GenQM showed very high errors in the bias correction. The SS of the models were also 

compared to the ERA-5 data. The SS of raw GCM was 0.997, which was improved up to 

0.999 by the PowerTr method in most cases. However, the SS was noticed to decrease for 

GammaQM and GenQM. 
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Figure 6. The statistical performance of the downscaled and raw GCMs for maximum tempera-

ture. 
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Figure 7. Taylor diagram shows bias correction methods’ performance to correct EC-Earth during 

(a) calibration; (b) validation period. 

 

Figure 8. The statistical performance of the downscaled and raw GCMs for minimum tempera-

ture. 
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Figure 9 shows the Taylor diagram for EC-Earth minimum temperature. The calibra-

tion and validation period show that the best model to downscale the EC-Earth is the 

PowerTr as it has reduced the RMSE and increased the correlation. 

 

Figure 9. Taylor diagram shows bias correction methods’ performance to downscale EC-Earth min-

imum temperature during (a) calibration; (b) validation periods. 

4.2. Calibration and Validation of Hydrological Model 

The integrated hydrological model was developed for each grid using the BIMERG 

data. Model calibration and validation were performed using river flow data at Ratu Pan-

jang from 2007 to 2017. Seven years’ data starting from 2007 was used for calibration, 

whereas the remaining four years of river flow data were used for validation. The model 

was developed using RF by tuning the parameters using repeated cross-validation for 

random sampling. The ‘repeatedcv’ package in R was used to split the data into ten parts. 

Nine parts were used to train and the reaming part for validation in each of the ten itera-

tions used. The performance during each iteration was measured using evaluation met-

rics. The average performance of ten folds with ten repetitions was calculated to summa-

rize the performance. The calibration and validation results are shown in Figure 10. The 

model showed good performance for the validation period, giving the NSE, d, KGE, 

RMSE, and Pbias of 0.96, 0.99, 0.92, 4.01, and −0.2, respectively. The NSE value of 0.96 was 

much better than the reported NSE values for similar other models, such as SWAT and 

HSPF, APEX, and SAC-SMA [63]. Conventionally, the NSE value greater than 0.65 is con-

sidered good for model evaluating criteria [64]. The model showed satisfactory values for 

the coefficient of determination (d) during calibration (0.99) and validation period (0.94). 

The results also showed very less bias in calibration and validation periods. Pbias showed 

overestimation or underestimation of the measured flow. The acceptable range of Pbias is 

less than 10%, whereas in this case, the Pbias was −0.2% for calibration and −7.2% for the 

validation period. The RMSE values range from 4.01 to 5.64 for calibration and validation. 

The KGE values were also in the acceptable range of 0.92 for calibration and 0.86 for vali-

dation. 

The model was evaluated using other statistical indices, such as MAR, d, md, KGE, 

RMSE, and Pbias. The results of these statistical indices are given in Table 4. The correla-

tion terms, such as d, md, and R2 were in the acceptable range, showing a good perfor-

mance in simulating the runoff during the calibration and validation period. The error 

terms showed very negligible values, indicating the model’s good performance in simu-

lating observed flow. 



Sustainability 2022, 14, 6620 18 of 29 
 

 

 

Figure 10. Observed and modelled river flow during calibration and validation period of 2007–

2017. 

A boxplot of simulated and observed flow for all the months during the analysis pe-

riod (2007−2017) was plotted to analyze the seasonal streamflow variations. Figure 11 

shows that the model simulates the seasonal variation well. The mean and quantile ranges 

of the mean monthly rainfall of each month depicted a very good range of values. It can 

be observed in Figure 11 that the extreme values of the streamflow during January, May, 

July, October, November, and December were also well simulated by the model. The sim-

ulated mean values of each month were approximately equal to the observed flow. The 

result indicates that the model can simulate the seasonal variation and the seasonal ex-

tremes. Therefore, it can be used for climate change impact on river flow in the basin. 

 

Figure 11. Seasonal variations in mean monthly stream flow. 
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Table 4. Performances of the model during the calibration and validation periods. 

 MAE RMSE NRMSE% Pbias NSE d md R2 KGE 

Caliberation 2.24 4.01 20.2 −0.2 0.96 0.99 0.91 0.97 0.92 

Validation 3.8 5.64 50.2 −0.7 0.75 0.94 0.76 0.78 0.86 

4.3. Hydrological Changes under Future Scenarios 

4.3.1. Projected Rainfall Extremes  

This section evaluated five extreme rainfall indices defined by WMO for four SSPs 

and three GCMs. The indices include R95pTOT, R99pTOT, Rx1day, Rx5day, and RI. The 

historical and future precipitation simulations of the most suitable GCMs. (As discussed 

in our previous paper [49], EC-Earth, EC-Earth-Veg, and MRI-ESM2 were used to assess 

the changes in precipitation extremes. The simulated extremes were analyzed for each 

GCM individually to cover the maximum uncertainty range in the near (2020–2059) and 

far (2060–2099) future. The changes in these indices compared to the historical period are 

discussed in the following sections.)  

Total Rainfall above 95th Percentile (R95pTOT) 

Figure 12a shows the changes in R95TOT for different SSPs using three GCMs com-

pared to the historical period. The results for EC-Earth showed the highest increase in 

R95pTOT for SSP-119. The increase was 13 in the northern part of JRB. For SSP-370, a 

moderate increase over the whole basin ranging from 2 to 10 mm was observed. However, 

SSP-585 projected a decrease in the northern part but an increase in total annual rainfall 

in the southern region up to 10 mm.  

The EC-Earth-Veg GCMs showed a slightly less increase than the EC-Earth for all the 

scenarios. Under SSP-119, the R95pTOT value range from 5 mm in the northeastern region 

of JRB to −2 mm in the southern region. Similarly, SSP-245 showed a small change of 1−2 

mm over the entire basin, whereas SSP-370 showed an increase of 5 mm in the south and 

a decrease of −6 mm in the northern parts. For the fossil fuel development scenarios (SSP-

585), the R95pTOT showed an increase of 8 mm in the southern region and a decrease of 

−9 mm in the northern part.  

MRI-ESM2 showed a moderate increase in the near future for SSP-119, whereas the 

percentage change in the R95pTOT showed a reduction for SSP-370 and SSP-585. The rain-

fall showed an increase up to 5−9 mm in the sustainability scenario (SSP-119), whereas for 

the middle of the road scenario, the increase in R95pTOT was minimal (2 mm). Further-

more, the reduction of −2 to −13 mm in the R95pTOT was noticed during the regional 

rivalry (SSP-370) and fossil fuel development (SSP-585) scenarios.  

The change in R95pTOT of the far future (2060−2099) compared to the base period is 

shown in Figure 12b. The maps show a gradual increase in R95pTOT from 5 mm for SSP-

119 to 21 mm for SSP-585 for EC-Earth GCM. EC-Earth-Veg showed a similar pattern of 

increase in R95pTOT for SSP-119 and SSP-585. A decrease in R95pTOT was observed for 

SSP-199, whereas an increase by 5 and 21 mm was observed for SSP-245 and SSP-585, 

respectively. MRI-ESM2 showed a reverse pattern for R95pTOT under SSP-119, whereas 

a decrease in R95pTOT was projected for SSP-585. SSP-370 showed no changes in 

R95pTOT in the far future. 
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Figure 12. Change in annual total rainfall above 95 percentile (a) in the near future; (b) far future. 

Total Rainfall above 99th Percentile (R99pTOT) 

The percentage changes in R99pTOT are shown in Figure 13a. For SSP-119, the EC-

Earth showed an increase of 3 mm in the north and 1 mm in the southern part. EC-Earth-

Veg showed a similar increase, whereas MRI-ESM2 showed a higher increase up to 9 mm 

in the entire JRB for rainfall which exceeded the 99 percentiles of daily rain during the 

near future. For SSP-245, the EC-Earth showed an increase of 3 mm. Similarly, EC-Earth-

Veg showed an increase of 3−5 mm, whereas the MRI-ESM2 showed an increase of 5−7 

mm in the basin. 

The EC-Earth and EC-Earth Veg showed a similar change for SSP-370 like the previ-

ous scenarios, but MRI-ESM2 showed a slight increase in the R99pTOT (up to 1−2 mm). 

EC-Earth and EC-Earth-Veg showed a positive change at the majority of the grid points 

for SSP-585, whereas MRI-ESM2 showed a slight decrease of −1 mm in most of the grids 

in JRB during 2020−2059. 

The changes in R99pTOT for the far future period are shown in Figure 13b. For SSP-

119, the highest increase of 7 mm was observed for MRI-ESM2, whereas EC-Earth-Veg 

and EC-Earth showed an increase of 3−5 mm. An average increase of 4–5 mm was ob-

served for all the GCMs for SSP-245 and SSP-375, except MRI-ESM2, which showed a neg-

ative change of −1 to −2 mm at some grid points. Under fossil fuel development scenarios 

(SSP-585), the EC-Earth and EC-Earth-Veg showed an increase in R99pTOT up to 5 mm, 

whereas MRI-ESM2 showed a decrease by −1 to −2 mm. 

 

Figure 13. Change in annual total rainfall above 99 percentile (a) in the near future; (b) far future. 
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Changes in One Day Max Rainfall (R×1day) 

Figure 14a shows the changes in maximum one-day rainfall for 2020−2059. All GCMs 

showed an increase in R×1day at the majority of the grids for all the scenarios. For SSP-

119, the least change of 1–4 mm was observed for EC-Earth-Veg, whereas EC-Earth 

showed an increase of up to 10 mm and MRI-ESM2 by 19 mm in the near future.  

All GCMs projected a lower increase for SSP-245 than SSP-119. The maximum change 

of 10 mm followed by an average increase of 4−7 mm and 1−4 mm was observed for MRI-

ESM2, EC-Earth, and EC-Earth-Veg, respectively. For SSP-370, the R×1day showed an in-

crease by 4−7 mm for EC-Earth, whereas a slight decrease in the northern part by −2 mm 

for EC-Earth-Veg and an overall increase of 7−10 mm for MRI-ESM2. For SSP-585, the 

Rx1day showed an increase of 4−7 mm for EC-Earth. EC-Earth-Veg showed a slight de-

crease in the northern region, whereas an increase of 4−7 mm in the southern part. MRI-

ESM2 showed a slight decrease at the majority of the grid points with a value ranging 

from −2 to −5 mm. 

The changes in the far future are shown in Figure 14b. For SSP-119, a decrease in 

Rx1day was observed for EC-Earth and EC-Earth-Veg by −3 to −9 mm. MRI-ESM2 showed 

an increase in the northern region up to 15 mm and an increase of 9 mm in the southern 

part. The change in Rx1day was in the range of 9 to 21 mm for EC-Earth and EC-Earth-

Veg, whereas MRI-ESM2 showed an increase of 3 to 9 mm for SSP-245. SSP-370 showed a 

further increase of Rx1day, EC-Earth (15–21mm), EC-Earth-Veg (15−27 mm), and MRI-

ESM2 (15−21 mm). Rx1day was projected to increase by 34 to 40 mm for the fossil fuel 

development scenario. EC-Earth-Veg showed a similar increase of 21−34 mm, whereas 

MRI-ESM2 decreased to −3 mm in the entire basin. 

 

Figure 14. Change in one-day max rainfall (a) in the near future; (b) far future. 

Changes in 5-Day Max Rainfall (R×5day) 

Figure 15a shows the changes in R×5day for 2020−2059. EC-Earth showed the greatest 

changes of up to 44 mm for all SSPs, whereas EC-Earth-Veg showed a reduction. For SSP-

119, the change ranges from 12 to 25 mm for EC-Earth, −7 to 6 mm for EC-Earth-Veg, and 

0 to 6 mm for MRI-ESM2.  

EC-Earth showed a −5 to 12 mm change at different grids for SSP-245. EC-Earth 

showed a decrease by 0 to −7 mm. MRI-ESM2 also showed a decrease like EC-Earth-Veg. 

For SSP-370, the southern region showed an increase of up to 44 mm for EC-Earth GCM, 

whereas MRI-ESM2 and EC-Earth-Veg showed an increase of 2 to 12 mm. MRI-ESM2 

showed an increase up to 38 mm in the southern part of JRB for SSP-585. In contrast, EC-

Earth-Veg showed a slight increase in the R×5day in the southern part and a decrease up 
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to −3 mm in the northern region. All grids under EC-Earth showed an increase in the 

R×5day index ranging from 12−25 mm in the near future.  

The changes in R×5day for the far future are shown in Figure 15b. The plot shows an 

overall increase of up to a maximum of 10 mm under SSP-119 for all GCMs. There was a 

further increase for EC-Earth up to 19 mm, whereas a decrease up to -19 mm in the north-

ern region for EC-Earth-Veg and MRI-ESM2 for SSP-245. An overall increase in the 

R×5day was observed for SSP-370. MRI-ESM2 showed the maximum increase of 39 mm, 

followed by EC-Earth (30 mm) and EC-Earth-Veg (19 mm). For SSP-585, EC-Earth R×5day 

showed an increase of 40 mm in the southern region and 10−19 mm in the northern region 

of JRB. EC-Earth-Veg showed a slight decrease in the R×5day in the northern part in the 

range of −9 to −19 mm. However, positive changes up to 10 mm were observed in the 

southern grids. MRI-ESM2 showed the highest increase of 48 mm in the JRB. 

 

Figure 15. Change in five-day max rainfall (a) in the near future; (b) far future. 

Changes in Rainfall Intensity (RI) 

The changes in RI under various climate change scenarios for the near and far future 

are shown in Figure 16a, respectively. The Figure 16a shows the decrease in RI for SSP-

119. EC-Earth projected a decrease by −1 to −3 mm, EC-Earth-Veg showed a small increase 

of up to 1 mm, and MRI-ESM2 showed an increase of 6 to 8 mm. The RI for SSP-245 

showed no major variations for GCMs. It showed an increase for SSP-370 in the range of 

3–8 mm for EC-Earth, 3–10 mm for EC-Earth-Veg and 6−8 mm for MRI-ESM2. The highest 

increase in rainfall intensity was for SSP-585. It was projected to increase up to 6−10 mm 

for EC-Earth, 3–10 mm for EC-Earth-Veg, and 8–10 mm for MRI-ESM2 over most parts of 

JRB. 

Change in RI for the far future is shown in Figure 16b. The results show a decrease 

in RI for SSP-119 for all GCMs. However, the RI showed an increase all over JRB for SSP-

370 and 585. 
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Figure 16. Change in rainfall intensity (a) in the near future; (b) far future. 

4.3.2. Changes in River Flow  

The distributed hydrological model developed using RF was used to simulate the 

historical and future river flows using the downscaled data of CMIP6 GCMs. The histori-

cal and future precipitation and temperature data of the most suitable GCMs (As dis-

cussed in our previous paper [49], EC-Earth, EC-Earth-Veg, and MRI-ESM2 were used as 

input for the model. The simulated flow for these projected data sets was analyzed for 

each GCM individually to cover the maximum uncertainty range in the near (2020−2059) 

and far (2060−2099) future. A comparison of quantiles for various SSPs for EC-Earth is 

shown in Figure 17. Changes for low quantile flow were observed to decrease in the near 

future. The maximum reduction (−14%) was for SSP-245, whereas a −8% reduction was 

for 0.1 quantiles compared to the historical flow period. For mid and higher quantiles, the 

change in river flow was projected to increase up to 28%. The projected highest increase 

was in the near future period for the SSP-375. However, the higher quantiles, such as 0.90, 

the minimum change were recorded for SSP-275 for the near future.  

The changes in quantiles for EC-Earth show that the river flow reduces in all scenar-

ios for lower quantiles, while the maximum increase of 32% was observed for higher quar-

tiles for SSP-585, followed by 22% for SSP-119.  

The model simulation using EC-Earth-Veg showed a reduction in river flow for lower 

quantiles in the near future, as shown in Figure 17. However, an increase in river flow was 

noted for higher quantiles, indicating an increase in extreme flows in future periods. The 

maximum change of 25% was observed in higher streamflow quantiles in the near future 

for SSP-245, whereas the lowest changes in the higher extremes were for SSP-585. In the 

far future period, a similar flow pattern for lower quantiles and an increase in higher 

quantiles were recorded with a maximum increase of 32% for SSP-119 and 27% for SSP-

245. 

Figure 17 shows the changes in river flow for MRI-ESM2. The figure shows the great-

est change in the higher quantiles for SSP-119 (80%) and the lowest change in lower quan-

tiles (<0.3) for SSP-585. The percentage reduction for SSP-585 was −23% in the near future. 

The far future showed an increase in river flow extremes, whereas lower flows showed a 

reduction. The maximum change of 68% was observed for SSP-119 for higher quantiles in 

the far future. The lowest reduction in the flow was −24% for SSP-585 in the near future. 
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Figure 17. Changes in simulated flow for GCM EC-Earth. 

5. Discussion 

5.1. Reliability of the Newly Developed Model 

Estimating river flow is an intricate process, especially in data scares catchments. A 

huge set of data with a long temporal resolution is required for parameter estimation and 

optimization. The recent use of ML in hydrological modelling is gaining more attention 

in the scientific community. Integrated hydrological model development with the help of 

ML proved to be efficient as compared to the conventional modelling methods. However, 

there remains a gap for improvement by optimizing its internal parameters. Therefore, 

this study developed a distributed hydrological model using RF for parameter estimation. 

The calibration and validation results are provided in Section 4.2. The statistical indices 
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used to show the efficiency of the model output shows the model’s good capability to 

simulate the river flow in JRB. The model showed good performance for the calibration 

period, giving the NSE, d, KGE, RMSE, and Pbias of 0.96,0.99,0.92 4.01, and −0.2, respec-

tively. The NSE value of 0.96 is much better than the reported NSE values for the calibra-

tion period for similar other models, such as SWAT and HSPF, APEX and SAC-SMA [63]. 

Conventionally, the NSE value greater than 0.65 is considered good for model evaluating 

criteria [64]. The model showed satisfactory values for d during the calibration (0.99) and 

validation period (0.94). The simulation of the model train with machine learning algo-

rithms showed very less bias in calibration and validation periods. Pbias revealed the 

overestimation or underestimation of the simulated flow compared to the measured flow. 

From the literature, the acceptable range of Pbias for model simulation is less than 10%, 

whereas in this case, the Pbias is −0.2% for calibration and −7.2% for the validation period. 

The error terms such as RMSE values range from 4.01 to 5.64 for calibration and valida-

tion. The KGE values are also in the acceptable range of 0.92 for calibration and 0.86 for 

validation. Tan et al. [45] validated the re-known SWAT model in JRB. The statistical re-

sults of the SWAT model for calibration and validation are NSE 0.66 and 0.62, respectively, 

whereas the model developed in this study showed NSE values of 0.96−0.75. The model 

calibration and validation result shows that this model can be used to simulate river flows 

in JRB for other datasets. 

5.2. Changes in Precipitation Flood Frequency under Future Scenario 

Variation in intensity and frequency of various climate and weather extremes has 

been found in the literature. The climate extremes are mostly found increasing in many 

parts of the world [65,66]. Over MSEA, substantial changes in daily rainfall intensity and 

the number of heavy rainfall days (R20 mm) have been observed for various future sce-

narios of CIMP6 [67]. Therefore, in this study, CMIP6 model outputs of three selected 

models were used for the historic forcing and future scenarios, such as SSP-119, SSP-245, 

SSP-370 and SSP-585, to study the changes in precipitation extremes in JRB. These data of 

CIMP6 GCMs were also used in the hydrological model to determine the change in flow 

extremes in JRB under various SSP scenarios. The results are shown in Section 4.3.2. Under 

different SSP scenarios, the flow at Ratu Panjang station was observed to be increasing for 

higher quantiles. However, the changes in lower quantiles compared to the historical flow 

were decreasing. Similarly, the precipitation extremes such as five-day max rainfall and 

rainfall intensity were observed to be increasing in the latter part of the century. The 

changes in these rainfall extremes and the substantial increase in some other extremes 

such as R×1day, R95pTOT, and R99pTOT justify the increasing river flow for higher quan-

tiles than the historical flow at the river station. 

Similar changes in climate extremes have also been reported by Kharin et al. [68]. 

They used the transient non-stationary GEV to study the global scale frequency change in 

climate extremes and risk ratio. The risk ratio determined in the study showed an increase 

from 0.65 to 1.22, while the global temperature increased from the preindustrial level un-

der scenarios of CMIP5. Our study also strengthens the hypothesis that “The contrast in 

relative frequency changes between more extreme and weaker events is projected to become larger 

as climate warms”. Li et al. [69] analyzed 20 GCM from CMIP6 to study the change in tem-

perature and precipitation extremes over the globe. The study found that most of the 

model increases the intensity and frequency of precipitation extremes, especially over 

tropical regions. The maximum one- and five-day rainfall events R×1day and R×5day in-

creased up to 7.2% compared to the historical extremes. In the majority region of the 

world, the temperature and precipitation extremes were following the “intense gets in-

tenser” tendency. However, comparable results of flow quantiles were observed in our 

study. The lower flow quantiles were found to decrease in most scenarios, whereas the 

higher quantiles were increasing for all models and scenarios. Therefore, it can be re-

marked that, in JRB, the precipitation and river flow extremes at Ratu Panjang gauge sta-

tion will be increasing in the future. 
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5.3. Significance of the Study 

Hydrological disasters like floods and water stress have become a common phenom-

enon in many countries globally. Consequently, a moderate dry spell often forces water 

rationing and moderate or extreme rainfall causing floods, especially in rapidly develop-

ing urban catchments [70]. The changing pattern of hydrological disasters due to environ-

mental changes is a major concern for scientists and policymakers all over the globe. Nu-

merous hydrological models have been developed to estimate runoff from rainfall to pre-

dict hydrological disasters [19]. Distributed hydrological models have been found to be 

most reliable for runoff prediction. However, they need extensive data and parameters in 

space and time for reliable runoff estimation. The outputs of such models are also prone 

to uncertainties due to the simple approximation of many hydrological processes. This 

study attempt to introduce a machine learning algorithm to improve the performance of 

the distributed hydrological model. The results showed that the hybridization of ML and 

conventional physical or conceptual model improved the capability to model complex in-

teractions and runoff prediction. The model can provide a more accurate estimation of 

streamflow extremes. Therefore, the model can be used for reliable simulation of hydro-

logical disasters, particularly water scarcity and floods, due to the changes in land use 

driven by physical and socio-economic factors and climate. This is particularly important 

for developing countries where rapid landuse changes have significantly affected local 

hydrology. This study also showed the suitability of the model in reliable projections of 

hydrological changes due to climate change. Therefore, the model’s output can be used 

for climate change adaptation and mitigation planning. 

6. Conclusions 

The distributed hydrological model for JRB was developed by using ML algorithms. 

RF was used to estimate the parameters to calculate the simulated flows. The model was 

developed using the bias-corrected IMERG data with an approximate resolution of 10 km. 

The soil properties and the topographical characteristics were included in calculating the 

model output. The model showed a varying flow simulation at Ratu Panjang compared 

to the observed flow. The efficiency of the model was assessed by calculating statistical 

indices. These indices values, such as RMSE, NSE, and R2, proved that the distributed 

hydrological model can simulate the flow of any catchment. The calibration and valida-

tion results and the processing time prove that the ML-based models are good in flood 

simulation in any catchment with insufficient historical data. The model developed in this 

study can efficiently simulate the hydrological behaviour like the physical models, and 

also it can be applied to generate the long-term simulation. The model provided a near 

real-time flood simulation using the bias-corrected IMERG data and used it to indicate the 

flood susceptibly of any region. 

The study found that the river flow under the change climate scenarios increases with 

the higher carbon concentration pathways. The results also revealed that the rainfall ex-

tremes are also getting worse in intensity and frequency. The reduction of flow up to −14% 

at lower quantiles and an increase of 28% at mid and higher quantiles were recorded in 

this analysis. Similarly, the sustainability pathway (SSP1) showed a reduction in projected 

river flow extremes, whereas the middle of the road (SSP2) showed a balance increase in 

the higher flow quantiles. Contrary to these, the regional rivalry (SSP3) and fossil fuel 

development (SSP5) showed a higher increase in streamflow extremes by up to 68% at the 

end of the century. The framework developed in this study can simulate the historical and 

future surface runoff very effectively with very few parameters. The model’s efficacy is 

improved due to the use of RF in parameters estimation and GCM data, enabling it to 

simulate the effect of climate change on the river discharge in the region. The simulation 

takes less time, showing that the model can also be considered for NRT flood simulation 

in any region. 
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