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Abstract: The membrane bioreactor (MBR) serves as the most widely used technology in anaerobic
digestion wastewater treatment, but the composition and transformation of the dissolved organic
matters (DOMs) are vague. This study focused on the composition characterization and transforma-
tion mechanism of DOMs in real co-digestion wastewater of food waste and sewage sludge from a
full-scale MBR via molecular weight cut-off, 3D-EEM, FT-IR, and SPME-GC/MS. The results indicated
that the co-digestion wastewater mainly comprised organics with molecular weight (MW) lower than
1 kDa and dominated by tryptophane-protein-like substances. The hydrolytic/acidogenic process
improved the biodegradability with the conversion of high-MW organics into low-MW organics,
while the two-stage A/O process possessed the highest contribution to the organic removal with the
consumption of most DOMs. However, the deficient removal of refractory organics (MW < 5 kDa) in
the ultrafiltration unit led to the residual DOMs in the effluent. The potential functional bacteria in the
biological processes have also been identified and were principally affiliated with Proteobacteria and
Firmicutes. These findings could help to advance the understanding of the co-digestion wastewater
and provide fundamental information for the optimization and development of MBR in anaerobic
digestion wastewater treatment.

Keywords: anaerobic digestion; food waste; sewage sludge; wastewater characterization;
microbial community

1. Introduction

The ever-increasing biowastes from food processing industries and water treatment
facilities could lead to a host of environmental and health problems [1]. Conventional
management of biowastes including transportation and disposal could help to solve part of
the problems but suffers from high cost and secondary pollution [2]. Hence, the anaerobic
process has been proposed to be a promising alternative to conventional biowaste man-
agement from both energy conservation and environmental protection perspectives [3]. In
addition, the biogas production and treatment capacity for high-strength organics endow
the anaerobic process with appreciable economic advantages [4]. However, an anaerobic
process such as the co-digestion of food waste and sewage sludge would inevitably produce
anaerobic digestion wastewater which requires further treatment for the sustainability of
the biowaste management.

The co-digestion wastewater of food waste and sewage sludge always contains high-
strength dissolved organic matters (DOMs) with complex composition and low biodegrad-
ability, making it hard to deal with [1,2]. Therefore, the composition characterization of the
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DOMs in real anaerobic digestion wastewater is indispensable for biokinetic design and
treatment optimization. However, there remains a large knowledge gap in the specific char-
acteristics of the real anaerobic digestion wastewater from full-scale food waste treatment
plants, especially the complex DOMs, which has hindered the development of the anaerobic
digestion wastewater treatment [2–4]. Several analytical methods, including molecular
weight cut-off, spectroscopic techniques (e.g., three-dimensional excitation-emission matrix
(3D-EEM) fluorescence spectroscopy, Fourier transform infrared spectroscopy (FT-IR)),
and solid-phase microextraction coupled with gas chromatography–mass spectrometry
(SPME-GC/MS), are commonly employed in the qualitative and/or quantitative deter-
mination and structure identification of complex DOMs [5–7], but they have rarely been
applied in the systematic investigation of the co-digestion wastewater of food waste and
sewage sludge. The composition characterization of DOMs in typical anaerobic co-digestion
wastewater with the abovementioned approaches could advance the understanding of
co-digestion wastewater and provide a fundamental reference for the investigation of the
treatment technologies.

A series of advanced biochemical and ecological approaches have already been em-
ployed in the anaerobic digestion wastewater treatment in the past decades, including the
constructed wetland [8], oxidation ditch [9], up-flow anaerobic sludge blanket [10], and
membrane bioreactor (MBR) [11] approaches. Among these technologies, MBR has been
most commonly used in practical engineering due to its high sludge conservation and
convenient phase separation despite the potential membrane fouling [12]. Nevertheless,
recent research has principally focused on the alleviation of membrane fouling [13] and
the modification of MBR via the combination with other biochemical technologies [14,15],
whereas the specific transformation mechanism of DOMs in the typical MBR has been
neglected, which is essential for the optimization of the extensive in-service anaerobic
digestion wastewater treatment facilities equipped with a typical MBR.

In this study, molecular weight cut-off, 3D-EEM, FT-IR, and SPME-GC/MS were
applied to investigate the composition characteristics and transformation mechanism of
DOMs in a full-scale MBR treating real co-digestion wastewater of food waste and sewage
sludge, and the corresponding potential functional microbial communities in biological
processes have also been identified. The results of this study could shed new light on co-
digestion wastewater treatment and facilitate the sustainability of biowaste management.

2. Materials and Methods
2.1. Sample Collection

The wastewater samples were collected from a full-scale MBR (300 m3 d−1) in an
individual anaerobic digestion wastewater treatment plant (Chongqing, China) treating
co-digestion wastewater of food waste and sewage sludge, and the treatment process flow
diagram and the specific sampling points are illustrated in Figure 1. The treatment process
integrated pretreatment (coagulation and air floatation), hydrolytic/acidogenic process,
two-stage A/O process, and ultrafiltration unit. Meanwhile, there were four sampling
points, termed sampling points A, B, C, and D. The samples were collected during the
steady operation state, and each sample was a mixture of 10 L wastewater collected from
the completely mixed reactors. The samples collected from sampling point A were used to
characterize the composition of the complex DOMs in the co-digestion wastewater, while
the other samples were collected to investigate the transformation mechanism of the DOMs
along the treatment processes.
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Figure 1. Process flow diagram and sampling points of the full-scale anaerobic digestion wastewater
treatment facility.

2.2. Qualitative and Semi-Quantitative Analysis of DOMs
2.2.1. Conventional Water Quality Indices

The specific ultraviolet (UV) absorbance at 254 nm (UV254) was used to represent com-
plex organic matters with unsaturated bonds (e.g., aromatic contents in humic substances)
in the co-digestion wastewater and determined using a spectrophotometer (DR6000, Hach,
Loveland, CO, USA) with a 1 cm quartz cuvette [16]. COD (chemical oxygen demand)
was measured on a spectrophotometer (DRB200, Hach, Loveland, CO, USA) following
digestion, while BOD5 (biochemical oxygen demand in five days) and TOC (total organic
carbon) were determined with a BOD meter (BOD Track II, Hach) and a TOC analyzer
(ANATOC, Hach), respectively. The biodegradability was described as the ratio of BOD5
to COD. Additionally, the chromaticity (Pt-Co) was analyzed according to the standard
methods [17]. The conventional water quality indices were presented as mean ± standard
deviation (n = 3).

2.2.2. Molecular Weight Cut-Off

To investigate the molecular weight distribution of DOMs in the co-digestion wastew-
ater [18], the molecular weight cut-off was determined using a constant-pressure and
dead-end ultrafiltration apparatus (SCM-300, China) equipped with specific plate ultra-
filtration membranes (HM, China), and the employed approach can determine samples
with molecular weight cut-offs of 100, 50, 30, 10, 5, 3, 1, and 0.5 kDa. The membranes were
rinsed well and soaked in Milli-Q water for over 24 h before the analysis.

2.2.3. 3D-EEM

To characterize the main components of DOMs in the co-digestion wastewater, 3D-
EEM was performed using a fluorescence spectrometer (F-7000, Hitachi, Tokyo, Japan)
with a xenon lamp as the excitation light source. The excitation (Ex) and emission (Em)
wavelengths ranged from 200 to 550 nm and from 250 to 600 nm, respectively, and the
scanning speed, photomultiplier voltage, and response time were set to be 12,000 nm min−1,
700 V, and automatic, respectively. The inner-filter effect was avoided by dilutions of the
samples, and multiple dilutions were taken into account in the calculation of the component
fluorescence intensity.

The fluorescence spectra have been resolved into seven regions (regions I–VII) according
to the literature of [19]: region I (tyrosine-protein-like): Ex/Em = 200–260 nm/200–330 nm;
region II (tryptophane-protein-like): Ex/Em = 200–260 nm/330–400 nm; region III (protein-like:
tyrosine, tryptophan, and soluble microbial products): Ex/Em = 260–310 nm/290–400 nm; region
IV (fulvic acid-like): Ex/Em = 200–260 nm/400–500 nm; region V (glycosylated protein-like):
Ex/Em = 260–310 nm/400–550 nm; region VI (black sperm/lignocellulose-like): Ex/Em = 310–
380 nm/330–600 nm; and region VII (humic acid-like): Ex/Em = 380–580 nm/400–600 nm. The
fluorescence regional integration (FRI) was conducted to quantify the corresponding pro-
portions of the abovementioned seven regions, and detailed methods have been described
in previous research [20]. In addition, parallel factor analysis (PARAFAC) was also ap-
plied to identify the transformation mechanism of DOMs along the treatment processes
and conducted using Matlab R2020a (Mathworks, Natick, MA, USA) with the DOMFluor
toolbox [21].
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2.2.4. FT-IR Spectroscopy

FT-IR was applied to explore the specific functional groups of DOMs in the co-digestion
wastewater [22]. Homogeneous samples were freeze-dried with a vacuum freeze drier
(Scientz-10N, Beijing Zhongyi Company, Beijing, China) before the FT-IR analysis. Sub-
sequently, approximately 1 mg of each sample was thoroughly mixed with 100 mg of
pre-dried KBr and pressed in a mold. The FT-IR analysis was conducted with a Fourier
transform infrared spectroscopy (Nicolet iS5, Thermofisher, Waltham, MA, USA), and
the blank was corrected using a clean KBr pellet with the wavelength range set to be
450–4500 cm−1.

2.2.5. SPME-GC/MS

SPME-GC/MS was firstly used in the composition characterization of DOMs in the
co-digestion wastewater of food waste and sewage sludge for further quantitative analysis.
Solid-phase microextraction (SPME) was used as the pretreatment of the samples and
performed as follows: 20 mL liquid samples were placed in a headspace vial with an
effective volume of 40 mL for SPME, and the adsorption temperature, adsorption time,
stirring rate, desorption temperature, and desorption time were set to be 80 ◦C, 40 min,
500 rpm, 250 ◦C, and 3 min, respectively. The samples were subsequently used for GC/MS
analysis via a gas chromatography–mass spectrometry system (QP2010 ultra, Shimadzu,
Kyoto, Japan) equipped with a 30 m × 0.25 mm ×25 µm chromatographic column (DB-5MS
UI, Agilent, J&W Scientific, Folsom, CA, USA) to investigate the categories of the DOMs.
The initial temperature of the column was set to be 40 ◦C for 5 min, followed by a ramp of
10 ◦C min−1 to 300 ◦C and kept for 2 min. Helium was used as the carrier gas at a flow rate
of 1 mL min−1. The temperatures of the ion source and transfer line were 220 and 280 ◦C,
respectively, and the scan runs were performed with a range from m/z 45 to 450. The
chromatograms were analyzed using the NIST05 library (National Institute of Standards
and Technology, Gaithersburg, MD, USA, http://www.nist.gov/srd/mslist.htm, accessed
on 5 March 2022), and a compound was deemed identified with a match percentage higher
than 60%.

2.3. Microbial Community Analysis

The sludge samples were collected from the hydrolytic/acidogenic tank as well as the
A/O process, and each sample was a mixture of six samples collected from the completely
mixed reactors. The DNA was extracted with the Soil DNA Kit (GenElute, Sigma, Burlington,
MA, USA) following the manufacturer’s instruction, and cryopreserved at −80 ◦C until be-
ing sent to the Illumina MiSeq platform (Shanghai Majorbio Bio-pharm Technology Co., Ltd.,
Shanghai, China) for further molecular biological analysis., The detailed methods for sub-
sequent purification, sequencing, and other analyses have been described in previous
research [23]. Specifically, the amplification of the bacterial V3-V4 region in the 16S rRNA
gene was performed with the universal primers 338F (ACTCCTACGG GAGGCAGCAG)
and 806R (GGACTACHVGGGTWTCTAAT), and the raw 16S rRNA reads were demul-
tiplexed, quality-filtered by fastp (v0.20.0), and merged by FLASH (v1.2.7). Operational
taxonomical units (OTUs) were then clustered using UPARSE (v7.1) with 97% similarity,
and the taxonomy for each OTU was assigned using the RDP classifier against the Silva
database (http://www.arb-silva.de, accessed on 5 May 2022).In addition, the downside
sequencing data analyses were carried out on the platform of Majorbio (Majorbio cloud,
https://cloud.majorbio.com/, accessed on 5 May 2022).

3. Results
3.1. Characterization of DOMs in the Co-Digestion Wastewater

The samples collected from the sampling point A were used for the composition
characterization of DOMs in the co-digestion wastewater of sewage sludge and food waste.
A high concentration of chemical oxidation demand (COD) of 9470 ± 630 mg L−1 was
retained in the co-digestion wastewater after the coagulation and air floatation, and the

http://www.nist.gov/srd/mslist.htm
http://www.arb-silva.de
https://cloud.majorbio.com/
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BOD5 was 1929 ± 422 mg L−1, suggesting a low biodegradability (BOD5/COD) of around
0.2. The UV254 and chromaticity were also relatively high, being 6.94 and 1590 Pt-Co,
respectively.

3.1.1. Molecular Weight Distribution of DOMs

The molecular weight (MW) distribution of DOMs in the co-digestion wastewater
was determined through the molecular weight cut-off (Figure 2a). The DOMs with MW
lower than 1 kDa were the main contributors to COD and TOC, accounting for 68.72%
and 67.76%, respectively, suggesting the dominance of small organics in the co-digestion
wastewater. However, the MW distributions of UV254 and chromaticity were more even
compared with their counterparts of COD and TOC, and the MW of the contributor to
UV254 and chromaticity was principally distributed in the range of <500 Da, 1000–500 Da,
3–1 kDa, 10–5 kDa, 50–30 kDa, 0.45–0.22 µm, showing the wider distribution of complex
and unsaturated organics.
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3.1.2. Fluorescent Components of DOMs

Fluorescence characteristics of DOMs in the co-digestion wastewater of sewage sludge
and food waste are illustrated in Figure 2b,c. The regions II–III possessed the highest
proportion of the fluorescence density, 72.99%, indicating the dominance of tryptophane-
protein-like substances and soluble microbial products in the DOMs [20]. Meanwhile,
the proportions of regions I, IV, V, and VI were found to be 10.12, 14.20, 7.44, and 4.36%,
respectively, suggesting that a considerable amount of tyrosine-protein-like, fluvic acid-like,
glycosylated protein-like, and black sperm/lignocellulose-like substances existed in the
DOMs. Moreover, the regions II–III were reported to represent substances with good
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bioaccessibility and high biodegradability, while the regions IV–VI were reported to be the
opposite, and the region I was demonstrated to represent substances with high biodegrad-
ability but poor bioaccessibility due to their hydrophobic phenol-based structure [19].
Therefore, the spectral results denoted that the DOMs in the co-digestion wastewater
mainly comprised easily biodegradable tryptophane-protein-like substances, but the non-
negligible existence of poorly biodegradable organics could inevitably increase the difficulty
of the co-digestion wastewater treatment.

3.1.3. FT-IR Spectra of DOMs

FT-IR spectra in the region of 3000–450 cm−1 have been applied to provide pri-
mary information about the functional groups of DOMs in the co-digestion wastewater
(Figure 2d). The FT-IR spectra exhibited 14 absorption peaks correlated with different func-
tional groups [24,25]: 2971 cm−1 (aliphatic C–H stretching); 1557 cm−1 (N–H deformation
of amide II); 1405 cm−1 (COO– stretching of carboxylic acids); 1297 cm−1 (C–O stretching of
carboxylic acid and/or C–N stretching of aromatic primary and secondary amines, amide
III); 1120 cm−1 (C–OH stretching of aliphatic OH, and/or S–O stretching of sulfonates);
1045 and 1013 cm−1 (C–O stretching of polysaccharide-like substances); 923 cm−1 (O–H
out-of-plane bending); 878, 832, and 815 cm−1 (–NH2 out-of-plane bending); 674 cm−1

(O–H out-of-plane bending of polysaccharide-like substances); 619 cm−1 (PO4
3− bending);

507 cm−1 (P–Cl stretching).

3.1.4. SPME-GC/MS Results of DOMs

SPME-GC/MS was conducted for further quantitative investigation of the DOMs
in the co-digestion wastewater, and there were 59 kinds of organics detected in the co-
digestion wastewater (Table S1). The DOMs could be divided into two categories—cyclic
organics and non-cyclic organics—according to different structures. The peak area of cyclic
organics accounted for 85.01%, while its counterpart of non-cyclic organics only had a
proportion of 14.99%. This result indicated that the cyclic organics were the dominant
DOMs in the co-digestion wastewater. In addition, the cyclic organics mainly comprised
sulfur ring-containing, monocyclic naphthene-containing, heterocyclic ring-containing,
bridged hydrocarbon-containing, benzene ring-containing, and cyclene-containing or-
ganics, and their proportions were determined to be 1.37, 5.85, 10.05, 11.14, 24.24, and
32.36%, respectively. The cyclene-containing and benzene ring-containing organics were
the dominant cyclic organics, whereas the non-cyclic organics principally consisted of
sulfur-containing organics, aliphatics, ethers, aldehydes, alcohols, and ketones, and their
contents accounted for 0.39, 0.54, 1.19, 1.91, 2.88, and 8.07%, respectively. The ketones domi-
nated in the non-cyclic organics. Notably, the cyclic organics in the co-digestion wastewater
also contained other functional groups such as carbon–carbon double bonds, carboxyls, car-
bonyls, oxhydryls, ether bonds and ester groups besides the cyclic structures. The organics
with proportions higher than 2% included (-)-terpinen-4-ol (16.83%), α-terpineol (9.91%),
4-methylphenol (7.84%), eucalyptol (7.07%), 2-propylphenol (4.49%), indole (3.79%), [1S-
(1a,3a,5a)]-4-methylene-1-(1-methylethyl)-bicyclo [3.1.0] hexan-3-ol (3.35%), naphthalene
(3.31%), levulinic camphor (3.28%), 2-ethyl hexanol (2.69%), 3-methylindole (2.41%), iso-
menthone (2.35%), 2,2-dimethyl-5-(1-methyl-1-propenyl) tetrahydrofuran (2.15%), and
4-(2-methoxypropan-2-yl)-1-methylcyclohex-1-ene (2%), and these organics accounted for
over 71.47% of the total DOMs in the co-digestion wastewater.

3.2. Transformation of DOMs in the Co-Digestion Wastewater

The samples collected from the sampling points B, C, and D were analyzed to in-
vestigate the transformation mechanism of DOMs in the co-digestion wastewater. The
variation in COD, BOD5, UV254, and chromaticity along the treatment process is shown
in Figure 3. The contributions of the hydrolytic/acidogenic tank, two-stage A/O pro-
cess, and ultrafiltration units to COD removal were 17.95%, 62.37%, and 12.90%, respec-
tively. However, the biodegradability of the co-digestion wastewater after the pretreat-
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ment was only 0.2, making it recalcitrant for the later biological removal; thus, the hy-
drolytic/acidogenic process was indispensable due to its contribution to the elevation of
BOD5 from 1929 ± 422 mg L−1 to 3324 ± 764 mg L−1 and the improvement of biodegrad-
ability from 0.2 to 0.43. The UV254 and chromaticity increased by 15.85% and 28.93%,
respectively, after the hydrolytic/acidogenic process, differing from the changes in COD.
The effluent of the two-stage A/O process still contained a high concentration of COD
(1864 ± 209 mg L−1) with extremely low biodegradability (0.04), and the removal of these
refractory organics was also limited in the ultrafiltration units, resulting in considerable
organic residual in the effluent.
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3.2.1. Transformation of Molecular Weight Distribution

The transformation of molecular weight distribution of DOMs is exhibited in Figure 4a–d.
The influent co-digestion wastewater mainly comprised organics with MW lower than
1 kDa from the perspectives of COD and TOC. However, the composition of DOMs has
shifted to even smaller organics in the hydrolytic/acidogenic process, resulting in an obvi-
ous increase in organics with MW of 5–3 kDa, 3–1 kDa, and <500 Da. Subsequently, most
of the small organics with MW lower than 1 kDa were consumed in the two-stage A/O
process and there was a significant increase in organics with MW larger than 1 kDa, and
the organics with MW lower than 5 kDa accounted for around 90% of the DOMs after the
ultrafiltration units. Concerning the UV254 and chromaticity, the hydrolytic/acidogenic
process principally degraded large organics with unsaturated bonds and/or colored func-
tional groups into small ones, and the two-stage A/O process mainly reduced the UV254
and chromaticity through the removal of large organics with MW of 0.45–0.22 µm. Since
small organics were preferred in the biological process, the chromaticity removal in the
two-stage A/O process was limited, and the effluent of the ultrafiltration units still con-
tained relatively high chromaticity due to its deficient removal of refractory organics with
MW larger than 5 kDa.
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3.2.2. Transformation of Fluorescent Components

The fluorescent spectra have been resolved into three effective fluorescent components
according to PARAFAC (Figure 4d–f). The three fluorescent components were named
C1, C2, and C3 with the maximum Ex/Em of 220(275)/340 nm, 225(290)/370 nm, and
250(340)/430 nm, respectively [26]. In addition, C1, C2, and C3 have been assigned
to tryptophane-protein-like substances, small-molecular humic acid-like substances in
the ultraviolet area A (UVA), and large-molecular aromatic humic acid-like substances
in the ultraviolet area C (UVC), respectively [22]. The fluorescent results showed that
the tryptophane-protein-like substances represented by C1 dominated in the influent co-
digestion wastewater after pretreatment, in line with the results of the fluorescent regional
integration (see Section 3.1.3). In addition, the Fmax(C1) only decreased by 10.13% after the
hydrolytic/acidogenic tank, but the reduction in Fmax(C1) reached 96.97% in the two-stage
A/O process. The removal of C2 reached 78.86% and 9.21% in the two-stage A/O process
and ultrafiltration, respectively, consistent with the variation in UV254 and chromaticity.
However, C3 could not be efficiently removed by both the A/O process and ultrafiltration
despite its analogous changes with C2 in the hydrolytic/acidogenic process, suggesting its
contribution to the refractory DOMs in the effluent.
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3.2.3. Transformation of FT-IR Spectra

The transformation of the main functional groups in DOMs of the co-digestion wastew-
ater is illustrated in Figure 4i. The absorption peaks with wavenumbers of 1405, 1297,
1120, 923, 878, and 619 cm−1 disappeared after the hydrolytic/acidogenic process, and
these peaks corresponded to the COO– stretching of carboxylic acids; C–O stretching of car-
boxylic acid and/or C–N stretching of aromatic primary and secondary amines, amide III;
C–OH stretching of aliphatic OH and/or S–O stretching of sulfonates; O–H out-of-plane
bending; –NH2 out-of-plane bending; and PO4

3− bending, respectively. Several absorption
peaks with wavenumbers of 1659, 1623, 1338, 1076, and 695 cm−1 were introduced in the
spectra by the hydrolytic/acidogenic process, and these added peaks were correlated with
stretching of amide I, stretching of COO–, O–H out-of-plane bending of polysaccharide-
like substances, O–C–C stretching of aliphatic esters, and carboxylic acid dimer or amide,
respectively [24,25].

In addition, significant changes in the FT-IR spectra were also observed after the two-
stage A/O process. The adsorption peaks of 2928, 1659, 1551, and 1018 cm−1 disappeared
after the A/O process, compared with the effluent of the hydrolytic/acidogenic tank. These
peaks corresponded to aliphatic C–H stretching, stretching of amide I, N–H bending of
amides, and C–O stretching of polysaccharide-like substances, respectively. In addition,
newly added peaks were located at wavenumbers of 3401 and 825 cm−1 and were related
to N–H stretching and –NH2 out-of-plane bending, respectively.

3.2.4. Transformation of SPME-GC/MS Results

SPME-GC/MS was applied for further quantitative analysis of the transformation of
DOMs in the co-digestion wastewater along the treatment process (Tables S1–S5). There
were 59 kinds of organic compounds in both the influent and the effluent of the hy-
drolytic/acidogenic tank, and no obvious reduction in the total peak areas was observed,
indicating that the species and concentrations of DOMs were not reduced by the hy-
drolytic/acidogenic process. The cyclic organics still dominated in the effluent of the
hydrolytic/acidogenic tank with a high proportion of 83.24% and mainly comprised
bridged hydrocarbon-containing, monocyclic hydrocarbon-containing, heterocyclic ring-
containing, benzene ring-containing, and cyclene-containing organics with proportions
of 9.42, 10.37, 11.01, 14.03, and 38.42%, respectively. Compared with the influent of the
hydrolytic/acidogenic tank, no sulfur ring-containing organics were detected in the ef-
fluent. The monocyclic hydrocarbon-containing organics increased by 177%, while the
benzene ring-containing organics decreased by 42%. In addition, no significant change
was observed concerning the other cyclic organics and non-cyclic organics. These results
indicated that the hydrolytic/acidogenic process could convert the sulfur ring-containing
and benzene ring-containing organics into monocyclic hydrocarbon-containing organ-
ics. In addition, the shared organic components in the influent and effluent of the hy-
drolytic/acidogenic tank as well as their changes (%) are exhibited in Table S3. There
were 31 kinds of shared organic components, among which 14 kinds of organics in-
creased and 17 kinds of organics decreased after the hydrolytic/acidogenic process. The
organic components increasing by over 20% included hexanal dimethyl acetal, 3-octanol,
(1α,2α,5α)-2-methyl-5-(1-methylethyl)-bicyclo[3.1.0]hexan-2-ol, DL-menthol, α-pinoresinol,
2-methyl-5-(1-methylethenyl)cyclohexanone, 2-propylphenol, 6-ethyl-7-hydroxy-4-octen-
3-one, 3-methylindole, and elemiol, while the organic components decreasing by over
10% included 2-heptanone, 6-methyl-2-heptanone, 1,4-eudesmol, eucalyptol, 2,2-dimethyl-
5-(1-methyl-1-propenyl)tetrahydrofuran, 3-nonen-2-one, [1S-(1a,3a,5a)]-4-methylene-1-(1-
methylethyl)-bicyclo [3.1.0] hexan-3-ol, levocamphor, and 7-methoxy-3,7-dimethyl-octanal.
These results suggested that the hydrolytic/acidogenic process tended to transform the
carbonyl-containing and heterocyclic-containing organics into hydroxyl-containing organics.
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3.3. Insight into Microbial Community
3.3.1. Microbial Community in the Hydrolytic/Acidogenic Process

The coverage score of over 0.999 indicated an adequate sequencing depth for the
description of the bacteria microbiome from the hydrolytic/acidogenic process, and the
microbial community structures at the phylum level are illustrated in Figure 5a. There
were 13 phyla with a relative abundance higher than 0.1%, including Proteobacteria (26.74%),
Firmicutes (26.24%), Chloroflexi (12.75%), Synergistetes (12.71%), Actinobacteria (6.06%), Bac-
teroidetes (4.49%), Coprothermobacteraeota (3.97%), Atribacteria (3.8%), Armatimonadetes (1.03%),
unclassified_k_norank_d_Bacteria (0.96%), Deinococcus-Thermus (0.41%), Patescibacteria (0.23%),
and WPS-2 (0.23%). Among these phyla, Proteobacteria and Firmicutes were the most domi-
nant phyla, and both were reported to play a key role in the hydrolytic/acidogenic pro-
cess [27,28]. Proteobacteria was proven to be widely distributed in the fermentation of food
waste and sewage sludge and capable of converting organic matters into volatile fatty acids
(VFAs) [29,30], while Firmicutes was reported to dominate in the anaerobic digestion process
with potential for the degradation of organic matters such as aliphatic-like, protein-like, and
polymeric carbohydrates [31,32]. In addition, Chloroflexi, Synergistetes, Actinobacteria, Bac-
teroidetes, and Coprothermobacteraeota were also reported to participate in the hydrolytic and
acidogenic processes with the capacity of improving the biodegradability of wastewater
via the transformation of complex DOMs into small-molecular organics [32–36].

The microbial community at the genus level is depicted in Figure 5b for further inves-
tigation of the functional microbial community in the hydrolytic/acidogenic process. The
genera affiliated with Proteobacteria mainly included Desulfobulbus (10.58%), Comamonas
(8.88%), and Advenella (1.1%). Among these genera, Desulfobulbus was the most dominant
genus in the hydrolytic/acidogenic process and was widely reported to play a vital role in
the mesophilic anaerobic digestion of sewage sludge [37]. Comamonas was proven to be able
to degrade many kinds of aromatic compounds [38], and Advenella was also widespread in
mesophilic fermentation and related to organic removal [39]. The genera affiliated with
Firmicutes principally included Fastidiosipila (4.02%), Eubacterium (2.67%), Sedimentibacter
(1.97%), Syntrophomonas (1.39%), norank_f_Syntrophomonadaceae (1.21%), Caldicoprobacter
(1.14%), and Proteiniclasticum (1.03%). Among these genera, Fastidiosipila was reported
to be a strict anaerobe and capable of degrading proteins and amino acids [40], and Eu-
bacterium could ferment monosaccharides into lactate and/or acetate [41]. Sedimentibacter
was proven to be able to convert alcohol to acetate or butyrate [42], while Syntrophomonas
and norank_f_Syntrophomonadaceae could utilize long-chain fatty acids with 4–18 carbon
atoms to produce acetate or propionate [4]. In addition, Caldicoprobacter and Proteiniclasticum
were also reported to be capable of degrading xylanase and proteins, respectively [43,44].
These functional bacteria affiliated with Proteobacteria and Firmicutes could have played
an indispensable role in the hydrolytic/acidogenic process, and there were also several
functional bacteria affiliated with other phyla with non-negligible contribution, such as
Thermovirga (5.30%), norank_f__Synergistaceae (4.01%), Aminobacterium (1.47%), and Ace-
tomicrobium (1.26%) belonging to Synergistetes. Thermovirga and norank_f__Synergistaceae
were both reported to be capable of fermenting proteins, amino acids, and some other
small-molecular organic acids [4], while Aminobacterium could be able to ferment amino
acids and organic acids into VFAs [39]. Acetomicrobium was reported to possess the ability
to secrete thermophilic esterases for the hydrolysis of esters into small-molecular organic
acids [45]. Additionally, Coprothermobacter (3.97%), affiliated with Coprothermobacteraeota,
and Corynebacterium (1.21%), affiliated with Actinobacteria, were also reported to be capable
of degrading proteins and complex organic matters to small-molecular organics.
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3.3.2. Microbial Community in the Two-Stage A/O Process

The coverage score determined to be 0.997 denoted an adequate sequencing depth,
and the microbial community of the two-stage A/O process at the phylum level is shown
in Figure 5c. There were 10 phyla with a relative abundance higher than 0.1%, namely Firmi-
cutes (74.12%), Actinobacteria (13.93%), Chloroflexi (4.10%), Proteobacteria (2.80%), Patescibacte-
ria (2.33%), Synergistetes (1.05%), Bacteroidetes (0.56%), unclassified_k__norank_d__Bacteria
(0.50%), Coprothermobacteraeota (0.19%), and Dadabacteria (0.10%). Firmicutes with the capac-
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ity of biodegrading many kinds of complex organics was the most dominant phylum in
the two-stage A/O process, and the other phyla were all related to the removal of organic
matters in many biological processes [29–32].

In regard to the microbial community of the two-stage A/O process at the genus level,
most of the functional genera related to the degradation of organic matters were affiliated
with Firmicutes (Figure 5d), including Ruminococcaceae_NK4A214_group (22.83%), Lactobacil-
lus (12.74%), unclassified_f_Clostridiaceae_1 (9.08%), Sporanaerobacter (3.42%), Caldicoprobacter
(3.21%), Keratinibaculum (2.61%), Lysinibacillus (2.53%), Eubacterium_coprostanoligenes_group
(1.57%), Eubacterium (0.91%), Anaerococcus (0.85%), and Syntrophaceticus (0.63%). The genera
belonging to the family Ruminococcaceae were reported to be capable of degrading proteins
and polysaccharides [46], and Lactobacillus was proven to be widespread in all kinds of food
waste fermentation with the capacity of utilizing polysaccharides [47]. Clostridiaceae was
reported to participate in the degradation of lignocellulose with the secretion of endonu-
clease gluconase and glucoside hydrolase [48], while Sporanaerobacter and Keratinibaculum
were both correlated to the removal of peptide chains and proteins [49,50]. Lysinibacillus
was demonstrated to exhibit high chemotactic activity against triglycerides and play a key
role in the degradation of hydrophobic compounds (e.g., olive oil, glycerol, and polycyclic
aromatic hydrocarbons) [51], and Syntrophaceticus was related to the removal of acetate [52].

4. Discussion
4.1. Composition Characterization of DOMs

Extensive residual organic matters were retained after the pretreatment and domi-
nated by DOMs, since large amounts of organics were transformed from the solid biowaste
into the liquid phase [53] The biodegradability was relatively low, around 0.2, suggesting a
considerable content of refractory organics due to the utilization of most easily biodegrad-
able organics for biogas production in the co-digestion process [4]. In addition, the high
UV254 and chromaticity implied the existence of complex organics with unsaturated bonds
and colored functional groups, while the molecular weight distribution denoted that the
DOMs in the co-digestion wastewater mainly comprised organics with MW lower than
1 kDa, and the unsaturated organics contributing to UV254 and chromaticity possessed a
wider MW distribution. These results could provide fundamental information concerning
the molecular weight distribution of DOMs in co-digestion wastewater. The 3D-EEM
spectral results indicated that tryptophane-protein-like substances dominated in the DOMs,
and the non-negligible existence of poorly biodegradable organics increased the difficulty
of the co-digestion wastewater treatment. Additionally, the FT-IR suggested that the
DOMs in the co-digestion wastewater contained aliphatic compounds, amine-containing
organics (e.g., proteins, nucleic acids, etc.), carboxylic acid-containing organics, aromatic
compounds, alcohols, sulfonyl-containing organics, polysaccharide-like substances, and
phosphorous-containing organics, and these DOMs were further quantitatively analyzed
by SPME-GC/MS (Table S1), which provided the first systematic quantitative analysis of
the complex DOMs in the real co-digestion wastewater of food waste and sewage sludge.

4.2. Transformation Mechanism of DOMs

The influent co-digestion wastewater contained a high content of refractory DOMs,
making it hard to deal with [2]. Thus, the hydrolytic/acidogenic process was indispensable
for its contribution to the improvement of the biodegradability. The hydrolytic/acidogenic
process mainly executes the conversion of high-MW organics into low-MW organics, includ-
ing the transformation of higher aliphatic carboxylic acids into lower ones (thus forming
carboxylic acid dimers), the amidation of primary and secondary amines, the degradation
of aliphatic alcohols and sulfonyl compounds, and the formation of aliphatic esters and
polysaccharide-like substances. These reactions significantly improved the biodegradability
of the co-digestion wastewater without destroying the intrinsic easily biodegradable organ-
ics. Notably, the increase in the UV254 and the chromaticity after the hydrolytic/acidogenic
process could be attributed to the intermediates with unsaturated bonds and colored func-
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tional groups generated from the irreversible intramolecular polymerization reaction [54],
in accord with the findings in FT-IR. In addition, the two-stage A/O process serves as
the principal contributor to the DOM removal with the elimination of the most easily
biodegradable tryptophane-protein-like substances and small-molecular humic acid-like
substances in UVC (amide-like, aliphatic-like, and polysaccharide-like substances), but
failed in efficient removal of large-molecular aromatic humic acid-like substances in UVA.
The ultrafiltration also exhibited poor removal of the large-molecular aromatic humic acid-
like substances in UVA (MW < 5 kDa), making them the main residual in the effluent. These
implications were further verified by SPME-GC/MS. Overall, the hydrolytic/acidogenic
process improved the biodegradability of the DOMs, and the two-stage A/O process re-
moved most biodegradable organics. However, the effluent of the two-stage A/O process
still contained considerable refractory organics, and the deficient removal of the refractory
organics with MW lower than 5 kDa in the ultrafiltration unit resulted in the residual
DOMs in the effluent, which requires further optimization for more efficient removal.

Regarding the microbial community analysis, a host of potential hydrolytic/acidogenic
functional bacteria affiliated with Proteobacteria and Firmicutes were detected in the hy-
drolytic/acidogenic tank, in line with the findings of previous research [27,28]. These
functional bacteria mainly included Desulfobulbus [37], Comamonas [38], and Advenella [39]
affiliated with the Proteobacteria phylum and Fastidiosipila [40], Eubacterium [41], Sedimen-
tibacter [42], Syntrophomonas [4], norank_f_Syntrophomonadaceae [4], Caldicoprobacter [43], and
Proteiniclasticum [44] affiliated with the Firmicutes phylum. These genera could improve
the biodegradability of the co-digestion wastewater with the potential for the conver-
sion of large-molecular and complex organics (e.g., proteins, polysaccharides, aromatic
components, heterocyclic organics, and long-chain fatty acids) into small-molecular or-
ganic acids (e.g., acetic acid, lactic acid, propionic acid, and butyric acid). The two-stage
A/O process enriched potential functional populations with the capacity of degrading
many kinds of organic matters in the effluent of the hydrolytic/acidogenic process (e.g.,
proteins, polysaccharides, lignocellulose, and many small-molecular organics), such as
Ruminococcaceae_NK4A214_group [46], Lactobacillus [47], unclassified_f_Clostridiaceae_1 [48],
Sporanaerobacter [49], Caldicoprobacter [43], Keratinibaculum [50], and Lysinibacillus [51] from
Firmicutes phylum. These functional genera could guarantee the biological transformation
of DOMs in the co-digestion wastewater. The abovementioned microbial populations could
cooperate in the biological process for the treatment of the co-digestion wastewater of food
waste and sewage sludge and achieve the removal of most DOMs with only extremely
refractory organics residual in the effluent.

4.3. Environmental Implications

Anaerobic digestion is regarded as the most promising approach for the management
of biowaste including food waste and sewage sludge due to its advantages in energy
recycling, environmental protection, and economic conservation. However, the ineluctable
by-product of the anaerobic process—the anaerobic digestion wastewater—could bring
about severe environmental and health problems [15]. The limited knowledge concerning
the complex DOMs in anaerobic digestion wastewaters such as the co-digestion wastewater
of food waste and sewage sludge could cause adverse effects in the biokinetic design and
treatment optimization [1,2,16]. Given that the previous research mainly focused on the
general water quality indices such as COD, BOD5, TOC, and chromaticity [3,42,53], and
most of the MBR designs rely solely on the empirical parameters, this study provided the
first systematic characterization of the complex DOMs in real co-digestion wastewater of
food waste and sewage sludge with multiple scales (molecular weight distribution, 3D-
EEM, FT-IR, and SPME-GC/MS), which could advance the understanding of co-digestion
wastewater and provide a fundamental reference for the investigation of co-digestion
wastewater treatment.

In addition, MBR has been widely applied in the treatment of co-digestion wastewater,
but the specific transformation mechanism of DOMs in the full-scale MBR has rarely been
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explored. This study investigated the transformation of DOMs in the hydrolytic/acidogenic
process, two-stage A/O process, and ultrafiltration units, and the results showed that
the biological processes contribute the strongest treatment efficiency in the typical MBR,
including the improvement of biodegradability in the hydrolytic/acidogenic process and
the consumption of most DOMs in the two-stage A/O process, and the poor DOM removal
performance was principally attributed to the deficient removal of refractory organics
with MW lower than 5 kDa in the ultrafiltration unit. Thus, the major improvement
of the MBR treating efficiency lies in the enhanced removal of the residual refractory
organics in the effluent of the biological processes. On the one hand, the optimization of the
membrane in the ultrafiltration units could solve the problems, since most of the in-service
MBRs depend on the membrane to remove the residual refractory organics and the rapid
development of the membrane technology has provided more alternatives for contaminant
interception [55]. On the other hand, the specific composition of these residual organics has
been characterized by the SPME-GC/MS in this study, and the main components included
nonyl aldehyde (31.39%), 1,1,3-trimethoxypropane (23.97%), chloropicrin (6.90%), and 5,5-
dimethyl-3-(3-methyl-cyclooxiran-2-yl)-cyclohex-2-enone (6.78%). Targeting these specific
refractory organics, some physicochemical methods, such as advanced oxidation [56] and
enhanced coagulation, could also be feasible for the improvement of the treating efficiency.

5. Conclusions

The influent co-digestion wastewater of food waste and sewage sludge in a full-scale
MBR mainly contained organics with MW < 1 kDa and was dominated by tryptophane-
protein-like substances. The hydrolytic/acidogenic process and two-stage A/O contributed
to the improvement of biodegradability and the removal of most DOMs, respectively, but
the poor removal of refractory organics (MW < 5 kDa) in the ultrafiltration unit resulted
in the effluent organic residue, requiring further optimization. In addition, the enrich-
ment of microbial communities with the potential for hydrolytic/acidogenic and organic
biodegradation has ensured the biological transformation of DOMs.
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www.mdpi.com/article/10.3390/su14116556/s1, Table S1: Description of DOMs in the co-digestion
wastewater of sewage sludge and food waste revealed by SPME-GC/MS. Table S2: Description
of DOMs in the effluent of the hydrolytic/acidogenic tank revealed by SPME-GC/MS. Table S3:
Shared DOMs between the influent and the effluent of the hydrolytic/acidogenic tank revealed by
SPME-GC/MS. Table S4: Description of DOMs in the effluent of the two-stage A/O process revealed
by SPME-GC/MS. Table S5: Description of DOMs in the effluent of the ultrafiltration units revealed
by SPME-GC/MS.
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