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Abstract: In this paper, we present a vision-aided motion planning and control framework for the
efficient monitoring and surveillance of water surfaces using an Unmanned Aerial Vehicle (UAV).
The ultimate goal of the proposed strategy is to equip the UAV with the necessary autonomy and
decision-making capabilities to support First Responders during emergency water contamination
incidents. Toward this direction, we propose an end-to-end solution, based on which the First
Responder indicates visiting and landing waypoints, while the envisioned strategy is responsible
for the safe and autonomous navigation of the UAV, the refinement of the way-point locations that
maximize the visible water surface area from the onboard camera, as well as the on-site refinement
of the appropriate landing region in harsh environments. More specifically, we develop an efficient
waypoint-tracking motion-planning scheme with guaranteed collision avoidance, a local autonomous
exploration algorithm for refining the way-point location with respect to the areas visible to the
drone’s camera, water, a vision-based algorithm for the on-site area selection for feasible landing and
finally, a model predictive motion controller for the landing procedure. The efficacy of the proposed
framework is demonstrated via a set of simulated and experimental scenarios using an octorotor UAV.

Keywords: UAV; autonomy

1. Introduction

Safeguarding nature and especially the water resources of our planet is nowadays,
more than ever, of utmost importance. Human well-being depends on clean potable water,
ecosystems that sustain agriculture rely heavily on unpolluted water supplies, while clean
oceans are essential for the preservation of marine life. Unfortunately, water contamination
can easily occur either by inevitable natural disasters (e.g., floods or earthquakes) or
human-caused malicious actions (e.g., terrorist attacks or chemical accidents). Therefore,
the development of methods and tools for preventing and dealing with water pollution
threats is essential. Toward this direction, the systematic monitoring and surveillance of
water surfaces is a vital and significant process. This, however, comes with its caveats, since
many areas are difficult or even impossible to access by humans in order to perform water
monitoring and sampling. Furthermore, large areas of water must be timely covered during
a typical surveillance scenario. Lastly, in case of natural disasters or malicious actions,
conditions might be extremely harmful for specialized personnel such as First Responders
to attend due to chemical and pathogen pollution or critical environmental conditions.

It is thus evident that there exists a significant need for increasing the effectiveness,
speed and coverage of water monitoring missions. Toward this goal, this paper proposes
a multi-modal perception and control framework, which is applicable to multi-rotor Un-
manned Aerial Vehicles (UAVs), that provides a complete and autonomous solution for the
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execution of a water monitoring mission in realistic conditions. The framework presented
herein consists a modular, open-source driven and non platform-specific solution that was
thoroughly tested in various outdoor experimental scenarios.

1.1. Related Literature

Autonomous aerial vehicles have been widely recognised for their versatile nature,
which renders them as the most popular choice for a variety of surveillance and monitoring
applications [1,2]. Moreover, recent multi-disciplinary engineering advances in structural
design, sensors, actuators and communications enhance the overall autonomy of these
platforms. Nowadays, UAVs are equipped with fast and dependable communication tech-
nologies [3], enhanced AI-based sensing capabilities [4] and robust motion control schemes
(e.g., dynamic window approaches [5], Machine Learning/MPC approaches [6]). In fact,
the number of commercially available “ready-to-fly” UAVs demonstrates the maturity
of this technology. Furthermore, the open-source philosophy has greatly facilitated the
process of setting-up and flying UAVs. Both the low-level [7] and high-level [8] aspects of
drone control now have available robust, almost “plug-and-play” solutions, while simu-
lation environments expedite the testing and tuning of the software by enabling sensing
and hardware simulations [9]. The software-in-the-loop (SITL) philosophy enables almost
seamless transition from simulated to real-world experiments.

A typical autonomous surveillance scenario requires efficient motion planning and
control schemes. Most common autopilot frameworks support path following based on
data fusion of the on-board navigation sensors (GPS, IMU, altimeter, etc.) and mainly
linearized PID motion controllers, which can prove quite effective in high altitude and
obstacle-free workspaces. However, in more complex missions, e.g., search and rescue or
sampling for possible contamination, the vehicle must operate in low altitudes and possibly
in cluttered and unknown environments; hence, more sophisticated control schemes are
required. Recent improvements on embedded processing units have enabled the adoption
of advanced motion planners in UAVs. In fact, some of the most common planning algo-
rithms for known workspaces, such as RRT* (Rapidly-exploring random trees) [10], as well
as for unknown environments, such as A* [11] and Dijkstra’s [12] algorithm, have been
successfully employed in UAV operation. However, these schemes are usually not incorpo-
rated in the standard autopilot control system of the UAV and often require specialized
personnel to operate the vehicle.

Furthermore, the detailed perception of the environment is also an important aspect
in aerial surveillance applications. More specifically, in water surveillance tasks, two
equally important issues arise: namely, the inference of three-dimensional information
pertaining to the topology of a ground surface and the detection of land and water areas.
In general, three-dimensional information can be extracted by incorporating either LiDAR
or RGB-D sensors in an UAV’s sensor suite [13], while relatively to water monitoring,
photogrammetry has been extensively used to obtain 3D information [14,15]. When it
comes to detecting water surfaces from top-view images of the Earth’s surface, the most
widely used approaches employ multi-spectral cameras to obtain multiple images of the
same area and subsequently apply a thresholding process, which, if tuned correctly can
produce a valid classifier of water and land pixels (see, e.g., [16]). It is however necessary to
equip the UAV with a multi-spectral camera to the detriment of the cost and overall weight
of the platform.

Another important aspect when flying in unknown areas is autonomous landing. This
can be a rather tricky undertaking especially in harsh outdoor environments. A plethora
of different autonomous landing approaches is discussed in [17]. The existing solutions
pertaining to outdoor landing, which we will focus upon, can mainly be classified into
“known” [18–21] and “unknown” environments [22]. The landing task can be broken
down into two main phases: (1) finding an appropriate landing spot and (2) executing
the landing maneuver. In order to execute these steps, both for known and unknown
environments, the autonomous platform is equipped with perception sensors relevant to
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the task at hand. Notably, during landing operations in known environments, less complex
sensing instruments and algorithms (e.g., plain RGB cameras) are usually utilized owing
to the existence of pre-determined landmarks [17], which are often employed to not only
provide a suitable location for landing but also to aid in controlling the drone (e.g., through
visual control) so as to land safely [23]. In contrast, a priori unknown environments are
evidently more challenging, as the on-board computing and sensing instruments need to
be utilized in order to analyze the environment and make on-the-fly decisions for choosing
a landing location as well as controlling the vehicle to safely land in the appropriate spot.

In this work, we mainly focus on the unknown environments case, since they are
relevant to water surveillance and monitoring applications in emergency situations, where
no prior knowledge of the environment is available. In such cases, the UAV must be
equipped with advanced sensors (e.g., LiDAR or RGB-D) to deal with the variance of
information. In [24], data from a LiDAR and an RGB camera were fused to provide a
depth map, which was post-processed to calculate a proper landing spot. In [25], an
integrated solution with Simultaneous Localization and Mapping (SLAM) was employed
to achieve both localization and control of the drone while calculating a safe landing area
from a 3D representation of the platform’s environment. In [26], ground-station sensing
instrumentation was incorporated to facilitate perception. It is evident that a variety
of solutions for 3D perception of the environment are available in the related literature.
However, any selected solution should be computationally efficient to be able to perform
well via purely on-board sensing and embedded computing capabilities.

1.2. Contribution

The purpose of this work is to provide an end-to-end efficient solution for autonomous
monitoring and surveillance of water surfaces using an UAV by integrating various per-
ception, motion planning and control algorithms in a common framework. Our ultimate
goal is the provided framework to be utilized by First Responders operating at emergency
incidents, without the need of having specialized technical knowledge or piloting skills. In
this way, we aim to reduce the danger posed to First Responders in water contamination
scenarios by keeping them at long distance from the contaminated areas and dispatching a
UAV instead. In this scope, the contribution of our work can be summarized as follows:

• Integration of an efficient motion planning scheme featuring on-line obstacle detection
and collision avoidance, with the common open source autopilot and mission planner
systems that most commercial UAVs employ.

• Design and development of a novel autonomous exploration algorithm based on
on-board robotic vision, which provably maximizes (locally) the visible water to the
UAV’s camera.

• Design and development of a novel vision-based scheme for the on-line detection of
the most suitable landing area for the UAV in unknown outdoor and harsh environ-
ments, based on a stereoscopic camera’s depth map from which information about the
ground’s geometry is inferred.

• Formulation and development of a Non-linear Model Predictive Control (NMPC)
scheme for the autonomous landing procedure.

Furthermore, since the proposed framework is highly modular, it can be easily modi-
fied to tackle a variety of different real-world scenarios that go beyond water monitoring,
(e.g., tasks such as plant monitoring) through altering one or more modules either partially
or entirely.

1.3. Outline

The rest of the paper is organized as follows: Section 2 provides a description of the
problem at hand. Section 3 provides background knowledge regarding the UAV motion
model and low-level control. Section 4 presents in detail the methodology that synthesizes
the proposed solution. Section 5 demonstrates the efficacy of the overall framework via a
set of experimental scenarios. Finally, Section 6 concludes the paper.
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2. Problem Statement

We assume that after an emergency alert concerning a possible water contamination,
a team of First Responders is tasked to monitor an a priori selected set of way-points
located near a body of water and in the proximity of land (e.g., river, lake, etc.). Due to
the possible presence of pathogens, the monitoring mission will be carried out by a UAV.
This monitoring step will henceforth be taken “to visually survey” the water in the nearest
vicinity of the above way-point. This could also potentially include further actions, such as
water sampling at the indicated areas using an appropriate sampling mechanism. However,
in this work, we will focus on visual surveillance.

We consider a multi-rotor UAV equipped with a down-looking stereoscopic camera,
a forward-looking stereoscopic camera and appropriate navigation sensors (GPS, IMU,
altimeter, etc.) along with common autopilot software for low-level control. The mission
consists of the following steps:

• The First Responders communicate information in the form of way-points W =[
w1, w2, · · · , wNW

]
∈ R2×NW to the UAV via a High-Level Planner Module. These points

correspond to areas of interest for monitoring purposes. The High-Level Planner
Module coordinates the rest of the UAV modules (see below) in order to assure the
accomplishment of the mission goals.

• The UAV should be autonomously navigated toward the aforementioned way-point
set W. However, the vehicle must have the ability to detect and avoid on-line unknown
obstacles that may appear in route (e.g., trees, buildings, etc.), since significant parts of
the flight will be carried out at low altitudes (below 50 m). This task will be handled
by the Motion Planning Module.

• Since each way-point could likely be located close to land and water, i.e., in case
of a river, the down-looking camera is highly possible to include both water and
ground areas in the field of view. Hence, a local autonomous exploration algorithm,
starting from way-point wi, will guide the UAV accordingly in order to ensure the
maximization of visible water surface inside the camera’s field of view. This task will
be handled by the Autonomous Exploration Module.

• Upon completion of the way-points visiting, the UAV should be able to land as close as
possible to an indicated way-point wl ∈ R2, which corresponds to an environmentally
unknown and unprepared for landing area. Thus, a vision-based scheme will handle
the on-line detection of the most suitable landing area for the UAV, as close as possible
to the indicated landing way-point, based on the approximated ground’s height
map. Finally, given the selected landing spot, the UAV must perform the landing
maneuver. During the landing phase, the Landing Area Detection algorithm will still
be running to provide on-line possible refinement of the landing point. An NMPC
motion controller will be responsible for realizing the landing procedure. This task
will be handled by the Autonomous Landing Module.

An overview of the proposed framework and the related modules is depicted in Figure 1.

Figure 1. Framework overview.
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Each of the participating modules will be analyzed in detail in Section 4.

3. Preliminaries
3.1. Multirotor Kinematics and Dynamics

In this subsection, the well-known kinematic and dynamic models of multi-rotor
platforms are introduced. Consider a multi-rotor robot as depicted in Figure 2.

Figure 2. Octorotor’s frames and motor order.

Let B =
{

eBx eBy eBz

}
denote the body fixed frame, whose origin coincides with

the vehicle’s center of mass. In addition, a fixed inertial frame I =
{

eIx eIy eIz

}
is

defined, as shown in Figure 2. The translational and rotational dynamics of the vehi-
cle, while considering external forces and moments, are described by the Newton–Euler
equations [27,28]:

ṗ = Iv = IRB
Bv (1)

mI v̇ = IRBF (2)

Jω̇ = −ω× Jω + M (3)

where p =
[
px py pz

]T , Iv =
[
vx vy vz

]T are the position and the linear velocity of

the multi-rotor with respect to the inertial frame I, Bv =
[
u v w

]T is the linear velocity
expressed in the body frame B, m is the mass, IRB is the rotation matrix used to perform
rotations from B to I, J is the inertia matrix and ω is the angular velocity of the vehicle
expressed in the body frame B.

The external forces and torques applied to the vehicle’s body are divided into:

F = FM + Fd + Fg (4)

M = MM + Md (5)

where:

• Fd = Cd
BRI‖Iv‖Iv are the drag forces and Cd is the drag coefficient matrix;

• Fg = mBRI
[
0 0 −g

]T is the gravitational force with g denoting the gravitational
constant;

• FM =
[
0 0 T

]T is the total thrust generated by the motors;

• MM =
[
τx τy τz

]T is the torque produced by the motors;
• Md = Cm‖ω‖ω are the drag moments with Cm denoting the drag moment coeffi-

cient matrix.

The total input thrust and moment applied to the multi-rotor is highly dependent on
the vehicle’s structure and specifically on the number N of motors and the configuration
of the airframe. According to momentum theory, thrust force Ti and the drag moment τi
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produced by the propellers are assumed to be proportional to the square of the rotor’s
angular velocity, i.e.,

Ti = CTωi
2 (6)

τi = Cτωi
2 (7)

where i = 1, . . ., N and CT , Cτ are the thrust and drag coefficients correspondingly.
For the octorotor, used in experimental scenarios, the total thrust and moments are

computed by the following control allocation matrix:


T
τx
τy
τz

 =


CT CT CT CT CT CT CT CT
−CT lx CT lx −CT lx −CT lx CT lx CT lx CT lx −CT lx
CT ly −CT ly CT ly −CT ly CT ly −CT ly CT ly −CT ly
−Cτ −Cτ Cτ Cτ Cτ Cτ −Cτ −Cτ





ω1
2

ω2
2

ω3
2

ω4
2

ω5
2

ω6
2

ω7
2

ω8
2


(8)

with lx, ly denoting the distance of each motor with respect to the center of mass.

3.2. Autopilot and On-Board Sensors

During both the simulation and experimental scenarios, an autopilot, and particularly
the open source ArduPilot system [7], is employed in order to provide reliable low-level
control of the vehicle. The low-level control is realized by a cascaded PID control structure
consisting of an outer position loop and an inner attitude one. More precisely, the outer
position loop is responsible for converting the reference position pd, velocity Ivd (or Bvd)
and heading ψd of the vehicle to target orientation (roll φd, pitch θd, yaw ψd) and throttle.
The inner attitude controller is, then, translating the aforementioned orientation and throttle
commands to motor pulse width modulation (PWM) values. The state feedback is achieved
by fusing sensor measurements, such as data by GPS, compass and IMU, using an Extended
Kalman Filter. An overview of the control architecture is shown in Figure 3.

Figure 3. Ardupilot control architecture.

3.3. Chosen Platfrom Specifications

Finally, in order for the platform to be able to perform in a desirable manner (as will
be comprehensively discussed in the later sections), a sensing suite is necessary. For this
purpose, the multi-rotor is equipped with two stereoscopic cameras, a forward-looking
one, so as to measure the distance to the surrounding obstacles while navigating from
one waypoint to another, and a down-looking one in order to both visually detect water
surfaces and appropriate landing areas. With regard to the downward-looking camera, the
function of a stereoscopic camera is two-fold; first of all, it infers reliable 3D information
and secondly, it is used to classify land and water areas. As previously mentioned, while a
multi-spectral camera could be used for such a classification, the dual purpose of a single
stereoscopic device has the benefits of cost and weight-saving, which are both aspects
crucial for the application in question.
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4. Materials and Methods

In this section, we propose a framework for tackling the above formulated problem
of water monitoring via drone platforms. The framework is comprised of three modules,
working independently of each other, and managed on a high level by a planner that is
in charge of “supervising” the mission and the execution of each module according to a
user-provided set of way-points, as previously discussed.

4.1. Motion Planning Module

The main objective of this module is the navigation of the vehicle toward the desired
locations while, simultaneously, avoiding collisions with obstacles. Therefore, a set of
way-points W is initially commanded by the pilot using a common Ground Control Station
(GCS) and a map of the area of interest. The aforementioned way-points are defined in the
World Geodetic System 1984 (WGS84), and thus, a conversion is performed from latitude
and longitude coordinates to Cartesian ones in the inertial frame.

The safe navigation of the multi-rotor assumes the existence of a sensor capable of
reliably measuring the distance between the vehicle’s body and static or dynamic obstacles
which jeopardize the success of the mission. Hence, the multi-rotor is equipped with a
forward-looking stereoscopic camera and the cumulative depth data are exploited in order
to build, in real-time, a 2D costmap of the area, i.e., a 2D occupancy grid where each cell is
marked as free, unknown or occupied according to the surrounding obstacles.

Given the costmap, a local planner, specifically the Dynamic Window Approach
(DWA) local planner [5], is utilized for producing feasible velocity commands which ensure
the avoidance of undesired collisions and the navigation of the vehicle toward the target
way-point. The waypoints are sent sequentially to the ROS-based motion planning package,
namely the “move_base” package, and the above procedure is repeated until the mission is
accomplished.

4.2. Autonomous Exploration Module
4.2.1. CNN Water Detection

An important part of the Autonomous Exploration algorithm is the real-time detection
and classification of the ground and water surfaces that constitute the environment above
which the UAV operates. The platform is equipped with a downward-looking stereoscopic
camera. In addition to the 3-dimensional information inferred from this sensor, the RGB
images taken in real time can be utilized to extract ground and water pixels.

In order to achieve this classification task, Convolutional Neural Networks were
employed. Such Neural Networks have long been used for image analysis and robotic
vision related tasks with great success. More specifically, an image segmentation-oriented
Neural Network was used to classify pixels as ground or water ones. The following
procedure was implemented to prepare the dataset for training:

1. Manual labeling of the images;
2. Binary masks creation from labeled images;
3. Augmentation of the dataset through an open-source software [29];
4. Resizing of the frames from 720× 480 pixels to 128× 128 pixels,
5. Classification for 2 classes (Class 0: Ground and Class 1: Water).

The structure of the proposed CNN (Figure 4) follows: Firstly, the images are passed
into the convolutional layer, the normalized output of which is then passed on to the
pooling layer. This layer collects data sets from the convolutional layer and samples the
output of a result from the selected ones. After a plurality of subsequent convolutional and
pooling layers, the final fully connected layers are utilized. The CNN weights are obtained
through the back-propagation method. In order to apply the above procedure, the Keras
image segmentation framework’s vgg_unet CNN was employed [30].
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Layer 5

Pooling
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CNN Training

Pre-Processing

Figure 4. CNN architecture for water–land detection.

The CNN was trained over a sample of initially 1500 manually labeled real-world
images, which were augmented to a final dataset of 6000 images. The data were gathered
in the form of video frames obtained by manually flying the octorotor above aquatic
environments. Approximately 10% of the images were used as a validation set, while the
rest were utilized for training. The algorithm converged to over 99% accuracy on the test
set in 10 training epochs. An example of the output of the trained CNN is depicted in
Figure 5.

It is evident that the success rate and the accuracy of the CNN after training is heavily
dependent on the quality of the employed data, i.e., the quality of the images, the accuracy
of the labels, as well as the surrounding environmental conditions. While we achieved a
highly satisfactory performance in the context of the conducted experimental tests (see
Figure 5 for an indicative example), augmenting the capabilities of the proposed CNN
architecture is still a valid future direction. The aspects upon which performance can be
increased mainly concern the generalization capabilities of the CNN to different bodies of
water, weather conditions, etc.

Figure 5. Images from the on-board camera combined with the CNN output. The red pixels represent
the pixels which the CNN classifies as water pixels. The raw output of the NN consists of a binary
mask in which the respective water pixels are highlighted.

4.2.2. Visible Water Maximization Algorithm

In order to visually survey an area of a water body, a framework for maximizing the
visible (to the drone’s downwards-looking camera) water is formulated. Let I ⊂ R2 denote
the 2D image plane. Then, this image consists of two parts, namely Iw ⊆ I denoting the
“water part” of the image and Il ⊆ I denoting the “land part” of the image. Note that
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Iw
⋃
Il = I and Iw

⋂
Il = ∅. We then consider that the drone follows exactly a setpoint

velocity control law, i.e., a single integrator model:

ṗ = Iv, (9)

where p = [px, py]T ∈ R2 denotes the drone’s longitudinal and lateral position in an
inertial frame of reference (state vector), and Iv ∈ R2, Iv = [vx, vy]T denotes the planar
(longitudinal–lateral) velocity control (control–input vector). This assumption is very
accurate for relatively small velocities. Along with the fact that normally, the autopilots of
relevant multi-rotor aerial vehicles are designed to take such commands as input, while
ensuring stability and safety of the vehicle, such an assumption is in practice not only
useful but also not limiting in its scope. Furthermore, it is evident that any lateral motion
of the drone will be the result of a roll or pitch rotation. The low velocity assumption is also
important in this regard, as the following analysis assumes an always downwards-looking
camera, which is violated by large rotations in the aforementioned axis. Alternatively, a
gimbal can be used to ensure proper orientation of the camera frame. In order to maximize
the water that is inside the frame of the camera, we employ the following control law:

Iv = sw(p) ,
1
A
[
Sx(p), Sy(p)

]T , (10)

where
Sy(p) =

∫∫
Iw(p)

(
y− py

)
dA, Sx(p) =

∫∫
Iw(p)

(x− px)dA, (11)

where A denotes the area in the image frame that is occupied by water. The above expres-
sion essentially means that we input the position vector of the centroid of the water area Iw
with respect to the position of the drone. This means intuitively that the drone will tend
to move toward the centroid of the water part of the image, which, under mild assump-
tions, will result in minimizing the area of land that is visible to the drone evidently, thus
maximizing the respective area of visible water. We will prove this assertion in Theorem 1.

For the purposes of the following proof, let the water–land boundary be denoted by a
function, which is assumed to be an one-to-one mapping from the x to the y coordinates, i.e.,
Sp(x) : R→ R ∈ C (it is evident how the function of the land–water boundary depends
on the position of the drone) expressed with respect to an inertial frame of reference. The
proof follows along the same lines even for functions that do not satisfy this assumption by
performing strategic cuts on the function on its critical points and breaking up the relevant
integrals (this analytical definition can be applied even if the boundary is not a function,
i.e. not right–unique, but it can be expressed as such via a rotation of the image plane
in the xy plane (see Figure 6)). This process is left out for the sake of brevity; however,
it would be imperative to execute such “cuts” in order to properly define the piece-wise
inverse functions of the monotonic sections of the respective function for calculating the
double integrals of Equation (11). We thus limit ourselves to monotonic ones. One final
assumption is that some water is visible in the camera frame upon the execution of the
control law (10). The following Theorem 1 proves that the control scheme (10) stabilizes the
drone in a position where the visible water to the on-board camera is maximized.

Figure 6. Example of a properly defined boundary function (left) and an improperly defined one
that can be fixed through a simple rotation (right).
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Theorem 1. Consider a coordinate system centered at the camera frame (see Figure 7), which
is assumed to be identical to the drone’s position, namely p ∈ R2. Then, let S(x) , S(x; p) :
[−cu, cu]→ [−cv, cv] ∈ C1 denote a function that describes the land–water boundary with respect
to the above frame, where cu, cv are the halved dimensions of the image plane in [x, y] respectively
(appropriately scaled with respect to the height of the drone to reflect physical, real-world dimensions).
We further assume that the characteristics of the shore are such that the body of water is larger than
the respective land mass, such that no land encircles a part of water (this assumption is rather mild;
the applications at which this framework is targeted would most likely involve large bodies of water,
with the drone operating at such heights that even a small lake would satisfy the above assumption.
However, if this assumption does not hold, then the drone would still converge with the water body
at its center; thus, the monitoring process could still be considered successful). Then, the dynamical
system (9) under the control law (10) is asymptotically stable.

Figure 7. Figure of Theorem 1. The relevant frames are depicted along with the function that
represents the water–land boundary. The components of the drone’s position vector are also depicted.

Proof. Consider as a Lyapunov candidate the following function:

L(p) = A(p) =
∫∫

Il(p)
dA. (12)

This function essentially expresses the measure of area of the land part of the ground
that the drone observes and is always positive. It is furthermore zero only when the drone
observes nothing but water. Thus, it is a valid Lyapunov candidate for the goal in mind,
i.e., that the drone only observes water upon convergence. We will now show how the time
derivative of the above Lyapunov candidate is negative, except for point(s) of convergence.
We have:

L̇ = ∇p AT ṗ

= ∇p ATsw(p).
(13)

We will prove that
L̇ < 0, (14)

for points that do not result in the drone observing solely water by showing that the vectors
∇p A and sw(p) are pointing toward opposite directions. Firstly, note that the centroid of
the land area, denoted by sl(p) is contradirectional to sw(p), owing to the centroid of the
whole image being at the origin of the chosen frame of reference and the fact that the two
areas combined form the image. To see this, note that given the centroids of two shapes
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s1, s2 ∈ R2 in a given coordinate frame, then the centroid s1,2 of the shape resulting from
combining the two former ones is given by:

s1,2 = A1s1+A2s2
A1,2

, (15)

where A1, A2, A1,2 denote the areas of the respective shapes. Since in our case, the coordi-
nate frame is centered at the center of the camera frame, which coincides with the centroid
of the rectangular image, then:

sl,w = Awsw(p)+Alsl(p)
Al,w

=~0⇒

sw(p) = − Al
Aw

sl(p),
(16)

which shows that the two centroids are contradirectional (see Figure 8).

Figure 8. The centroids of the water–land areas.

We now only have to prove that ∇p A and sl(p) are codirectional. Assume that the
function S(x) is monotonically increasing (see Figure 7). The proof for a monotonically
decreasing function follows the same procedure. We have:

A(p) =
∫∫

Il

dA =
∫ px+cu

px−cu
Sp(x)− (py − cv)dx, (17)

where Sp(x) is the function S(x) expressed with respect to the inertial frame of reference.
Thus:

∇p A = [Sp(px + cu)− Sp(px − cu),−2cu]
T = [S(cu)− S(−cu),−2cu]

T . (18)

Furthermore, expressed at the new frame of reference (camera frame center), the

coordinates of sl(p) =
[
sl,x, sl,y

]T
are:

sl,y(p) = 1
2

∫ cu

−cu
S2(x)− c2

vdx, (19)

which by applying the mean value theorem becomes:

sl,y(p) = 1
2

[(
S2(χ)− c2

v

)]
2cu, (20)

where χ ∈ [−cu, cu], and

sl,x(p) = 1
2

∫ S(cu)

S(−cu)
c2

u −
(

S−1(y)
)2

dy, (21)

which by applying the mean value theorem becomes:

sl,x(p) = 1
2

[
c2

u −
(

S−1(ξ)
)2
]
[S(cu)− S(−cu)], (22)
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where ξ ∈ [S(−cu), S(cu)]. Putting all of the above together, we get:

∇p ATsl(p) = 1
2 [S(cu)− S(−cu)]

2
[

c2
u −

(
S−1(ξ)

)2
]
+ 1

2

[
c2

v − S2(χ)
]
4c2

u, (23)

which, since S−1 : [−cv, cv] → [−cu, cu] and S : [−cu, cu] → [−cv, cv], is positive as a sum
of positive terms. Furthermore, this quantity is zero only when the volume defined by the
bounds [−cu, cu], [−cv, cv] and S(x) is zero. This means that the vectors ∇p A and ṗ are
contradirectional, since ∇p A and sl(p) are codirectional. Thus, L̇ < 0, and the system (9)
under the control law (10) is asymptotically stable under the proposed assumptions. This
concludes the proof.

An example of a Lyapunov function used in the above proof is depicted in Figure 9.

Figure 9. Example of a Lyapunov function of Theorem 1.

Evidently, the drone will converge to any part of the state space where the Lyapunov
function is equal to zero, which might lead to it drifting indefinitely away from the shore
due to external disturbances. This will be avoided through the high-level controller, which
will stop the execution. One can visualize the drone’s motion under the proposed control
law as rolling down the hill of the Lyapunov function. It becomes thus evident that the
visible water will be maximized. Note that this analogy is not exact, as the drone will not
follow exactly the negated gradient of the Lyapunov function; however, we have shown
that it will always move toward the same direction as the aforementioned gradient.

4.3. Autonomous Landing Module
4.3.1. Landing Area Detection Algorithm

Having presented the parts of the framework that address the execution of the main
mission, we now address the landing problem. For an UAV to land autonomously, while
a 2D point might be given by a pilot, the vehicle should examine the topology of the
area surrounding the aforementioned point and decide where to land based on the given
topology. We assume that prior to starting the landing procedure, the operators of the
drone’s ground control station have indicated an area for the drone to inspect for landing in
the form of a way-point. This area will most likely be in their near vicinity and additionally
close to the drone’s take-off area (being near the ground control station). Therefore, we
omit geological considerations for developing the autonomous landing module and focus
primarily on the geometry of the landing spot.

In order to accomplish the above, first, an area of interest around the provided way-
point is selected. Then, the latter is discretized into a grid of cells corresponding to points
on the ground. In order to determine how fit a specific area is for landing, an appropriate
score is formulated where the cells with higher scores are considered more fit for landing.
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In this way, an appropriately landing area (according to the drone’s footprint) is defined on
the fly.

To accomplish this, height measurements need to be acquired in real time. This is
achieved by exploiting the Depth Image (Figure 10a) provided by the on-board stereo-
camera, but it can be obtained through any other method. Once a Depth Image Dn(px, py)
(where the tuple (px, py) denotes the drone’s position in an inertial frame of reference and
the index n is an instant of measurements) is obtained, a procedure of post-processing
is followed.

(a) (b)

(c)
Figure 10. (a) Depth Image. (b) Score Image. (c) Occupancy Grid, the best landing spot (marked as
green sphere) and the pose of the vehicle (red arrow).

More precisely, the Depth Image is a 2D matrix with dimensions W×H, where WandH
are the width and the height of the image. At each pixel (u, v), where u = 0, · · · , W − 1 and
v = 0, · · · , H− 1, a distance value z(u, v), expressed in meters, is stored. It should be noted
that some elements of the matrix may be characterized as +∞ or−∞ in case that the objects
of the corresponding pixels are respectively too far or too close to the camera. Additionally,
due to visual occlusions, the estimation of depth may be infeasible or highly inaccurate
and, hence, the values of pixels with low confidence are marked as Not a Number (NaN).

In order to evaluate the appropriateness of a pixel for landing, the neighborhood
around the query pixel (u, v) is examined. Specifically, a window of size (K + 1)× (K + 1)
is utilized so as to determine the region of interest (ROI) around each pixel (u, v). It is
mentioned that the size of the window is highly related to the size of the UAV and is
therefore chosen such that the cost of each pixel reflects the ability of the drone to land in
the respective surrounding area. The suitability of the surface is quantified by computing
the standard deviation σ(u, v) of the z-coordinates of the (K + 1) · (K + 1) pixels which
constitute the aforementioned region of interest:

z(u, v) =
1

(K + 1) · (K + 1)

u+ K
2

∑
i=u− K

2

v+ K
2

∑
j=v− K

2

z(i, j) (24)
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σ(u, v) =

√√√√√ 1
(K + 1) · (K + 1)

u+ K
2

∑
i=u− K

2

v+ K
2

∑
j=v− K

2

(z(i, j)− z(u, v))2 (25)

As for the pixels that lie next to the borders of the image, a window of smaller size is
considered. Additionally, the percentage π(u, v) of finite distance values, i.e., values which
are not marked as +∞, −∞ or NaNs, is computed inside the region of interest in order to
check the validity of the depth information. Regions of interest with percentage π(u, v)
less than a threshold value πmin are discarded.

The related score of the query pixel is eventually normalized to [0, 1], where score 0
indicates inappropriate areas for landing while 1 indicates appropriate ones, according to
the following equation:

C(u, v) =


e−σ(u,v) π(u, v) > πmin

0 π(u, v) ≤ πmin

(26)

After post-processing all the pixels of the Depth Image, a new image, namely Score
Image (Figure 10b), Cn(px, py) is constructed, where the score values are stored at each
time instant n, and a bilateral filter is then applied so as to smooth the Score Image while
preserving edges. In order to globally store the associated information, the above scores are
matched to the corresponding cells of the Occupancy Grid (Figure 10c), which is expressed
with respect to the inertial frame. The matching is performed by exploiting the intrinsic
camera parameters, particularly the principal point cu,cv and the focal lengths fx, fy in
the u and v directions, respectively, and the current position Ipn and orientation φn, θn, ψn
of the UAV. The aforementioned scores are ultimately averaged over the whole set of
measurements for each cell:

Cavg
n (cx, cy) = Cavg

n−1(cx, cy)
Nn(cx, cy)− 1

Nn(cx, cy)
+ Cn(cx, cy)

1
Nn(cx, cy)

(27)

where the tuple cx, cy denotes the respective cell of the pixel u, v; Nn(cx, cy) is the number
of costs computed through the respective observations up to the n-th measurement instant
for the above cell and Cn(cx, cy) denotes the score for the respective cell obtained at the
n-th measurement instant.

Finally, the drone selects the best area to land by finding the cell of the grid that has
the maximum score and matching it to a physical 2D position:

planding = p(cl
x, cl

y), (28)

where
(cl

x, cl
y) = arg{max

cx ,cy
{C(cx, cy)}} (29)

4.3.2. Landing Execution Algorithm

As far as the execution of the landing maneuver is concerned, a model predictive
controller (MPC) is formulated in order to complete safely the landing procedure. More
precisely, the objective of the control scheme is to minimize the error in position between the
vehicle and the aforementioned detected landing location while, simultaneously, satisfying
the constraints imposed by the vehicle’s low-level velocity controller. The translational
kinematics of the multirotor is described by the equation: ṗx

ṗy
ṗz

 =

cosψ −sinψ 0
sinψ cosψ 0

0 0 1

u
v
w

⇒ ṗ = Rz(ψ)
Bv (30)
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where p =
[
px py pz

]T ∈ R3 is the position of the vehicle, Bv =
[
u v w

]T ∈ R3 is
the velocity control input with respect to the body frame of the vehicle, ψ is the yaw angle
and Rz(ψ) is the rotation matrix around the z-axis of the inertial frame.

At each time instant t, a constrained optimization problem is solved by the MPC over
a finite horizon of N steps and, consequently, an optimal sequence of feasible control inputs(Bv∗t , · · · , Bv∗t+N

)
is derived, which minimizes the following weighted sum of accumulative

and terminal costs:

min
Bvt ,··· ,Bvt+N

N−1

∑
k=0

(‖pt+k − pdes‖2
Q + ‖Bvt+k‖2

R) + ‖pt+N − pdes‖2
P

subject to : pt+k+1 = pt+k + Rz(ψt+k)
Bvt+k · dt, k = 0, · · · , N − 1

pt = p(t)

Bvt ∈ U =

∀Bv ∈ R3 :

umin
vmin
wmin

 ≤ Bv ≤

umax
vmax
wmax


where dt is the sample time, pdes is the detected landing position and Q, R and P are
positive definite matrices which penalize the state error, the input and the terminal state
error, respectively. According to the receding horizon control principle, only the first
element Bv∗t of the optimal control sequence is applied to the vehicle, and the optimization
procedure is repeated at the next time instant t + 1, given the measured position pt+1, until
the successful landing of the vehicle.

4.4. High-Level Planner Module

We are now ready to discuss the function of the HLP in more detail. Having presented
the function of each module, the HLP decides which module is activated at each time
instance. The modules communicate with the HLP via Boolean flags, thus efficiently and
quickly passing on information pertaining to the state of their execution. The detailed
operation of the HLP is presented in the following Algorithm 1.

Algorithm 1 High Level Planner Algorithm

Initialization: WaypointList, LandingWaypoint;
for waypoint in WaypointList do

Activate Autonomous Navigation Module;
wait until waypoint is reached;
Activate Autonomous Exploration Module;
wait until visible water is maximized;

end
Activate Autonomous Navigation Module for LandingWaypoint;
wait until LandingWaypoint is reached;
Activate Autonomous Landing Module;

5. Results
5.1. Simulation

In order to validate the performance of the proposed framework on a first level and to
ensure the smooth and efficient transition to real-world experiments, rigorous simulation
studies are conducted. The simulator is based on the well-known Gazebo [31] and includes
highly realistic environments such as terrain heightmaps and water visual effects, which
allow the testing of image processing algorithms. An UAV, integrated with the ArduPilot
firmware, is used in the simulation scenario, thus allowing Software in the Loop (SITL)
simulations without including actual physical hardware.
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During the simulation scenario, a list of way-points is commanded and, afterwards, the
High-Level Planner Module is responsible for appropriately activating the remaining ones,
i.e., Autonomous Navigation, Exploration and Landing. An overview of the Simulation
Environment is depicted in Figure 11, while the performance of the framework is illustrated
in the relevant video https://youtu.be/5H2HhRz6Oqg (accessed on 25 May 2022).

Following the validation of the proposed framework in a realistic simulation envi-
ronment (Gazebo-Ardupilot-SITL), real-world experiments are carried out in order to
evaluate the efficacy of each one of the modules, which comprise the overall framework, in
field conditions.

Figure 11. Overview of the simulator environment, along with the NN output (pure and overlayed
on the camera view) and a 3D plot of the way-points and multi-rotor’s trajectory.

5.2. Autonomous Navigation Experiments

During a water environmental emergency scenario, a UAV is utilized in order to either
realize water sampling or obtain visual feedback for real time or post evaluation of the
contaminated aquatic area. Hence, the First Responders command a mission by inserting a
list of points, which the UAV should visit, into a common Ground Control Station, and the
Autonomous Navigation module is responsible for navigating the vehicle to the desired
positions while simultaneously avoiding unexpected and previously unknown obstacles.
Although the space above the water level is obstacle-free in most situations, the module is
tested in challenging environments where the presence of multiple and dense obstacles
jeopardizes the safe completion of the operation.

The first experiment is realized in an outdoor area (Figure 12a) where various obstacles
such as rows of trees and street light poles exist and impose difficulties on the safe execution
of the mission. A mission, consisting of f our way-points, is planned, using the Mission
Planner [32] Ground Control Station (Figure 12b), in such a manner that the UAV encounters
obstacles during its transition from one desired position to another. By exploiting the depth
measurements obtained by the forward-looking stereocamera, previously unseen obstacles
are detected and a local costmap is constructed in real time (Figure 12c). The local planner
continuously produces suitable velocity commands which restrict the navigation of the
vehicle to the safe areas of the costmap and, eventually, the target mission is executed
without any undesirable collision, as depicted in Figure 12d.

https://youtu.be/5H2HhRz6Oqg
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(a) (b)

(c) (d)

Figure 12. An overall view of the Autonomous Navigation Experiment I. (a) The environment where
Navigation Experiment I is conducted. (b) The desired mission of Navigation Experiment I depicted
in the Ground Control Station. (c) The costmap which is constructed in real time according to the
measurements of the stereocamera during the Navigation Experiment I. (d) The 2D trajectory of the
vehicle and the corresponding desired waypoints of Navigation Experiment I.

The second experiment is more realistic, compared to water contamination emergency
situations, since the vehicle flies at a higher altitude and should avoid a high dense tree,
which is frequently found within the vicinity of aquatic environments, e.g., lakes and rivers
(Figure 13a). In order to evaluate the performance of the Autonomous Navigation module,
two desired locations are selected with the obstacle lying between them, as illustrated in
Figure 13b. Owing to the existence of an on-board stereocamera, the obstacle is successfully
detected and inserted into the costmap (Figure 13c). Re-planning is performed in real time
so as to guarantee the safe completion of the navigation task, as shown in Figure 13d.

Both experiments are depicted in the following videos https://youtu.be/FN1uv-
WXDho (accessed on 25 May 2022), https://youtu.be/JaP5kiNRwRA (accessed on 25
May 2022).

https://youtu.be/FN1uv-WXDho
https://youtu.be/FN1uv-WXDho
https://youtu.be/JaP5kiNRwRA
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(a) (b)

(c) (d)

Figure 13. An overall view of the Autonomous Navigation Experiment II. (a) The environment where
Navigation Experiment II is conducted. (b) The desired mission of Navigation Experiment II depicted
in the Ground Control Station. (c) The costmap which is constructed in real time according to the
measurements of the stereocamera during Navigation Experiment II. (d) The 2D trajectory of the
vehicle and the corresponding desired waypoints of Navigation Experiment II.

5.3. Autonomous Exploration Experiments

Consider the case in which the First Responders select a way-point in the Ground
Control Station in order to execute a sampling procedure or perform water monitoring, and
the UAV navigates toward this desired position with the Autonomous Navigation module.
However, due to mismatches between the map provided by the Mission Planner and the
current actual environment, the image obtained by the on-board downward-looking camera
contains both water and ground surfaces. Since the aim of the mission is the sampling or
the monitoring of as large a water area as possible, the Autonomous Exploration module is
deployed, which is responsible for moving the vehicle until only water is detected.

In order to evaluate the real-time classification of ground and water surfaces, using
CNNs, and the capability of the controller to maximize visible water, two experiments are
carried out with the orientation, i.e., the yaw angle, of the UAV being initialized arbitrarily.
Despite the reflection of sunlight and the existence of rocks and sea waves, the detection
of the water surface is achieved uninterruptedly with the CNNs (Figures 14a and 15a).
Regarding the performance of the controller, the time evolution of the percentage of “water
pixels” in the image plane is depicted in Figures 14b and 15b. The controller exhibits
robustness to the waves, due to which a non-monotonic evolution of the percentage is
observed, and, eventually, the latter converges to 100% within a few seconds. In both
cases, the movement of the vehicle is perpendicular to the wave front regardless of the
initial orientation.
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Figure 14. Autonomous Exploration Experiment I. (a) An overall view of the experiment. (b) Time
evolution of the percentage of “water pixels”.

The performance of this module is better illustrated in the relevant videos https:
//youtu.be/xn2X1tm9yKk (accessed on 25 May 2022), https://youtu.be/zPOg5yJulTg
(accessed on 25 May 2022).
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(b)

Figure 15. Autonomous Exploration Experiment II. (a) An overall view of the experiment. (b) Time
evolution of the percentage of “water pixels”.

5.4. Autonomous Landing Experiments

Since an autonomous solution is presented, the landing procedure is incorporated
into the overall framework and, hence, time and human resources are allocated to other
crucial actions during a water contamination emergency situation. After the completion
of the commanded mission, the Autonomous Landing module is employed in order to
ensure the safe fulfillment of the operation and, hence, the collection of significant data,
e.g., water samples, images or video files. By processing the depth measurements of the
downward-looking stereocamera, an appropriate area is detected above the final waypoint
of the mission and, subsequently, a Model Predictive Controller is deployed in order to
efficiently drive the vehicle toward the detected location.

The performance of the Autonomous Landing module is examined in two outdoor
environments where the vehicle should autonomously land in the presence of sparse
obstacles, vegetation and inclined surfaces, as illustrated in Figures 16a and 17a. In both
cases, an appropriate landing spot is identified based on the respective cost maps, which
are built in real time (Figures 16b and 17b). The response of the MPC scheme and the
evolution of the MPC cost function with respect to time are depicted in Figures 18 and 19.
It is evident that the performance of the controller is satisfactory and, hence, the landing
maneuver is executed successfully during both experiments.

The experiments are also presented in the following videos https://youtu.be/ZVU_
mZ6rZYY (accessed on 25 May 2022), https://youtu.be/_d4rWiSVFug (accessed on 25
May 2022).

https://youtu.be/xn2X1tm9yKk
https://youtu.be/xn2X1tm9yKk
https://youtu.be/zPOg5yJulTg
https://youtu.be/ZVU_mZ6rZYY
https://youtu.be/ZVU_mZ6rZYY
https://youtu.be/_d4rWiSVFug
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(a) (b)
Figure 16. The outdoor environment of the Autonomous Landing Experiment I and the respective
costmap. (a) Image captured by the on-board camera. (b) Occupancy Grid, built in real time, the best
landing spot (marked as green sphere) and the pose of the vehicle (red arrow).

(a) (b)
Figure 17. The outdoor environment of the Autonomous Landing Experiment II and the respective
costmap. (a) Image captured by the on-board camera. (b) Occupancy Grid, built in real time, the best
landing spot (marked as green sphere) and the pose of the vehicle (red arrow).
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Figure 18. The position of the vehicle with respect to the inertial frame, compared to the desired
landing spot, and the respective MPC cost function during Autonomous Landing Experiment I.
(a) Position x. (b) Position y. (c) Position z. (d) MPC Cost Function.
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Figure 19. The position of the vehicle with respect to the inertial frame, compared to the desired
landing spot, and the respective MPC cost function during Autonomous Landing Experiment II.
(a) Position x. (b) Position y. (c) Position z. (d) MPC Cost Function.

6. Conclusions

We have presented a complete, integrated motion planning and control framework
that is based on visual feedback for efficiently and effectively monitoring and surveying
bodies of water using a UAV. Our framework was developed by combining existing robust
solutions in the state-of-the-art of the robotics field, with novel control architectures, that
were introduced where necessary, in order to fulfill the goals set out in the problem descrip-
tion. We conclude that after rigorous simulations and real-world field experiments, our
framework completes the UAV’s mission objectives successfully. The modules presented
herein can be employed either as a complete framework or independently, thus providing
a modular integrated scheme that can be utilized for various water-related tasks. Addi-
tionally, with minor modifications, the presented framework can be employed for other
monitoring scenarios, besides water-related ones.

Concerning the water monitoring problem, a very important aspect relates to the
acquisition of water samples from an aquatic area of interest. Future promising directions
include the integration of various measuring devices on the platform along with the rel-
evant necessary control algorithms in order to expand the capabilities of the proposed
solution. More specifically, we intend on incorporating a cable-suspended water sampling
mechanism into the UAV’s sensor suite and on developing suitable position control algo-
rithms so as to achieve the precise stabilization of the vehicle above the sampling location
in the presence of environmental disturbances induced by the water flow.

Finally, an aspect of the landing module that we intend to improve upon relates to
considering the geology of the region of interest that the drone examines in order to find an
appropriate landing spot. This can be treated through additional classes added to the CNN
(which is employed for water detection in this work) such that different soil types can be
visually identified and assessed so as to be taken into account during the decision process.
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