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Abstract: Currently, there is a contradiction between coal mining and protection of water resources,
meaning that there is a need for an effective method for discriminating the source of mine gushing
water. Ningtiaota Coal Mine is a typical and representative main coal mine in the Shennan mining area.
Taking this coal mine as an example, the self-organizing feature map (SOM) approach was applied to
source discrimination of mine gushing water. Fisher discriminant analysis, water temperature, and
traditional hydrogeochemical discrimination methods, such as Piper and Gibbs diagrams, were also
employed as auxiliary indicators to verify and analyze the results of the SOM approach. The results
from the three methods showed that the source of all the gushing water samples was surface water.
This study represents the innovative use of an SOM in source discrimination for the first time. This
approach has the advantages of high precision, high efficiency, good visualization, and less human
interference. It can quantify sources while also comprehensively considering their hydrogeochemical
characteristics, and it is especially suitable for case studies with large sample sizes. This research
provides a more satisfactory solution for water inrush traceability, water disaster prevention and
control, ecological protection, coal mine safety, and policy intervention.

Keywords: mine gushing water; source discrimination; self-organizing feature map; Fisher discriminant
analysis; hydrogeochemical characteristics

1. Introduction

There are 36 coal mines in China with a production capacity of greater than 10 Mt/a,
and the total production capacity of these mines is as high as 612 Mt/a. Three of these
mines are located in the Shennan mining area, namely, Hongliulin, Zhangjiamao, and
Ningtiaota coal mines. The Shennan mining area is located at the border of the Northern
Shaanxi Plateau and the Maowusu Desert in northwestern China. The western part of the
mining area is a relatively flat desert beach area, and the eastern part is a fragmented loess
gully area. The mining area is arid and rainless, with a large amount of evaporation. It
has sparse vegetation and serious soil erosion. For a long time, the Shennan mining area
has been short of water resources. Most of the water for production and domestic use is
taken from the groundwater of the Quaternary Salawusu Formation and burnt rock water
in the mining area. Various water resources in the area are affected to varying degrees by
the large-scale mining of coal. The contradiction between coal mining and the protection of
water resources has become increasingly prominent, and problems with water resources
are becoming increasingly significant.
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The Ningtiaota Coal Mine is a super-large main coal mine, and its production capacity
is 12 Mt/a. Due to its specific features and representativeness, this mine has attracted
the attention of a large number of researchers. Stable hydrogen and oxygen isotopic and
hydrochemical data were used by Huang et al. [1] to study the water–rock interactions
and the sources and mechanisms of groundwater recharge and drainage. Their research
provided a reference for water resource management and water inrush prevention in other
coal mines. In addition, the finite element theory was used by Xie et al. [2] to analyze and
solve the groundwater flow field and simulate the impact of coal mining on the upper
aquifer. Hou et al. [3] used distance discriminant analysis, Bayes discriminant analysis, and
Fisher discriminant analysis (FDA) to establish a mine-water source-identification model,
and they compared the applicable conditions, sample size, accuracy, and identification
capabilities of different models. Liu et al. [4] applied a hydraulic tomography technique
to perform water-releasing tests on the coal mine, by which the characterization of water
hazard aquifers was achieved. However, there have been few studies considering the
identification of the sources of gushing water in mines in the Shennan mining area. This is
a very urgent problem that needs to be addressed so that targeted and effective prevention
and control measures can be taken. Discrimination of mine-water inflow sources has a
positive effect on the preservation, development, and utilization of water resources, coal
mine safety, and ecological and environmental protection. It can also provide theoretical
guidance for the formulation of water-preserving coal-mining plans and water inflow
prevention measures.

With the continuous and large-scale mining of coal resources, there are hidden hazards
to mine safety. In particular, the more serious and frequent disasters caused by water
inrush in mines lead to serious threats to human life and property [5–7]. Take Ningtiaota
coal mine as an example: the roof first weighting of the first working face, S1210, in the
south wing of Ningtiaota coal mine occurred when the distance of the stopping reached
61 m along the strike of the coal seam. The water gushed into the roadway along with the
roof caving. According to the flow monitoring data, the water yield of the mine increased
from 50 m3/h to 1157 m3/h in the next 6 days. The water inrush lasted for several months
with little fluctuation, and the final water inflow was stabilized at 400 m3/h. By the end of
October, the total water inflow was 3.58 million m3. The source of the water inrush was the
weathering zone of the bedrock. The weathered bedrock aquifer is the main water inrush
source, which entered the working face through the caving fissures. In November 2011,
the water inrush occurred in the working face, N1110, when the stopping scope was
about 460–500 m. The maximum water inflow was 190 m3/h. The emergency response
was carried out immediately by strengthening drainage capability after the water inrush
disaster happened. The water inflow decreased significantly after 3 days and now there is
no water in the working face. There are many factors that can contribute to mine-water
inrush, including complicated and differing geological structures and hydrogeological
conditions, natural and geographical conditions, mine pressure, water pressure, and mining
activities [6,8–12]. Mine-water inrush mostly occurs in faults, aquicludes, and the weak
points of rock formations. The mine water can then enter the mining face and pose a threat
to the miners.

Currently, mine-water inrush is the second-most-common type of mining disaster after
gas outbursts. During the period from 2010 to 2019, there were 140 mine-water disasters in
China and 718 deaths. For example, on 28 March 2010, Wangjialing Coal Mine in Linfen
City, Shanxi Province, the collapse of an abandoned small kiln and the release of the water
contained in the abandoned tunnels and goafs of another mine caused a sudden water
inrush accident that caused 38 deaths, 115 injuries, and direct economic losses of up to
CNY 49.3729 million. In Xinjing Coal Mine in Datong City, Shanxi Province, there was
illegally organized production and risky operations near the goaf. Due to the impacts of
blast loosening, water pressure soaking, and changes in mine pressure caused by mining
activities, the limited amount of safety coal pillar was destroyed. As a consequence, on
18 May 2006, a particularly serious flood accident occurred, causing 56 deaths and direct
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economic losses of CNY 53.12 million. On 12 December 2004, due to a lack of water detection
and drainage measures during coal mining and tunneling, the mining of the Tianchi Coal
Mine in Tongren City, Guizhou Province, approached the subsided karst cave that intersects
the coal seam three-dimensionally, and a particularly serious water-penetration accident
occurred, causing 21 deaths and direct losses of CNY 7.83 million. Similarly, due to illegal
mining of waterproof coal pillars in the Mushi Coal Mine of Zaozhuang City, Shandong
Province, the roof of the coal seam fell and formed a water break channel directly connected
to the ground, which caused open-pit water and sediment to break into the well. As a
result, an extremely large water-break accident occurred on 26 July 2003. The accident
caused 35 deaths, and the economic losses amounted to CNY 2.981 million. In summary,
establishing the sources of mine-water inrush is of great significance to rescuing miners,
resuming production, preventing accidents, and formulating policies [13].

Researchers generally divide source discrimination methods for mine-water inrush
into three main categories: nonlinear analysis methods, multivariate statistical methods,
and hydrochemical characteristic analysis methods. Commonly used nonlinear analysis
methods include the fuzzy mathematics comprehensive evaluation method [14], grey sys-
tem correlation method, BP artificial neural network method [15], GIS theory method,
extension recognition method, support vector machine method [16–19], and extreme learn-
ing machine method. These discrimination methods require abundant training samples
and do not require subjective design judgment sets. They, therefore, have high learning
efficiency and robustness. However, they generally have the potential defects of over-
learning and slow convergence. The weights of the extreme learning machine method are
randomly generated, and the threshold is 0. The hydrochemical characteristics are ignored,
so a large amount of hydrogeochemical characteristic information may be lost, resulting in
unclear classification. Multivariate statistical methods mainly include discriminant analy-
sis, cluster analysis, and principal component analysis [20,21]. The discriminant analysis
methods include the sequential discriminant method, the secondary discriminant method,
the stepwise discriminant method [22], the distance discriminant method [3], FDA [15,22],
Bayesian discriminant analysis [3], and the random forest method [23]. These methods
require a set of subjective design judgments. They emphasize quantification but ignore
analysis of the hydrogeochemical characteristics. The advantages of these methods are that
they have reduced data dimensions, improved calculation speed and operating efficiency,
improved accuracy and stability, and reduced information loss. Fundamentally, however,
they are an effective solution to the practical problem. Hydrogeochemical characteristic
analysis methods include the conventional hydrochemistry method [24–27], the isotope
method [28,29], the tracer test method, the trace element method [30], and the water temper-
ature and water level method [31]. Furthermore, the laser-induced fluorescence technology,
GIS, and temperature analysis have been introduced to quickly identify the source of water
inrush [32,33].

In this study, a self-organizing feature map (SOM) was applied to discrimination
of mine-water inrush sources for the first time. The FDA, the Piper diagram, the Gibbs
diagram, and the water temperature were also used to analyze and verify the water inflow
source in an auxiliary way from quantitative and qualitative perspectives. The sources
of the unknown water samples were determined. When water gushing or water-gushing
symptoms appear in a mine, real-time detection should be carried out to quickly identify
the type of water source. This work is of great significance for the study of regional hydro-
geochemical effects and the replenishment and drainage relationship between groundwater
and surface water. This research provides a scientific basis for mine-water hazard predic-
tion, as well as water source anticipation and control. It provides theoretical support and a
practical basis for policy formulation and mine-water hazard prevention.
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2. Materials and Methods
2.1. Geological and Hydrogeological Conditions

Ningtiaota Coal Mine (38◦57′24′′–39◦07′57′′ N, 110◦09′29′′–110◦16′23′′ E) is located in
Shenmu County, Yulin City, Shaanxi Province, and is in the southern part of the Shennan
mining area (Figure 1). The study area has a mid-temperate semi-arid continental monsoon
climate, with an annual average precipitation of 434.1 mm and an annual mean temperature
of 8.6 ◦C. The annual average wind speed is 2.3 m/s and the average evaporation is
1712.0 mm. Ningtiaota coal mine is located in the Kuye River basin, a tributary of the
Yellow River. The main water systems in the area are the Miaogou and Lucaogou rivers, and
the Kaokaowusugou and its branches, the Kentieling and Xiaohoumu rivers. Ningtiaota
Coal Mine is located in the northern part of the Loess Plateau and on the southeastern edge
of the Mu Us Sandy Land. The terrain is high in the northwest and southwest, and low
in the middle. The geomorphic unit is dominated by windy beaches and loess hilly and
gully areas. The geological structure of this area is simple, the whole is a monoclinic layer
inclined to the west, and no faults or magmatic rocks are seen. A stratigraphic map of the
region is shown in Figure 1.
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(b) Hydrogeologic profile. (c) stratigraphic map).

The Quaternary Holocene System is dominated by modern aeolian sand and alluvial
strata with good water permeability. The lithology of the Salawusu Formation of the
Upper Pleistocene of the Quaternary System is composed of silt, fine sand, medium sand,
sub-sand, sub-clay, and a peat layer. This aquifer is the key layer for water-preserving
coal mining, with a unit water inflow of 0.008–4.321 L/s·m and a permeability coefficient
of 0.011–23.582 m/d. The lithology of the Lishi Formation of the Middle Pleistocene is
dominated by gray-yellow or brown-yellow sub-clay and sub-sandy soil, with scattered cal-
careous nodules. Vertical fissures are developed, and they are in unconformity contact with
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the underlying strata. The unit water inflow is 0.01776–0.04705 L/s·m and the permeability
coefficient is 0.10017–0.89640 m/d. This formation is one of the key water-preserving layers
with weak water richness [34]. The Baode Formation is dominated by light red and brown-
red clay and sub-clay, with irregular calcareous nodules, distributed in layers. The gravel
layer in the local section is 10–30 cm. Its permeability coefficient is 0.0016–0.0170 m/d,
and it forms a key waterproof soil layer with the loess of the Lishi Group [34]. The upper
part of the Middle Jurassic Anding Formation is dominated by purple-red mudstone and
sandy mudstone, interbedded with silt and fine sandstone, and the lower part is dominated
by mudstone and sandy mudstone, with sandy mudstone interbedded. The lithology of
the Zhiluo Formation is dominated by feldspar conglomerate, with medium sortability
and calcareous cementation. The structure is loose, the porosity is increased, the water
permeability of the rock is enhanced, and the cracks are relatively developed. The average
permeability coefficient is 0.142 m/d and the average unit water inflow is 0.0402 L/s·m [34].
The Yan’an Formation is composed of gray-white and light gray medium-fine-grained
feldspar sandstone, including four water-bearing rock sections: J2z–2−2, 2−2–3−1, 3−1–4−2,
and 4−2–5−2. Jurassic sandstone, Neogene, and Quaternary shock sediments are the main
strata in the region.

The main sources of mine-water filling caused by coal mining are atmospheric pre-
cipitation, surface water, underground aquifer water, burnt-rock water, and goaf water.
The main water-filled aquifers are quaternary loose-pore phreatic aquifers (Q), weathered-
fissure water of layered clastic rocks from the Middle Jurassic Anding Formation (J2a) and
Zhiluo Formation (J2z), fissure-confined water from the Middle Jurassic Yan’an Formation
(J2y), and phreatic aquifers of burnt-rock fissure holes (Figure 2).
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2.2. Sample Collection and Analysis

The observation data were taken from water samples tested and previous water quality
analysis reports for the mining area. There was a total of 40 water samples, of which 2
were from the Quaternary loose layer pore phreatic aquifer, 16 were from the Middle
Jurassic Zhiluo Formation clastic weathered fissure aquifer, and 13 were from the Middle
Jurassic Yan’an Formation fissure confined water aquifer. Three were surface water and
six were pit gushing water (Table S1). Eleven main indicators were measured in the water
samples: water temperature (T), total dissolved solids (TDS), pH, main cations (K+, Na+,
Ca2+, and Mg2+), and main anions (HCO3

−, SO4
2−, Cl−, and NO3

−). The parameters
T, pH, and TDS were tested in situ using a HANNA-HI9828 portable multiparameter
instrument. The ions K+ and Na+ were tested using ion chromatography, and the other
ions were tested by titration and gravimetric methods. Since the sources of Na+ and K+

are roughly the same, Na+ and K+ are often classified into one group (Table S1). The
electrical neutrality equation is used to check whether the aqueous solution meets the basic
equilibrium condition (Equation (1)); that is, the total number of positive ions is equal to
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the negative ions in solution on a charge basis. The charge balance error in this study is
lower than 5%, indicating that the analysis and test results are reliable.

E =

∣∣∣∣∑ Z·mc −∑ Z·ma

∑ Z·mc + ∑ Z·ma

∣∣∣∣× 100% (1)

where E is the charge balance error, Z is the charge number of the ions, and mc and ma are
the molar concentrations of cations and anions, respectively.

2.3. Self-Organizing Feature Map

The SOM, which was proposed by Kohonen in 1982, is an artificial neural network
model for unsupervised competitive learning that simulates the SOM of the brain and
nervous system [35]. The essence of the SOM is to map high-dimensional data to low-
dimensional space through nonlinear changes while retaining its most primitive topological
structure. It aims to achieve the purpose of dimensionality reduction and clustering, and it
is widely used in various fields to analyze complex data and extract information; there is
an SOM toolbox implementation in MATLAB. The steps for the creation of an SOM include
initializing the low-dimensional neural network, setting parameters and variables, finding
and adjusting the best matching unit (BMU) according to the Euclidean minimum principle,
and iterative calculation [36,37]. The nodes contained in the SOM structure have a common
arrangement of a two-dimensional hexagonal grid [38]. Based on the heuristic algorithm,
the number of neuron nodes m is calculated using 5

√
N, where N represents the number

of samples. The number of nodes determines the accuracy and generalization ability of
the SOM and is the key to good clustering [39]. In addition, terrain error (TE) represents
the proportion of nonadjacent data vectors, and this determines the degree of retention of
the topological structure. The quantization error (QE) characterizes the average distance
between the vector and BMW to measure the map resolution [37,40]. Therefore, TE and QE
are used to evaluate the selection of map nodes and, finally, determine the optimal number
of nodes. In addition, K-means clustering and the Davies–Bouldin index (DBI) are used to
visualize the final clustering results on a topological network graph.

2.4. Hydrogeochemical Method

The Piper diagram is used to reflect the relative content of the main ions and to de-
termine hydrochemical types through the relative distribution positions of different water
samples. It has been widely used in the classification of hydrochemical types and the
judgment of the mutual chemical reactions between groundwater and its surrounding
rock. In addition, based on the principle that a given aquifer will have particular hydrogeo-
chemical characteristics and there are differences in hydrogeochemical properties between
different aquifers, the Piper diagram is used to determine the source of unknown water in
a mine and qualitatively judge the hydraulic connections of different layers [23,31]. This
functionality is implemented by AqQA version 1.1.4.1 (Rockware, Inc., Golden, CO, USA).

2.5. Fisher Discriminant Analysis

Fisher discriminant analysis uses the ideas of dimensionality reduction and projection.
Its essence is to project high-dimensional training-sample data into a low-dimensional
space in an appropriate direction. It aims to make the sum of squared deviations of each
sample within a class after projection as small as possible, while making it as large as
possible between classes. Then, a few linear combinations of multidimensional vectors can
be used to replace the original multiple variables to obtain a multivariate linear discriminant
function. Finally, the attribution of the samples is judged and the groups are separated.
The category of an unknown sample can be judged according to the minimum squared
Mahalanobis distance, which is calculated based on the relative centroid between the
training samples and the unknown samples. This greatly improves the speed, accuracy,
and effectiveness of machine learning. The main principles and basic ideas of FDA are
as follows.
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Suppose the original samples have n categories, and the sample set of each category
contains m samples. The sample set of observation data is:

xi
j = (x1, x2, x3, . . . . . . , xm) (2)

where i = 1, 2, 3, . . . , n and j = 1, 2, 3, . . . , m. The mean vector µi and covariance matrix ∑i
of the nth sample are expressed as:

µi = 1/Ni ∑
x∈xj

x (3)

∑i = ∑
x∈xj

(x− µi) (x− µi)
T (x ∈ xj) (4)

where Ni indicates the sample number of the nth type.
The sum of squared deviations within a group (A) and the sum of squared deviations

between groups (B) are calculated using [41]:

A =
n

∑
i=1

m

∑
j=1

(xj
i − µi) (xj

i − µi)
T

(5)

B =
n

∑
i=1

mi (xi − µi )(xi − µi)
T (6)

The largest eigenvalue (λ) and the corresponding eigenvector (U) can be estimated from:

(A−1 B – λI)U = 0 (7)

where I is the identity matrix. The discriminant function is then established and solved in
the equation (Zhao et al., 2020):

Y = U−1x (8)

3. Results and Discussion
3.1. SOM and Clustering of Water Samples

In this research, 6× 6 neurons and five clusters were calculated in SOM using MATLAB
to sort water samples according to their ion concentrations and the indicators pH and TDS.
A neural matrix visualization of the individual indexes in the SOM was exhibited in
Figure 3. The color gradients of TDS, Cl−, K+ + Na+, Ca2+, Mg2+, and SO4

2− had the same
trend, which indicated that the distributions of these ions had a high degree of similarity,
and the correlations between these ions were very high. However, the color gradients of
pH, HCO3

−, and NO3
− were different, indicating that there was no obvious correlation

between these three indicators and other components. Clustering based on the smallest
DBI index, an SOM neural network clustering pattern classification map with five clusters
was obtained (Figure 4).

The neural matrix of all components except pH in cluster 2 was dark blue, indicating
that the ion concentrations were the lowest, but the pH is higher. Most of the samples in this
cluster were fissure water from the Middle Jurassic Yan’an Formation. Nevertheless, there
were still two surface water samples, one Quaternary pore water sample, and three fissure
water samples from the Middle Jurassic Zhiluo Formation in this cluster. Similarly, except
for Cl−, the neural matrix of cluster 1 was light blue, which showed that the concentrations
of water samples in this cluster were higher than those of cluster 2, with extremely low
Cl−. There was one surface water sample and three gushing water samples in this cluster,
specifically S3, G2, G6, and G4. In cluster 3, the SOM neural matrix visualizations of TDS,
SO4

2−, Cl−, K+ + Na+, Ca2+, and Mg2+ were distributed in yellow and cyan. Only two
water samples were included in this cluster, namely, J2y 11 and J2y 13. These results showed
that the ion concentration in this cluster was high. The neurons in cluster 4 were dark
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blue, representing relatively low contents of seven kinds of ions. However, the NO3
−

was obviously the highest. A total of 13 samples in this cluster were fissure water from
the Middle Jurassic Zhiluo Formation, and one sample, P2, was Quaternary pore water.
Furthermore, the neurons of HCO3

−, SO4
2−, and Mg2+ in cluster 5 were yellow, orange,

and green, respectively. This showed that the three ion concentrations in G1, G3, and G5
are high.
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The principle of the SOM is dimensionality reduction and clustering. Samples within a
given cluster in the SOM neural network will have similar hydrogeochemical characteristics,
and this indicates that the water samples in a cluster might be from the same source. On
this principle, the gushing water samples G2, G4, and G6 were identified as surface water
because they were placed in the same cluster as S3. In addition, the color gradients of
clusters 1 and 5 are the same or similar. Therefore, their water sources were close. Samples
G1, G3, and G5 were regarded as surface water.

There were some conditions applicable to the creation of an SOM. First of all, there
were certain requirements on the number of samples: the larger the sample size, the more
accurate the water source identification results. Second, the color gradient of the SOM
neural matrix visualization was greatly affected by the extreme values of the indicators,
and the clustering pattern classification might be influenced by this. To further verify and
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improve the results, traditional hydrogeochemical methods and FDA were selected to
perform water source discrimination.

3.2. Hydrogeochemical Discrimination

A Piper trilinear diagram was established using AqQA to analyze the hydrogeochemi-
cal characteristics of the samples (Figure 5). The parameters Ca2+, Mg2+, K++Na+, HCO3

−,
SO4

2−, Cl−, TDS, pH, and NO3
− were selected to discriminate the source of mine gushing

water (Table S1) [42,43]. Additionally, Gibbs diagrams were used to divide the natural
water into three main types—evaporation dominance, rock-weathering dominance, and
precipitation dominance—according to their ionic components (Figure 6). The distribution
of water sample points on the Gibbs diagrams in this study was obviously concentrated
around TDS values in the range 100–1000 mg/L.
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The hydrogeochemical type of Quaternary pore water was found to be HCO3–Ca, and
the average TDS was 276.025 mg/L. The level of dissolved solids in the water indicated that
it was affected by the combined effects of rock weathering and atmospheric precipitation.
This demonstrated that the Quaternary pore water had a close hydraulic relationship
with atmospheric precipitation and other horizon water, and its cyclic evolution was
frequent. Most of the fissure water from the Middle Jurassic Zhiluo Formation was found
to have the hydrogeochemical type HCO3–Ca. A small number of water samples were
HCO3–Ca·Na, HCO3·SO4–Na·Ca, HCO3–Ca·Na·Mg, and HCO3–Ca·Mg. The TDS was
269.147 mg/L, similar to pore water. These hydrogeochemical characteristics indicated
that this aquifer had a certain hydraulic connection with pore water; it was dominated
by rock weathering [44–46]. In fissure water from the Middle Jurassic Yan’an Formation,
the main cations were found to be Na+ and Ca2+, and the main anions were HCO3

−,
Cl−, and SO4

2−. The average TDS value was 1963.963 mg/L, significantly higher than
the values for the other samples. The dominance of evaporation and rock weathering
led to this high ion concentration, especially HCO3

−, Na+, SO4
2−, and Cl−. The reason

for this was presumed to be rock dissolution, and cation exchange and dissolution. The
hydrogeochemical types of the surface water samples were HCO3–Ca and HCO3·SO4–Na,
with a higher TDS of 586.820 mg/L, and this was mainly caused by evaporation and
rock weathering. Evaporation caused continuous water loss and salt enrichment, and
the rock weathering was judged by the presence of Ca2+ and HCO3

−. According to the
Piper trilinear diagram, the hydrogeochemical types of the six gushing water samples were
HCO3·SO4–Na, HCO3·SO4–Na, HCO3·SO4–Na, HCO3–Na, SO4–Ca·Mg, and HCO3·SO4–
Ca·Mg·Na. Therefore, G1, G2, G3, G4, G5, and G6 could be qualitatively identified as
surface water.

Water temperature was added as an auxiliary indicator for water-source identification.
The average water temperatures of Quaternary pore water, fissure water from the Mid-
dle Jurassic Zhiluo Formation, fissure water from the Middle Jurassic Yan’an Formation,
and surface water were 11.50 ◦C, 11.31 ◦C, 18.91 ◦C, and 19.10 ◦C, respectively, with an
increasing trend. The temperature of pore water was similar to that of the fracture water in
the Zhiluo Formation. Based on the on-site test results, the temperatures of the gushing
water from G1–G6 were, in order, 20.4 ◦C, 22.2 ◦C, 19.9 ◦C, 21.2 ◦C, 20.6 ◦C, and 12.0 ◦C.
Clearly, water samples G1, G2, G3, G4, and G5 were close to the temperature of surface
water. However, when the two aquifers were relatively close, the water was affected by
external environmental interference [47,48]. The judgment of this result was limited by the
number of samples. As such, using the water temperature to determine the water source
was not completely reliable [31]; it could only be used as an auxiliary reference.

3.3. Source Identification Using FDA

The eight main hydrogeochemical components—pH (x1), TDS (x2), HCO3
− (x3), SO4

2−

(x4), Cl− (x5), K++Na+ (x6), Ca2+ (x7), and Mg2+ (x8)—were selected as the indicators
for identification of the source of gushing water. The sources were classified into four
categories, namely, Quaternary pore water (P), fissure water from the Middle Jurassic
Zhiluo Formation (J2z), fissure water from the Middle Jurassic Yan’an Formation (J2y), and
surface water (S). The six groups of gushing water samples (G) were regarded as unknown
water samples to be judged (Table S1). The statistical software package SPSS v19.0 (SPSS
Inc., Chicago, IL, USA) was used to apply FDA. The resulting discriminant functions were:

y1 = 6.061x1 − 0.007x3 + 0.015x4 − 0.005x6 − 48.069 (9)

y2 = −0.612x1 + 0.005x2 + 0.008x3 + 0.020x4 − 0.025x6 + 2.140 (10)

The significance levels of Equations (9) and (10) were found to be 0.000 and 0.003,
respectively. These were much less than 0.05, indicating that both discriminant functions
were highly effective. In addition, the cumulative percentages of the two typical discrimi-
nant functions were 87.8% and 26.2%, respectively. This showed that the fitted relationships
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between the basic information of the water samples and the unknown water-source types
were effective, and the first function was found to be more effective. In the discriminant
analysis, the variables Cl−, Ca2+, and Mg2+ were unused due to their extremely small corre-
lations. For a standardized canonical discriminant function, the coefficients of discriminant
function 1 were found to be 1.427, 1.000, −0.757, 3.094, and −3.591, corresponding to pH,
TDS, HCO3

−, SO4
2−, and K++Na+, respectively. In contrast, the respective coefficients of

discriminant function 2 were −0.144, 13.694, 0.910, 4.131, and −17.704. This demonstrated
that the main indicators K++Na+, SO4

2−, pH, and TDS greatly improved the ability to
identify the source of water inrush.

The spatial distribution of water samples as determined by both discrimination func-
tions was calculated. This is plotted in Figure 7, in which the water sample types were
Quaternary pore water (P), fissure water from the Middle Jurassic Yan’an Formation (J2y),
surface water (S), and fissure water from the Middle Jurassic Zhiluo Formation (J2z). The
distances of gushing water to the centroids of the four water sample types are listed in
Table 1.
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Table 1. Distance of gushing water to the centroid.

Gushing Water Distance to the
Centroid of P

Distance to the
Centroid of J2z

Distance to the
Centroid of J2y

Distance to the
Centroid of S

G1 11.074 13.244 12.042 10.618
G2 2.253 2.937 1.934 1.648
G3 17.700 18.937 18.306 16.066
G4 5.665 9.105 7.157 7.609
G5 27.634 27.463 27.674 24.761
G6 3.645 3.941 3.455 1.313

The distances of G1, G2, G3, G5, and G6 to the centroid of surface water were found
to be the shortest, which implied that these five samples came from surface water. Based
on the principle of minimum distance, G4 was found to originate from Quaternary pore
water. According to the results of FDA, the appropriate proportion of training samples
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was 80%, which showed that the discriminant function was effective and its accuracy was
relatively reliable.

3.4. Method Comparison

There have been serious mine water accidents in the Ningtiaota Coal Mine. How-
ever, engineering methods, such as geophysical prospecting and drilling, were unable
to accurately identify the source of the gushing mine water, and this consumed a large
amount of labor and funds [49,50]. This research provided a simple and quick method—the
self-organizing feature map—for water source identification.

Through the above analysis, the sources of G1, G2, G3, G4, G5, and G6 were all judged
by SOM to be surface water. The results obtained by hydrogeochemical methods were the
same. Since the water temperature was significantly affected by the distance of the aquifers,
environmental interference, and the number of samples, this could only be used as an
auxiliary identification method. However, using FDA, the gushing water sample G4 was
identified as Quaternary pore water. Considering their hydrogeological characteristics, G4
and G2 were very close, and the two sampling points were located in the same aquifer. Their
lithology was the same, and their hydrogeochemical composition was similar. Furthermore,
the six sampling points were distributed around the Kentieling river. The upper bedrock
was missing, forming a skylight. Outcrops appeared in the aquifers of the Salawusu
Formation in the river channel. Fissures and pores developed in the lower bedrock, which
caused a large amount of surface water to replenish the groundwater. In addition, only six
indicators—pH, TDS, HCO3

−, SO4
2−, K+, and Na+—were considered effective in FDA. The

variables Cl−, Ca2+, and Mg2+ were not used in the source discrimination. Furthermore,
the FDA method did not consider the hydrogeochemical characteristics simultaneously.
For these reasons, the source of the gushing water sample G4 was regarded as surface
water. In conclusion, the source of all the mine gushing water samples was concluded to be
surface water.

4. Conclusions

Through field studies and experimental tests focusing on mine gushing water in Ning-
tiaota Coal Mine, 11 indicators, including pH, TDS, T, and the main ions, were measured in
40 water samples to characterize their hydrogeochemical characteristics. In this research, a
self-organizing feature map was applied for discrimination of the source of mine gushing
water. Water samples G1–G6 were identified as surface water based on the principle of them
having similar hydrogeochemical characteristics as the surface-water cluster. In addition,
FDA, water temperature, and traditional hydrogeochemical discrimination, including Piper
and Gibbs diagrams, were employed to verify the SOM analysis as auxiliary measures.
The results obtained by traditional hydrogeochemical methods were consistent with the
SOM results. The water-temperature judgment and FDA had the respective defects of
being susceptible to environmental interference and not considering the hydrogeochemical
characteristics. The source of G4 was, thus, comprehensively judged to be surface water.

The SOM approach has important advantages in data visualization, dimensionality
reduction, and clustering, and it is especially suitable for source analysis with abundant
training samples. It can not only be used to quantify a source, but it also simultaneously
considers the hydrogeochemical characteristics of a sample. This method reduces human
interference in sample sets, and the results of source discrimination of mine gushing
water, thus, have the characteristics of high efficiency and high precision. The proposed
application of SOM provides a more satisfactory solution to the problem of discrimination
of the source of mine gushing water. In summary, this research provides a scientific
basis for mine-water hazard prediction, and water source anticipation and control. It
provides theoretical support and a practical basis for policy formulation and mine-water
hazard prevention.
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