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Abstract: The Assiniboine River Basin (ARB) is subject to an exceptionally variable precipitation
regime of the Canadian Prairies, ranging between record droughts and unprecedented flooding in
just the past decade. To assess the impact of a changing climate on hydroclimate variability in the
ARB, we used the bias–corrected simulations from the Canadian Regional Climate Model (CanRCM4)
to drive MESH model for two 60–year periods, a historical baseline (1951–2010) and future projection
(2041–2100), under the Representative Concentration Pathway (RCP) 8.5 to simulate ARB flows at
eight hydrometric stations. The precipitation is projected to increase in every season (~10–38%)
except for summer (~−1–−5%). Minimum winter and maximum summer temperatures have the
largest seasonal trends, increasing by 2–3 ◦C in the near future (2021–2050) and 5–6 ◦C in the far
future (2051–2080). These climate changes produce higher winter river flows while peak runoff
shifts by several weeks to earlier in the year. There is a shift in the magnitude and timing of extreme
water levels. The ensemble of climate projections from a single model and one RCP to the variability
and uncertainty in the future hydrology supports adaptation planning in the industrial sectors of
Saskatchewan’s economy.

Keywords: ensemble modeling; land surface hydrological model; climate change; extreme runoff change

1. Introduction

The security and resiliency of industrial water supplies is a concern in the Prairie
Provinces because agriculture, energy generation, oil processing, and solution potash min-
ing depend on secure and reliable water supplies in a region characterized by a permanent
water deficit (in average years), where temperatures are rising at 2–3 times the global
rate [1]. The impacts of this warming in western Canadian include a shift in the distribution
of water supplies and an increase in the frequency and magnitude of extreme hydroclimatic
events—flooding and drought [2]. Municipalities have been preparing for these climate
change impacts; however, their consumptive water use is relatively small compared to the
demands of major industries. Whereas present industrial water allocations are sufficient
under historically average weather conditions, long-term climatic variability and climate
model projections are cause for concern. Much of the impact of climate change on water
is the potential for deficits or excess and amplified variability and extremes. Given the
potential for prolonged water deficits in a future warmer climate, there is no guarantee that
the industrial water allocation will have sufficient priority to be honored. Saskatchewan,
unlike Alberta, does not have “a first in time, first in right” allocation system. Provisions in
The Water Security Agency Act give the WSA and Saskatchewan government the respon-
sibility for determining water sharing or allocation during times of shortage. Therefore,
while a particular corporate user may have an allocation, in times of shortage, they may
not receive its allocation. End users should build resiliency into their operations to be able
to handle forecasted shortages.

One of the most consistent and challenging climate change scenarios for western
Canada is the amplified severity of both extreme rainfall and drought [3–5]. Another

Sustainability 2022, 14, 6487. https://doi.org/10.3390/su14116487 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14116487
https://doi.org/10.3390/su14116487
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-8739-545X
https://orcid.org/0000-0003-1607-2028
https://doi.org/10.3390/su14116487
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14116487?type=check_update&version=2


Sustainability 2022, 14, 6487 2 of 18

projected climate change with hydrological consequences is less snow as a proportion of
annual precipitation and as water stored as snow; however, the hydrological impacts of
these climate changes differ between the two distinct sources of runoff: the eastern slopes
of the Rocky Mountains and the runoff shed from prairie uplands. The impact of climate
change on the mountain snowpack and glacier ice is a relatively well–researched topic.

The large mountain–sourced rivers (i.e., North and South Saskatchewan, Peace–
Athabasca) are the major urban and industrial water supply in the Prairie Provinces.
Prairie streams, on the other hand, supply to many smaller municipalities and some indus-
tries. The Assiniboine River Basin (ARB) is the largest prairie watershed. Encompassing
the geographic center of North America, the ARB has among the most continental, and
therefore variable, hydroclimates on earth. The headwaters are in the sub–humid landscape
of southern Saskatchewan. Under these climate conditions, the Assiniboine River and its
tributaries differ from the mountain-sourced rivers not only in terms of water yield, but also
the range of flows. A large seasonal and inter–annual variability, and extensive regulation
of surface hydrology, present technical challenges for modeling prairie hydrology and its
response to climate change.

The objective of this study was to assess the potential impacts of climate change on
surface water quantity and timing in the ARB. This study fills a gap in our understanding
of the impacts of climate change on the hydroclimate of the water supplies over a relatively
large area in the Northern Great Plains. Whereas the dominant industrial activity is dryland
agriculture, the energy industry is a significant consumer of water in the ARB. There is also
a future potential for solutional potash mining and expanded irrigation.

Several previous studies have examined the response of streamflow to climate change
in the ARB, but not with the scope of the research described here. Shrestha et al. [6,7] and
Muhammad et al. [8] considered only the upper reaches of the ARB, above Kamsack and
the Shellmouth Reservoir, respectively. All previous research, from Stantec et al. [9] to, most
recently, Dibike et al. [10], is coupled with the SWAT hydrological model with climate data
from one to several climate models. Our study takes advantage of new high-resolution
data products and the MESH hydrological model to examine historical and projected river
flow at eight hydrometric stations in the ARB. The climate forcing includes the gridded and
bias–corrected WFDEI–GEM–CaPA meteorological dataset for calibrating and validating
the MESH model and bias–corrected climate projections from an ensemble of 15 runs of the
Canadian Regional Climate Model (CanRCM4). The use of an initial–condition ensemble
from a single climate model controls the uncertainty that arises from the use of different
models and produces an ensemble of streamflow projections that reflect the internal natural
variability of the regional hydroclimate.

2. Study Area

The Assiniboine River Basin (ARB) extends over an area of 162,000 km2 in southeastern
Saskatchewan, southwestern Manitoba, and northwestern North Dakota. It is comprised
of the Souris, Qu’Appelle, and Assiniboine sub–basins. Elevation across the basin varies
between 296 and 877 m above sea level (Figure 1). The land use is dominated by cropland
followed by grassland (pasture). Forests occurred on the eastern margin and as island
forests. The climate ranges from sub–humid continental in the east to semiarid in the
west. The total annual precipitation is ~453 mm and the mean annual temperature is
~3.8 ◦C. February (~20.6 mm) is the driest month and June (~81 mm) is the wettest month
in ARB. The hydrology of the ARB has large variability in annual stream flows, with peaks
occurring during the spring snowmelt and low flows during autumn and winter. The total
annual discharge at Holland hydrometric station ranges from 12,000 m3/s in the dry period
to above 50,000 m3/s in the flood season.
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Figure 1. (a) Location, river network, hydrometric stations, and elevations of the Assiniboine River 
Basin (ARB); (b) land cover classification of the ARB. 

In 2011, extreme flooding occurred across the entire basin. The City of Minot, ND 
evacuated 11,000 residents and the capacity of flood control infrastructure was surpassed. 
In 2014, a rain event on July 1st led to severe local flooding that exceeded the 2011 flood 
flows in some locations. In 2017, spring flooding was severe in the Souris River Basin in 
Manitoba. Due to the large variability in the flow of the Assiniboine River and high peak 
flows during the spring melt, major water control infrastructure (Shellmouth Dam near 
Russell and Portage Diversion at Portage la Prairie) has been constructed to provide future 
flood and drought protection in the catchment. 

3. Model and Data Sets 
3.1. MESH Land Surface Hydrological Model 

To model river flows in the ARB, and the impact of climate change, we used the Mo-
délisation Environmentale–Surface et Hydrologie (MESH–r1593) grid–based hydrological 
modeling system developedby Environment and Climate Change Canada (ECCC) [11]. 
MESH is an “open” community model and a component of the operational forecasting 
system within ECCC. It was originally derived from the University of Waterloo’s 
WATCLASS, which linked the land surface scheme CLASS with an existing flood fore-
casting model WATFLOOD. MESH has been widely applied in various studies of cold 
regions of Canada [11,12]. MESH primarily has three sets of modeling system: (1) different 
land surface schemes (LSSs) can be activated in MESH, such as The Canadian Land Sur-
face Scheme (CLASS v3.6) [13,14], or Soil–, Vegetation– and Snow (SVS) that simulates the 
energy and water balances (soil, snow, and vegetation) of the land surface forward in time 
from an initial starting point, making use of forcing data to drive the simulation at a 30-

Figure 1. (a) Location, river network, hydrometric stations, and elevations of the Assiniboine River
Basin (ARB); (b) land cover classification of the ARB.

In 2011, extreme flooding occurred across the entire basin. The City of Minot, ND
evacuated 11,000 residents and the capacity of flood control infrastructure was surpassed.
In 2014, a rain event on July 1st led to severe local flooding that exceeded the 2011 flood
flows in some locations. In 2017, spring flooding was severe in the Souris River Basin in
Manitoba. Due to the large variability in the flow of the Assiniboine River and high peak
flows during the spring melt, major water control infrastructure (Shellmouth Dam near
Russell and Portage Diversion at Portage la Prairie) has been constructed to provide future
flood and drought protection in the catchment.

3. Model and Data Sets
3.1. MESH Land Surface Hydrological Model

To model river flows in the ARB, and the impact of climate change, we used the
Modélisation Environmentale–Surface et Hydrologie (MESH–r1593) grid–based hydrologi-
cal modeling system developedby Environment and Climate Change Canada (ECCC) [11].
MESH is an “open” community model and a component of the operational forecasting
system within ECCC. It was originally derived from the University of Waterloo’s WAT-
CLASS, which linked the land surface scheme CLASS with an existing flood forecasting
model WATFLOOD. MESH has been widely applied in various studies of cold regions
of Canada [11,12]. MESH primarily has three sets of modeling system: (1) different land
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surface schemes (LSSs) can be activated in MESH, such as The Canadian Land Surface
Scheme (CLASS v3.6) [13,14], or Soil–, Vegetation– and Snow (SVS) that simulates the
energy and water balances (soil, snow, and vegetation) of the land surface forward in time
from an initial starting point, making use of forcing data to drive the simulation at a 30-min
time step; (2) lateral and overland hill–slope runoff of soil and surface water to the drainage
system with either of the algorithms: WATDRAIN hillslope parameterization [15] or the
probability distribution model–based RunOFf generation (PDMROF) algorithm [16]; and
(3) hydrological routing using the WATROUTE [17] routing scheme to provide streamflow
predictions on a gridded river network and routes the runoff through the basin drainage
system. The MESH model and all its newly developed components are further explained
in [12].

MESH Drainage Database

The drainage database is the core file for running MESH. This file contains the data
describing the stream network, eco–district distribution, elevation, land use, grid area,
channel slope, etc. A 10 km MESH drainage database for the ARB was constructed using the
Green Kenue tool v3.4.3 developed by National Research Council Canada [18]. Details on
how to construct the MESH drainage database are available on the MESH community page
(https://wiki.usask.ca/display/MESH/Preparing+the+drainage+database+file (accessed
on 31 March 2022). The ARB drainage database consists of 1510 grid cells or grouped
response units (GRUs) and nine land use CLASS types. To reduce the model runtime, we
applied the polishing method to the ARB drainage database, removing a small fraction
of land use tiles from GRUs. A GRU–based approach combines regions with similar
hydrological behavior.

3.2. Hydrological Data

ARB streamflow was modeled at eight different hydrometric stations to capture the
seasonal flow dynamics throughout the catchment (Figure 1a). Natural or naturalized flow
data are not available for the ARB, except for the gauge record at Sturgis in the headwaters
of the Assiniboine River. The Water Security Agency (Saskatchewan) provided daily records
of unregulated flow for the Sherwood and Westhope hydrometric stations in the Souris
River sub–basin and the Welby hydrometric station in the Qu’Appelle River sub–basin.
These recorded flows have been adjusted for flow regulations using the methodology
defined in [19] and are important to calibrate the MESH model using naturalized flows.
The locations and drainage area of the eight streamflow monitoring stations, located both
along the mainstream and on tributaries, are given in Table 1. The long–term hydrological
flows used in this study are freely available at the HYDAT database, Water Survey of
Canada website from 1930 to 2021.

Table 1. Hydrometric stations used for the MESH land surface hydrological modeling. Source:
HYDAT database, Water Survey of Canada. The station IDs with * signs have unregulated flows.

Sr # Station ID Station Name Latitude Longitude Drainage
Area (km2)

1 05MH005 Assiniboine River near Holland 49◦41’55.1” N 98◦53’22.4” W 160,000
2 05ME006 Assiniboine River near Miniota 50◦6’38.2” N 101◦2’16.6” W 84,200
3 05MD004 Assiniboine River at Kamsack 51◦33’53.6” N 101◦54’59.6” W 13,000
4 05MC001 * Assiniboine River at Sturgis 51◦56’23.0” N 102◦32’49.0” W 1930
5 05JM001 * Qu’Appelle River near Welby 50◦29’28.6” N 101◦33’30.8” W 50,900
6 05NG001 Souris River at Wawanesa 49◦35’49.0” N 99◦40’43.1” W 61,100
7 05NF012 * Souris River near Westhope 48◦59’47.0” N 100◦57’29.0” W 43,700
8 05ND007 * Souris River near Sherwood 48◦59’24.0” N 101◦57’28.0” W 23,100

3.3. Forcing Data
3.3.1. Historical Forcing Data

The MESH hydrological model was forced with the ARB masked data of historical
(1979–2016) gridded WFDEI–GEM–CaPA meteorological data set [20,21]. The drainage area

https://wiki.usask.ca/display/MESH/Preparing+the+drainage+database+file


Sustainability 2022, 14, 6487 5 of 18

of the ARB was masked out for the seven forcing variables (incoming shortwave radiation,
incoming longwave radiation, precipitation rate, air temperature, wind speed, barometric
pressure, and specific humidity) required to run the MESH land surface hydrological
model. The WFDEI–GEM–CaPA data set is a combination of the forcing variables from the
EU WATCH ERA–Interim reanalysis (WFDEI), Global Environmental Multiscale (GEM)
atmospheric model, and the Canadian Precipitation Analysis (CaPA). A bias–correction
methodology of multivariate bias correction algorithm (MBCn) [22] was performed to bias
correct the WFDEI forcing data against GEM–CaPA at 3 h × 10 km resolution during the
overlapping period (2005–2016), and hindcasting was performed back to 1979 for the final
WFDEI–GEM–CaPA product. The full details on how these data are prepared for the MESH
model community are described in [20,21].

3.3.2. Future Forcing Data

In this study, we have used an ensemble (15 initial–condition) of simulations from the
Canadian Regional Climate Model version 4 (CanRCM4) under the Representative Concen-
tration Pathway (RCP) 8.5 high emission scenario [23] driven by the historical + RCP8.5
GCM ensemble of CanESM2. CanRCM4 simulations cover the North American Domain
defined by the CORDEX project from 1951 to 2100. The raw three–hourly 15–member
ensemble of medium resolution (0.44◦) from 1951 to 2100 was provided by ECCC [23] and
bias–corrected using the MBCn methodology and historical gridded forcing data WFDEI–
GEM–CaPA by Asong et al. [20]. The resulting bias–corrected data set at resolutions of
3–hourly and 10 km is similar to our historical forcing data set and is a consistent set
of intra–model climate projections suitable for large–scale uncertainty MESH modeling
and constructing future climate scenarios. The full set of data is freely available from the
Federated Research Data Repository [21].

3.4. Statistical Analysis

To detect the trends in CanRCM4 mean forcing data (maximum temperature (Tmax),
minimum temperature (Tmin), and precipitation (Pr)) as well as in the MESH model
output runoff (seasonal and annual) we have used the non–parametric Mann–Kendall
(MK) test and Sen’s slope estimator. The MK statistic (S), normalized test statistics (Z), and
measure of the probability (p-value) were calculated for each set of climate data and for the
annual and seasonal runoff from 1951 to 2100. Sen’s slope performs better compared to the
linear regression where the test is not affected by the number of outliers and data errors. A
positive S value indicates an upward trend, whereas a negative value indicates a downward
trend; however, the associated probability (p-value) represents the significance of the trend.
To remove the autocorrelation effects from the time series, we have used the bootstrap
sampling approach (similar to pre–whitening). Furthermore, for evaluating “Goodness–of–
Fit” measures of runoff for simulated flows, the Nash–Sutcliff efficiency (NSE), natural log
of NSE (lnNSE), and percentage of model bias (PBIAS) were calculated for MESH model
assessment. The extreme values were analyzed using the probability density function (PDF)
and their mean, skewness, and tails were compared for the differences. The time series and
scatter plots are also analyzed for comparison of the results.

4. Results
4.1. Climate Projections

In this section we are analyzing the changes in temperature and precipitation and
their extremes to understand the ongoing future impact of climate change on the ARB and
its consequences for changes in the dynamics of ARB hydrology and likely shifts in the
snowmelt period. For long–term comparison of ARB climatology (60 years) we define the
baseline period from 1951 to 2010 and the future period from 2041 to 2100. However, the
historical runs in CMIP5 are from 1850 to 2005, since the CanRCM4 downscaled data are
only available from 1951, the selected 60 years are up to 2010. The last 5 years are from
the future projection, but we are adding in the historical period to balance out our data
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comparison. For the 30–year period comparison, the baseline is (1961–1990), near future is
(2021–2050), and the far future is (2051–2080).

4.1.1. Projected Changes in Near and Far Future Climates

We examined the ARB ensemble of 15 initial–condition CanRCM4 (RCP 8.5) for
the mean annual and seasonal differences in temperature and precipitation between the
baseline period (1980–2010) and near (2021–2050) and far (2051–2080) future. Figure 2
shows scatter plots of the 15–member ensemble run for the mean annual and seasonal
climate changes. The intra–model variability in mean annual precipitation ranges from 4
to 18% in the near future and from 12 to 28% in the far future. Thus, considerably more
precipitation is expected in an average year although the possible range is relatively large.
Seasonal precipitation shows that only summer precipitation is decreasing by ~2% in the
near future and ~5% in the far future compared to the baseline scenario (1981–2010). There
will be an increase in the mean annual temperature of around ~2–4 ◦C in the near future
and ~4–5 ◦C in the far future. The largest increase is in the winter minimum temperatures
compared to other seasons around ~3–4 ◦C in the near future and ~6–7 ◦C in the far future.
The uncertainty of temperature and precipitation changes are much higher in winter, and
spring compared to other seasons.
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Figure 2. Mean and seasonal changes in temperature and precipitation from the 15–member ensemble
of CanRCM4 and the RCP8.5 scenarios for the ARB.

In Table 2, the ensemble mean shows that the winter minimum temperature and
summer maximum temperature are increasing at a much higher rate compared to the
other seasons. The precipitation change is higher in the far future (~21%) compared to the
near future (~11%). Similarly, an increase in the ensemble mean precipitation is higher
in spring and autumn compared to the summer and winter. Table 2 is a summary of the
annual and seasonal changes in minimum/maximum temperature, and precipitation for
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the mean ensemble of simulations from CanRCM4 (RCP 8.5) for the near (2021–2050) and
far (2051–2080) future for the ARB.

Table 2. Summary of annual and seasonal changes in minimum temperature (Tmin), maximum tem-
perature (Tmax), and precipitation (Precp) for the mean of the 15–member ensemble of initial condition
simulations from CanRCM4 (RCP8.5 scenario) for near (2021–2050) and far future (2051–2080) for the ARB.

Near Future (1961–1990)–(2021–2050) Far Future (1961–1990)–(2051–2080)

Tmin Tmax Precp (%) Tmin Tmax Precp (%)

Annual 3.15 2.85 12.13 5.48 4.89 22.64
Winter 4.05 2.96 16.46 6.95 5.02 32.45
Spring 2.22 1.92 24.96 4.16 3.66 44.75

Summer 3.35 3.62 −2.52 5.70 60.4 −5.30
Autumn 3.04 2.88 20.24 5.21 4.87 39.38

4.1.2. Time Series of Projected Changes in Annual and Seasonal Climate

The time series of maximum and minimum temperatures and precipitation show
the trends and any changes in the degree of inter–annual variability. Figure 3 is plots
of maximum and minimum temperatures and precipitation from 1951 to 2100 for the
15–member CanRCM4 (RCP8.5) ensemble. The multi–model means reveal mostly upward
trends; the uncertainty ranges in minimum temperatures are much higher than in maximum
temperatures. Minimum winter temperature is trending upward at the fastest rate (0.72 ◦C
per decade) and the summer minimum/maximum temperatures are rising at the same rate
(0.64 ◦C) in the ARB. There is an increasing uncertainty range of annual precipitation with
a gently rising upward trend. In contrast to upward trends in all other seasons, there is
declining precipitation in summer. Spring and autumn show an expanding uncertainty
range toward the end of the century.

Table 3 gives the results of the non–parametric Mann–Kendall (MK) test and Sen’s
slope estimator for maximum/minimum temperature and precipitation for annual and
seasonal timeseries for the 15–member ensemble of bias–corrected data from CanRCM4
(RCP8.5) for the period of 1951–2100. The MK test reveals the trend and Sen’s slope
estimates the trend magnitude with a significance level of 0.05. There is a statistically
significant increasing trend in all annual and seasonal temperature and precipitation
variables, except the summer precipitation, which shows a downward trend.

Table 3. Non–parametric Mann–Kendall (MK) test and Sen’s slope estimator results for average annual
and seasonal precipitation, and maximum/minimum temperature for the ensemble (15–member) of
bias–corrected data from CanRCM4 (RCP8.5) from 1951 to 2100.

Mann-Kendall
Trend Test

Mann-Kendall
Statistics

Normalized
Test Statistic p-Value Sen’s Slope 95% Confidence Interval

(S) (Z) Min Max

Precip Annual Increasing 7943 12.91 2.20 × 10−3 1.0637 0.9844 1.1534
Winter Increasing 7639 12.41 2.20 × 10−3 0.2737 0.2434 0.3060
Spring Increasing 7965 12.94 2.20 × 10−3 0.5268 0.4812 0.5726

Summer Decreasing −3473 −5.64 1.68× 10−8 −0.1149 −0.1519 −0.0807
Autumn Increasing 7297 11.86 2.20 × 10−3 0.3619 0.3270 0.4013

Tmax Annual Increasing 9999 16.25 2.20 × 10−3 0.0563 0.0539 0.0585
Winter Increasing 9275 15.07 2.20 × 10−3 0.0553 0.0522 0.0582
Spring Increasing 9033 14.68 2.20 × 10−3 0.0400 0.0376 0.0424

Summer Increasing 9893 16.07 2.20 × 10−3 0.0686 0.0658 0.0711
Autumn Increasing 9595 15.59 2.20 × 10−3 0.0571 0.0542 0.0598

Tmin Annual Increasing 10,189 16.56 2.20 × 10−3 0.0640 0.0614 0.0666
Winter Increasing 9613 15.62 2.20 × 10−3 0.0782 0.0745 0.0819
Spring Increasing 9483 15.41 2.20 × 10−3 0.0469 0.0443 0.0494

Summer Increasing 10,125 16.45 2.20 × 10−3 0.0656 0.0629 0.0679
Autumn Increasing 9889 16.07 2.20 × 10−3 0.0612 0.0584 0.0639
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Figure 3. Time series (1951–2100) of annual and seasonal temperature and precipitation for the
15–member CanRCM4 ensemble (RCP 8.5). The maximum temperature (a–e) is in the first column,
minimum temperature (f–j) is in the second column, and precipitation (k–o) is in the third column.
The ensemble median (black) and linear trend (red) are shown.

4.1.3. Projected Changes in Extreme Temperature and Precipitation

Changes in the frequency distribution of daily maximum/minimum of temperatures
and precipitation, between 60–year past (1951–2010) and future (2041–2100) periods, are
evident in the probability distribution functions (PDFs) fitted with a normal distribution in
Figure 4. The PDF of daily precipitation shows wetter conditions in the future with higher
intensity rainfalls. Figure 4a suggests only a slight increase in the frequency (density) of the
most common (modal) precipitation amounts, but a significant increase in the magnitude
of the most infrequent events, with extreme daily precipitation exceeding 50 mm. There is
a clear shift in the higher future minimum/maximum temperatures; however, the shifts
in the tails of the seasonal distributions differ between seasons, with increased minimum
temperatures in winter and higher maximum temperatures in summer.
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4.2. MESH Modeling and Future Flows of the ARB

In this study, we are mostly concerned about the impact of climate change on the
dynamics of watershed hydrology, and therefore, we simulated natural or naturalized flow
that does not account for artificial storage and current watershed management.

4.2.1. Calibration and Validation of the MESH Model

The MESH model was forced with bias–corrected WFDEI–GEM–CaPA with spatiotem-
poral resolution of 3 h × 10 km to calibrate the ARB MESH model at four naturalized
hydrometric stations and validated at all eight hydrometric stations to capture the historical
seasonal and snowmelt dynamics of all sub–basins and the entire catchment. Figure 5
shows observed and simulated daily flows in the ARB at the eight hydrometric stations.
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The results show that the simulated peak flows of naturalized flows are nearly underes-
timated and for other stations are overestimated. This catchment has experienced some
extreme floods and droughts and heavy precipitation events. The ARB was mostly dry in
the early 1980s and, therefore, we used a long calibration period (1979–2002) of 24 years to
include some wet years. The validation period (2003–2016) of 14 years is a mixture of wet
and dry years. The overall performance of model dynamics and the seasonal variability in
river flows are well captured by the MESH model. The goodness of fit statistics in Table 4
indicates some good agreement between observed and modeled flow. The calibration
Nash—-Sutcliffe efficiency (NSE) ranges from 0.61 to 0.71, while the validation NSE ranges
from 0.59 to 0.72. The calibration of low flow is important in ARB as the catchment has a
sub–humid climate. We used the lnNSE method to assess the simulation of low flows. The
performance is not as good as when compared to high flows. The results are always under
an acceptable PBIAS range of 10%. The MESH model provides a close fit to the observed
flows for the calibration, while for the independent validation period, the performance of
the MESH model is somewhat reduced. The reduction is, however, limited and the model
maintains a very good representation of the overall water balance and the inter–annual
and seasonal dynamics.

Table 4. Goodness of fit results for the calibration and validation period of the MESH for the ARB at
eight hydrometric stations.

Calibration Period (1979–2002) Validation Period (2003–2016)

Sub–Basin NSE lnNSE PBIAS NSE lnNSE PBIAS

Souris River Sherwood 0.68 0.71 6.5 0.70 0.68 5.3
Westhope 0.71 0.66 4.9 0.68 0.61 9.4
Wawanesa 0.68 0.43 8.4 0.64 0.39 5.9

Qu’Appelle River Welby 0.68 0.64 8.8 0.72 0.61 7.3
Assiniboine River Sturgis 0.58 0.65 8.5 0.59 0.51 8.6

Kamsack 0.64 0.53 5.3 0.62 0.47 5.0
Miniota 0.61 0.43 6.1 0.64 0.38 5.7
Holland 0.66 0.48 8.9 0.65 0.41 9.3

4.2.2. Projected Changes in Streamflow

The future flows of the ARB were simulated using bias–corrected data from an ensem-
ble (15–member) of CanRCM4 under the RCP8.5 emission scenario. We analyzed historical
(1951–2010) and future (2041–2100) daily flows at eight hydrometric stations in the ARB.
An ensemble of annual hydrographs at each hydrometric station is plotted for past and
future periods in Figure 6. At every station, flows are substantially higher in winter to early
summer. In July to November, river flow is generally lower or not significantly increased.
Peak annual runoff occurs earlier in the year and a second peak, in response to summer
rainfall, is amplified by some of the climate ensembles. The MESH modeling results for
future scenarios show that the seasonal snowmelt plays a significant role in the amount
and peak of runoff, and warmer temperatures can bring more rain–on–snow events, with
warm rains inducing faster snow melting. The combination of rain and melting snow can
aggravate spring flooding as it is under high–in–moisture and often still frozen soils, and
therefore less able to absorb runoff. The ARB is expected to see higher streamflow and
higher flood risks in the future.
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Figure 5. Comparison of observed and simulated daily runoff of ARB at eight hydrometric stations
for calibration (1979–2002) and validation (2003–2016) periods. The calibration and validation periods
are separated by a light blue dashed line.

Table 5 gives the summary of annual and seasonal percentage changes in median
runoff for a 60–year future period (2041–2100) compared to a baseline period of equivalent
length (1951–2010). Only the headwater sub–basin Sturgis has reduced future flows in
winter and autumn. However, when we analyzed the non–parametric Mann–Kendall (MK)
test and Sen’s slope estimator for median annual and seasonal runoff simulated by MESH
(Table 6), we found that the autumn flows are decreasing throughout the catchment as a
result of future declines in summer precipitation. In addition, the headwater hydrometric
stations (Sturgis and Kamsack) show significantly reduced flows in summer.
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Figure 6. Comparison of the median of 60–year daily river flows in the ARB for a baseline (1951–2010)
in blue and future (2041–2100) in red. These hydrographs were generated using the MESH hydrologi-
cal model run with the 15–member ensemble of bias–corrected CanRCM4 data (RCP scenario 8.5).
Solid lines represent the ensemble mean values.

Table 5. Percentage changes in annual and seasonal median runoff simulated by MESH using an
ensemble of bias–corrected forcing data from CanRCM4 (RCP8.5) for the future period (2041–2100)
compared to the base period (1951–2010).

Changes in % Annual Winter Spring Summer Autumn

Assiniboine River near Holland 87.33 6.38 59.90 205.79 18.65
Assiniboine River near Miniota 84.88 0.94 53.44 216.49 4.61
Assiniboine River at Kamsack 67.11 −0.85 76.94 137.06 5.27
Assiniboine River at Sturgis 112.09 −13.38 97.21 194.52 −25.00

Qu’Appelle River near Welby 61.38 11.68 46.91 149.49 25.18
Souris River at Wawanesa 133.46 24.29 69.19 315.40 52.04

Souris River near Westhope 152.91 29.23 103.10 330.68 52.04
Souris River near Sherwood 130.81 44.93 141.66 235.31 81.80
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Table 6. Non–parametric Mann–Kendall (MK) test and Sen’s slope estimator results for the median
of annual and seasonal runoff simulated by MESH using an ensemble of bias–corrected forcing data
from CanRCM4 (RCP 8.5) from 1951 to 2100.

Mann-Kendall
Trend Test

Mann-Kendall
Statistics

Normalized
Test Statistic p-Value Sen’s Slope 95% Confidence

Interval

(S) (Z) Min Max

Annual Holland Increasing 6643 10.79 2.20 × 10−16 0.3651 0.3085 0.4229
Miniota Increasing 6369 10.35 2.20 × 10−16 0.2128 0.1743 0.2543

Kamsack Increasing 5581 9.07 2.20 × 10−16 0.0268 0.0213 0.0321
Sturgis Increasing 6361 10.34 2.20 × 10−16 0.0112 0.0094 0.0129
Welby Increasing 6229 10.12 2.20 × 10−16 0.0635 0.0536 0.0753

Wawanesa Increasing 6705 10.89 2.20 × 10−16 0.1221 0.1017 0.1441
Westhope Increasing 6715 10.91 2.20 × 10−16 0.0938 0.0789 0.1100
Sherwood Increasing 7353 11.95 2.20 × 10−16 0.0224 0.0187 0.0268

Winter Holland Increasing 7207 11.71 2.20 × 10−16 0.0836 0.0720 0.0959
Miniota Increasing 7322 11.897 2.20 × 10−16 0.0451 0.0393 0.0514

Kamsack Increasing 7857 12.766 2.20 × 10−16 0.0091 0.0082 0.0100
Sturgis Increasing 8282 13.463 2.20 × 10−16 0.0014 0.0013 0.0016
Welby Increasing 6487 10.54 2.20 × 10−16 0.0178 0.0153 0.0207

Wawanesa Increasing 7306 11.871 2.20 × 10−16 0.0280 0.0244 0.0322
Westhope Increasing 7391 12.009 2.20 × 10−16 0.0219 0.0187 0.0254
Sherwood Increasing 7987 12.978 2.20 × 10−16 0.0104 0.0091 0.0118

Summer Holland Increasing 2157 3.5035 0.0004593 0.1271 0.0597 0.1959
Miniota Increasing 598 0.97011 0.332 0.0168 −0.0170 0.0497

Kamsack Decreasing −846 −1.3731 0.1697 −0.0047 −0.0119 0.0020
Sturgis Decreasing −3410 −5.5396 3.03 × 10−8 −0.0081 −0.0114 −0.0052
Welby Increasing 4119 6.6917 2.21 × 10−11 0.0347 0.0256 0.0439

Wawanesa Increasing 3754 6.0986 1.07 × 10−9 0.0655 0.0468 0.0843
Westhope Increasing 4378 7.1126 1.14 × 10−12 0.0388 0.0296 0.0491
Sherwood Increasing 6041 9.8151 2.20 × 10−16 0.0128 0.0108 0.0151

Spring Holland Increasing 7417 12.051 2.20 × 10−16 0.9961 0.8341 1.1781
Miniota Increasing 6858 11.142 2.20 × 10−16 0.4786 0.3995 0.5735

Kamsack Increasing 5471 8.8887 2.20 × 10−16 0.0922 0.0721 0.1131
Sturgis Increasing 5531 8.9862 2.20 × 10−16 0.0356 0.0286 0.0426
Welby Increasing 7187 11.677 2.20 × 10−16 0.1190 0.1015 0.1371

Wawanesa Increasing 6248 10.151 2.20 × 10−16 0.2736 0.2177 0.3362
Westhope Increasing 6425 10.439 2.20 × 10−16 0.1868 0.1432 0.2330
Sherwood Increasing 7314 11.884 2.20 × 10−16 0.0392 0.0327 0.0477

Autumn Holland Decreasing −364 −0.58987 0.5553 −0.0054 −0.0237 0.0123
Miniota Decreasing −1477 −2.3985 0.01646 −0.0117 −0.0222 −0.0022

Kamsack Decreasing −2168 −3.5215 0.0004291 −0.0027 −0.0042 −0.0012
Sturgis Decreasing −4487 −7.2912 3.07 × 10−13 −0.0015 −0.0019 −0.0011
Welby Increasing 1584 2.5724 0.0101 0.0048 0.0012 0.0083

Wawanesa Increasing 3265 5.304 1.13 × 10−7 0.0126 0.0084 0.0169
Westhope Increasing 3785 6.149 7.80 × 10−10 0.0103 0.0071 0.0133
Sherwood Increasing 4708 7.6491 2.02 × 10−14 0.0053 0.0041 0.0065

4.2.3. Projected Changes in Extreme Streamflow

The changes in the magnitude and timing of extreme flows have great importance
in the ARB. The risk of flooding in the ARB is much higher in the future periods with
increasing precipitation in all seasons. Soil moisture at freeze–up is one of the major factors
affecting spring runoff potential and spring flood risk. The runoff potential is significantly
affected by the amount of additional snow and spring rains, frost depth at the time of runoff,
and timing and rate of spring thaw, and the timing of peak flows in the ARB. Figure 7
illustrates the high and low flow changes per month (1951–2100) with the color coding
of the months. The daily high flows are in the left column and low flows are in the right
column at the eight hydrometric stations in Figure 7a–h. Spring high flows are significantly
increased and tend to occur earlier in the year. There is a large increase in the range of low
flows with a dramatic mid–21st century shift in timing from late winter to late summer and
throughout the autumn. As winter becomes wetter and precipitation occurs more often as
rain, winter is no longer the season of minimum flow, and rather the timing of low flows
reflects the drier summers.
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Figure 7. The magnitude and timing of daily high flows (left column) and low flows (right column)
in the ARB at eight hydrometric stations (a–h) derived from the MESH model run with a 15–member
ensemble of bias–corrected CanRCM4 (RCP8.5).

5. Discussion

For discussion, we refer again to the previous studies on the hydrology of the ARB and
the impact of climate change [6–10]. As mentioned above, all of these studies conducted
hydrological modeling using the Soil and Water Assessment Tool. SWAT has been applied
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extensively throughout the world; however, it has limitations when applied to cold climates
because SWAT simulates captures primarily temperature–driven snowmelt processes [24–26].
The MESH model we used, on the other hand, was developed by Canadian scientists specifically
for cold–region watersheds. Among the previous studies of the ARB [8,10], the authors used
SWAT model that they modified to account for the hydrology of prairie pothole wetlands, which
fill and spill, resulting in a dynamic contributing area. There is no indication, however, in the
previous studies of the ARB, that SWAT was modified to simulate runoff generated during rain
on snow events and by snowmelt runoff over frozen ground.

Even though this paper describes research with similar objectives to several previous
studies, we used a hydrological model that is built for a cold climate. We also simulated
runoff over a larger part of the basin and at more gauge locations. Therefore, we consider
our results more relevant and robust. Furthermore, we took a different approach to the
climate forcing of the hydrological model. Other researchers have derived the climate forc-
ing from a few models and greenhouse gas emission scenarios (SRES and RCP), providing
a range of future projections reflecting uncertainty related to differences among climate
models and emission scenarios. We controlled for these two sources of uncertainty by using
climate forcing from a single RCM and one RCP (8.5). The range of climate and stream-
flow’s generated by a 15–member initial–condition ensemble from CanRCM4 represents
one source of uncertainty—the natural internal variability of the modeled hydroclimate.
This is particularly relevant to the ARB because prior research [27] revelated that natural
variability is the dominant source of uncertainty for projecting the future hydroclimate
of western Canada. A strong signal of climate variability emerges at a regional scale in
the interior of large continents. The geographic center of North America falls in the ARB,
which thus has one of the most continental and variable climates on earth. The results that
we produced reflect this variability as distinct from the uncertainty arising from the use of
different climate models and emission scenarios.

In response to the projected climate change, there is a one–month earlier shift in
the spring runoff and snowmelt period. Cold season (winter and spring) flows will be
significantly higher. While some model simulations project little change in average warm
season (summer and early autumn) river levels, other projections suggest higher flows in
response to heavy summer rains. As a warming climate intensifies the hydrological cycle,
the range of river levels will expand, particularly in winter. High flows are significantly
increased and will tend to occur earlier in the year. Low flows are also increased, but
there is a shift in timing from winter to late summer and early autumn. These incremental
long–term changes in runoff, and extreme fluctuations in runoff and precipitation, will have
impacts that require the adaptation of water resource planning and climate change policies.

Interannual to decadal variability and extreme hydrologic events, rather than long–
term trends in mean runoff, present most of the challenges for managing water resources
and for designing and maintaining water conveyance and storage structures. The changes
in the severity of extreme hydrological events and seasonal distribution of runoff due
to climate change will have major impacts on terrestrial and aquatic ecosystems, and
on the availability of municipal and industrial water supplies [28–30] in the ARB. Low
runoff will have repercussions for surface water supplies during the season of highest
demand. Whereas more efficient use of water supplies signifies an important adaptation
to a changing climate, adjustments to water policy, planning and management will be
essential given the changes in climate and water supplies projected by our research.

6. Conclusions

Research on climate change impacts on water supplies is more challenging in the
ARB than in other river basins in Canada, given the extent of streamflow regulation and
the extreme continental climate. The impoundment and diversion of river water cause
fluctuations in water levels that are independent of the variation in climate, and thus
are a source of noise and uncertainty in our attempt to determine the response of the
hydrological cycle to climate change. The availability of more naturalized streamflow data
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would facilitate further research on the impacts of climate change on the hydrology of the
ARB. There is nothing we can do, however, about the extreme continental climate. The most
variable climate on Earth is in the interior of the two largest continents: Eurasia and North
America. The geographic center of North America is in the ARB. The extreme variability
between years and decades obscures trends in climate and hydrology that are indicative of
the regional response to global climate change. Thus, even though we can detect trends in
climate and water variables, and project future changes, these generally lie within the large
range of natural variability.
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