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Abstract: The Assiniboine River Basin (ARB) is subject to an exceptionally variable precipitation 
regime of the Canadian Prairies, ranging between record droughts and unprecedented flooding in 
just the past decade. To assess the impact of a changing climate on hydroclimate variability in the 
ARB, we used the bias–corrected simulations from the Canadian Regional Climate Model 
(CanRCM4) to drive MESH model for two 60–year periods, a historical baseline (1951–2010) and 
future projection (2041–2100), under the Representative Concentration Pathway (RCP) 8.5 to simu-
late ARB flows at eight hydrometric stations. The precipitation is projected to increase in every sea-
son (~10–38%) except for summer (~−1–−5%). Minimum winter and maximum summer tempera-
tures have the largest seasonal trends, increasing by 2–3 °C in the near future (2021–2050) and 5–6 
°C in the far future (2051–2080). These climate changes produce higher winter river flows while 
peak runoff shifts by several weeks to earlier in the year. There is a shift in the magnitude and timing 
of extreme water levels. The ensemble of climate projections from a single model and one RCP to 
the variability and uncertainty in the future hydrology supports adaptation planning in the indus-
trial sectors of Saskatchewan’s economy. 

Keywords: ensemble modeling; land surface hydrological model; climate change; extreme runoff 
change 
 

1. Introduction 
The security and resiliency of industrial water supplies is a concern in the Prairie 

Provinces because agriculture, energy generation, oil processing, and solution potash 
mining depend on secure and reliable water supplies in a region characterized by a per-
manent water deficit (in average years), where temperatures are rising at 2–3 times the 
global rate [1]. The impacts of this warming in western Canadian include a shift in the 
distribution of water supplies and an increase in the frequency and magnitude of extreme 
hydroclimatic events—flooding and drought [2]. Municipalities have been preparing for 
these climate change impacts; however, their consumptive water use is relatively small 
compared to the demands of major industries. Whereas present industrial water alloca-
tions are sufficient under historically average weather conditions, long-term climatic var-
iability and climate model projections are cause for concern. Much of the impact of climate 
change on water is the potential for deficits or excess and amplified variability and ex-
tremes. Given the potential for prolonged water deficits in a future warmer climate, there 
is no guarantee that the industrial water allocation will have sufficient priority to be hon-
ored. Saskatchewan, unlike Alberta, does not have “a first in time, first in right” allocation 
system. Provisions in The Water Security Agency Act give the WSA and Saskatchewan 
government the responsibility for determining water sharing or allocation during times 
of shortage. Therefore, while a particular corporate user may have an allocation, in times 
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of shortage, they may not receive its allocation. End users should build resiliency into their 
operations to be able to handle forecasted shortages. 

One of the most consistent and challenging climate change scenarios for western 
Canada is the amplified severity of both extreme rainfall and drought [3–5]. Another pro-
jected climate change with hydrological consequences is less snow as a proportion of an-
nual precipitation and as water stored as snow; however, the hydrological impacts of 
these climate changes differ between the two distinct sources of runoff: the eastern slopes 
of the Rocky Mountains and the runoff shed from prairie uplands. The impact of climate 
change on the mountain snowpack and glacier ice is a relatively well–researched topic. 

The large mountain–sourced rivers (i.e., North and South Saskatchewan, Peace–Ath-
abasca) are the major urban and industrial water supply in the Prairie Provinces. Prairie 
streams, on the other hand, supply to many smaller municipalities and some industries. 
The Assiniboine River Basin (ARB) is the largest prairie watershed. Encompassing the ge-
ographic center of North America, the ARB has among the most continental, and therefore 
variable, hydroclimates on earth. The headwaters are in the sub–humid landscape of 
southern Saskatchewan. Under these climate conditions, the Assiniboine River and its 
tributaries differ from the mountain-sourced rivers not only in terms of water yield, but 
also the range of flows. A large seasonal and inter–annual variability, and extensive reg-
ulation of surface hydrology, present technical challenges for modeling prairie hydrology 
and its response to climate change. 

The objective of this study was to assess the potential impacts of climate change on 
surface water quantity and timing in the ARB. This study fills a gap in our understanding 
of the impacts of climate change on the hydroclimate of the water supplies over a rela-
tively large area in the Northern Great Plains. Whereas the dominant industrial activity is 
dryland agriculture, the energy industry is a significant consumer of water in the ARB. 
There is also a future potential for solutional potash mining and expanded irrigation. 

Several previous studies have examined the response of streamflow to climate 
change in the ARB, but not with the scope of the research described here. Shrestha et al. 
[6,7] and Muhammad et al. [8] considered only the upper reaches of the ARB, above Kam-
sack and the Shellmouth Reservoir, respectively. All previous research, from Stantec et al. 
[9] to, most recently, Dibike et al. [10], is coupled with the SWAT hydrological model with 
climate data from one to several climate models. Our study takes advantage of new high-
resolution data products and the MESH hydrological model to examine historical and 
projected river flow at eight hydrometric stations in the ARB. The climate forcing includes 
the gridded and bias–corrected WFDEI–GEM–CaPA meteorological dataset for calibrat-
ing and validating the MESH model and bias–corrected climate projections from an en-
semble of 15 runs of the Canadian Regional Climate Model (CanRCM4). The use of an 
initial–condition ensemble from a single climate model controls the uncertainty that arises 
from the use of different models and produces an ensemble of streamflow projections that 
reflect the internal natural variability of the regional hydroclimate. 

2. Study Area 
The Assiniboine River Basin (ARB) extends over an area of 162,000 km2 in southeast-

ern Saskatchewan, southwestern Manitoba, and northwestern North Dakota. It is com-
prised of the Souris, Qu’Appelle, and Assiniboine sub–basins. Elevation across the basin 
varies between 296 and 877 m above sea level (Figure 1). The land use is dominated by 
cropland followed by grassland (pasture). Forests occurred on the eastern margin and as 
island forests. The climate ranges from sub–humid continental in the east to semiarid in 
the west. The total annual precipitation is ~453 mm and the mean annual temperature is 
~ 3.8 °C. February (~20.6 mm) is the driest month and June (~81 mm) is the wettest month 
in ARB. The hydrology of the ARB has large variability in annual stream flows, with peaks 
occurring during the spring snowmelt and low flows during autumn and winter. The total 
annual discharge at Holland hydrometric station ranges from 12,000 m3/sec in the dry 
period to above 50,000 m3/sec in the flood season. 
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Figure 1. (a) Location, river network, hydrometric stations, and elevations of the Assiniboine River 
Basin (ARB); (b) land cover classification of the ARB. 

In 2011, extreme flooding occurred across the entire basin. The City of Minot, ND 
evacuated 11,000 residents and the capacity of flood control infrastructure was surpassed. 
In 2014, a rain event on July 1st led to severe local flooding that exceeded the 2011 flood 
flows in some locations. In 2017, spring flooding was severe in the Souris River Basin in 
Manitoba. Due to the large variability in the flow of the Assiniboine River and high peak 
flows during the spring melt, major water control infrastructure (Shellmouth Dam near 
Russell and Portage Diversion at Portage la Prairie) has been constructed to provide future 
flood and drought protection in the catchment. 

3. Model and Data Sets 
3.1. MESH Land Surface Hydrological Model 

To model river flows in the ARB, and the impact of climate change, we used the Mo-
délisation Environmentale–Surface et Hydrologie (MESH–r1593) grid–based hydrological 
modeling system developedby Environment and Climate Change Canada (ECCC) [11]. 
MESH is an “open” community model and a component of the operational forecasting 
system within ECCC. It was originally derived from the University of Waterloo’s 
WATCLASS, which linked the land surface scheme CLASS with an existing flood fore-
casting model WATFLOOD. MESH has been widely applied in various studies of cold 
regions of Canada [11,12]. MESH primarily has three sets of modeling system: (1) different 
land surface schemes (LSSs) can be activated in MESH, such as The Canadian Land Sur-
face Scheme (CLASS v3.6) [13,14], or Soil–, Vegetation– and Snow (SVS) that simulates the 
energy and water balances (soil, snow, and vegetation) of the land surface forward in time 
from an initial starting point, making use of forcing data to drive the simulation at a 30–
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min time step; (2) lateral and overland hill–slope runoff of soil and surface water to the 
drainage system with either of the algorithms: WATDRAIN hillslope parameterization 
[15] or the probability distribution model–based RunOFf generation (PDMROF) algo-
rithm [16]; and (3) hydrological routing using the WATROUTE [17] routing scheme to 
provide streamflow predictions on a gridded river network and routes the runoff through 
the basin drainage system. The MESH model and all its newly developed components are 
further explained in [12]. 

MESH Drainage Database 
The drainage database is the core file for running MESH. This file contains the data 

describing the stream network, eco–district distribution, elevation, land use, grid area, 
channel slope, etc. A 10 km MESH drainage database for the ARB was constructed using 
the Green Kenue tool v3.4.3 developed by National Research Council Canada [18]. Details 
on how to construct the MESH drainage database are available on the MESH community 
page (https://wiki.usask.ca/display/MESH/Preparing+the+drainage+database+file (ac-
cessed on 24 May 2022). The ARB drainage database consists of 1510 grid cells or grouped 
response units (GRUs) and nine land use CLASS types. To reduce the model runtime, we 
applied the polishing method to the ARB drainage database, removing a small fraction of 
land use tiles from GRUs. A GRU–based approach combines regions with similar hydro-
logical behavior. 

3.2. Hydrological Data 
ARB streamflow was modeled at eight different hydrometric stations to capture the 

seasonal flow dynamics throughout the catchment (Figure 1a). Natural or naturalized 
flow data are not available for the ARB, except for the gauge record at Sturgis in the head-
waters of the Assiniboine River. The Water Security Agency (Saskatchewan) provided 
daily records of unregulated flow for the Sherwood and Westhope hydrometric stations 
in the Souris River sub–basin and the Welby hydrometric station in the Qu’Appelle River 
sub–basin. These recorded flows have been adjusted for flow regulations using the meth-
odology defined in [19] and are important to calibrate the MESH model using naturalized 
flows. The locations and drainage area of the eight streamflow monitoring stations, lo-
cated both along the mainstream and on tributaries, are given in Table 1. The long–term 
hydrological flows used in this study are freely available at the HYDAT database, Water 
Survey of Canada website from 1930 to 2021. 

Table 1. Hydrometric stations used for the MESH land surface hydrological modeling. Source: HY-
DAT database, Water Survey of Canada. The station IDs with * signs have unregulated flows. 

Sr # Station ID  Station Name Latitude Longitude 
Drainage Area 

(km2) 
1 05MH005 Assiniboine River near Holland 49°41’55.1″ N 98°53’22.4″ W 160,000 
2 05ME006 Assiniboine River near Miniota 50°6’38.2″ N 101°2’16.6″ W 84,200 
3 05MD004 Assiniboine River at Kamsack 51°33’53.6″ N 101°54’59.6″ W 13,000 
4 05MC001 * Assiniboine River at Sturgis 51°56’23.0″ N 102°32’49.0″ W 1930 
5 05JM001 * Qu’Appelle River near Welby 50°29’28.6″ N 101°33’30.8″ W 50,900 
6 05NG001 Souris River at Wawanesa 49°35’49.0″ N 99°40’43.1″ W 61,100 
7 05NF012 * Souris River near Westhope 48°59’47.0″ N 100°57’29.0″ W 43,700 
8 05ND007 * Souris River near Sherwood 48°59’24.0″ N 101°57’28.0″ W 23,100 

3.3. Forcing Data 
3.3.1. Historical Forcing Data 

The MESH hydrological model was forced with the ARB masked data of historical 
(1979–2016) gridded WFDEI–GEM–CaPA meteorological data set [20,21]. The drainage 
area of the ARB was masked out for the seven forcing variables (incoming shortwave 
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radiation, incoming longwave radiation, precipitation rate, air temperature, wind speed, 
barometric pressure, and specific humidity) required to run the MESH land surface hy-
drological model. The WFDEI–GEM–CaPA data set is a combination of the forcing varia-
bles from the EU WATCH ERA–Interim reanalysis (WFDEI), Global Environmental Mul-
tiscale (GEM) atmospheric model, and the Canadian Precipitation Analysis (CaPA). A 
bias–correction methodology of multivariate bias correction algorithm (MBCn) [22] was 
performed to bias correct the WFDEI forcing data against GEM–CaPA at 3 h × 10 km res-
olution during the overlapping period (2005–2016), and hindcasting was performed back 
to 1979 for the final WFDEI–GEM–CaPA product. The full details on how these data are 
prepared for the MESH model community are described in [20,21]. 

3.3.2. Future Forcing Data 
In this study, we have used an ensemble (15 initial–condition) of simulations from 

the Canadian Regional Climate Model version 4 (CanRCM4) under the Representative 
Concentration Pathway (RCP) 8.5 high emission scenario [23] driven by the historical + 
RCP8.5 GCM ensemble of CanESM2. CanRCM4 simulations cover the North American 
Domain defined by the CORDEX project from 1951 to 2100. The raw three–hourly 15–
member ensemble of medium resolution (0.44°) from 1951 to 2100 was provided by ECCC 
[23] and bias–corrected using the MBCn methodology and historical gridded forcing data 
WFDEI–GEM–CaPA by Asong et al. [20]. The resulting bias–corrected data set at resolu-
tions of 3–hourly and 10 km is similar to our historical forcing data set and is a consistent 
set of intra–model climate projections suitable for large–scale uncertainty MESH model-
ing and constructing future climate scenarios. The full set of data is freely available from 
the Federated Research Data Repository [21]. 

3.4. Statistical Analysis 
To detect the trends in CanRCM4 mean forcing data (maximum temperature (Tmax), 

minimum temperature (Tmin), and precipitation (Pr)) as well as in the MESH model out-
put runoff (seasonal and annual) we have used the non–parametric Mann––Kendall (MK) 
test and Sen’s slope estimator. The MK statistic (S), normalized test statistics (Z), and 
measure of the probability (p–value) were calculated for each set of climate data and for 
the annual and seasonal runoff from 1951 to 2100. Sen’s slope performs better compared 
to the linear regression where the test is not affected by the number of outliers and data 
errors. A positive S value indicates an upward trend, whereas a negative value indicates 
a downward trend; however, the associated probability (p–value) represents the signifi-
cance of the trend. To remove the autocorrelation effects from the time series, we have 
used the bootstrap sampling approach (similar to pre–whitening). Furthermore, for eval-
uating “Goodness–of–Fit” measures of runoff for simulated flows, the Nash–Sutcliff effi-
ciency (NSE), natural log of NSE (lnNSE), and percentage of model bias (PBIAS) were 
calculated for MESH model assessment. The extreme values were analyzed using the 
probability density function (PDF) and their mean, skewness, and tails were compared 
for the differences. The time series and scatter plots are also analyzed for comparison of 
the results. 

4. Results 
4.1. Climate Projections 

In this section we are analyzing the changes in temperature and precipitation and 
their extremes to understand the ongoing future impact of climate change on the ARB and 
its consequences for changes in the dynamics of ARB hydrology and likely shifts in the 
snowmelt period. For long–term comparison of ARB climatology (60 years) we define the 
baseline period from 1951 to 2010 and the future period from 2041 to 2100. However, the 
historical runs in CMIP5 are from 1850 to 2005, since the CanRCM4 downscaled data are 
only available from 1951, the selected 60 years are up to 2010. The last 5 years are from the 
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future projection, but we are adding in the historical period to balance out our data com-
parison. For the 30–year period comparison, the baseline is (1961–1990), near future is 
(2021–2050), and the far future is (2051–2080). 

4.1.1. Projected Changes in Near and Far Future Climates 
We examined the ARB ensemble of 15 initial–condition CanRCM4 (RCP 8.5) for the 

mean annual and seasonal differences in temperature and precipitation between the base-
line period (1980–2010) and near (2021–2050) and far (2051–2080) future. Figure 2 shows 
scatter plots of the 15–member ensemble run for the mean annual and seasonal climate 
changes. The intra–model variability in mean annual precipitation ranges from 4 to 18% 
in the near future and from 12 to 28% in the far future. Thus, considerably more precipi-
tation is expected in an average year although the possible range is relatively large. Sea-
sonal precipitation shows that only summer precipitation is decreasing by ~2% in the near 
future and ~5% in the far future compared to the baseline scenario (1981–2010). There will 
be an increase in the mean annual temperature of around ~2–4 °C in the near future and 
~4–5 °C in the far future. The largest increase is in the winter minimum temperatures com-
pared to other seasons around ~3–4 °C in the near future and ~6–7 °C in the far future. The 
uncertainty of temperature and precipitation changes are much higher in winter, and 
spring compared to other seasons. 

 
Figure 2. Mean and seasonal changes in temperature and precipitation from the 15–member ensem-
ble of CanRCM4 and the RCP8.5 scenarios for the ARB. 

In Table 2, the ensemble mean shows that the winter minimum temperature and 
summer maximum temperature are increasing at a much higher rate compared to the 
other seasons. The precipitation change is higher in the far future (~21%) compared to the 
near future (~11%). Similarly, an increase in the ensemble mean precipitation is higher in 
spring and autumn compared to the summer and winter. Table 2 is a summary of the 
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annual and seasonal changes in minimum/maximum temperature, and precipitation for 
the mean ensemble of simulations from CanRCM4 (RCP 8.5) for the near (2021–2050) and 
far (2051–2080) future for the ARB. 

Table 2. Summary of annual and seasonal changes in minimum temperature (Tmin), maximum 
temperature (Tmax), and precipitation (Precp) for the mean of the 15–member ensemble of initial 
condition simulations from CanRCM4 (RCP8.5 scenario) for near (2021–2050) and far future (2051–
2080) for the ARB. 

 Near Future (1961–1990)–(2021–2050) Far Future (1961–1990)–(2051–2080) 
 Tmin Tmax Precp (%) Tmin Tmax Precp (%) 

Annual 3.15 2.85 12.13 5.48 4.89 22.64 
Winter 4.05 2.96 16.46 6.95 5.02 32.45 
Spring 2.22 1.92 24.96 4.16 3.66 44.75 

Summer 3.35 3.62 −2.52 5.70 60.4 −5.30 
Autumn 3.04 2.88 20.24 5.21 4.87 39.38 

4.1.2. Time Series of Projected Changes in Annual and Seasonal Climate 
The time series of maximum and minimum temperatures and precipitation show the 

trends and any changes in the degree of inter–annual variability. Figure 3 is plots of max-
imum and minimum temperatures and precipitation from 1951 to 2100 for the 15–member 
CanRCM4 (RCP8.5) ensemble. The multi–model means reveal mostly upward trends; the 
uncertainty ranges in minimum temperatures are much higher than in maximum temper-
atures. Minimum winter temperature is trending upward at the fastest rate (0.72 °C per 
decade) and the summer minimum/maximum temperatures are rising at the same rate 
(0.64 °C) in the ARB. There is an increasing uncertainty range of annual precipitation with 
a gently rising upward trend. In contrast to upward trends in all other seasons, there is 
declining precipitation in summer. Spring and autumn show an expanding uncertainty 
range toward the end of the century. 
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Figure 3. Time series (1951–2100) of annual and seasonal temperature and precipitation for the 15–
member CanRCM4 ensemble (RCP 8.5). The maximum temperature (a–e) is in the first column, 
minimum temperature (f–j) is in the second column, and precipitation (k–o) is in the third column. 
The ensemble median (black) and linear trend (red) are shown. 

Table 3 gives the results of the non–parametric Mann––Kendall (MK) test and Sen’s 
slope estimator for maximum/minimum temperature and precipitation for annual and 
seasonal timeseries for the 15–member ensemble of bias–corrected data from CanRCM4 
(RCP8.5) for the period of 1951–2100. The MK test reveals the trend and Sen’s slope esti-
mates the trend magnitude with a significance level of 0.05. There is a statistically signifi-
cant increasing trend in all annual and seasonal temperature and precipitation variables, 
except the summer precipitation, which shows a downward trend. 
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Table 3. Non–parametric Mann––Kendall (MK) test and Sen’s slope estimator results for average 
annual and seasonal precipitation, and maximum/minimum temperature for the ensemble (15–
member) of bias–corrected data from CanRCM4 (RCP8.5) from 1951 to 2100. 

    

Mann––
Kendall 
Trend 
Test 

Mann– 
Kendall 
Statis-

tics 

Normal-
ized 
Test 

Statistic 

p–Value  
Sen’s 
Slope 

95% Confidence 
Interval 

      (S) (Z)     Min Max 

Precip Annual Increasing 7943 12.91 
2.20 × 
10−3 

1.0637 0.9844 1.1534 

 Winter Increasing 7639 12.41 
2.20 × 
10−3 

0.2737 0.2434 0.3060 

 Spring Increasing 7965 12.94 
2.20 × 
10−3 

0.5268 0.4812 0.5726 

 Summer 
Decreas-

ing 
−3473 −5.64 

1.68× 
10−8 

−0.1149 −0.1519 −0.0807 

 Autumn Increasing 7297 11.86 
2.20 × 
10−3 

0.3619 0.3270 0.4013 

Tmax Annual Increasing 9999 16.25 
2.20 × 
10−3 

0.0563 0.0539 0.0585 

 Winter Increasing 9275 15.07 
2.20 × 
10−3 

0.0553 0.0522 0.0582 

 Spring Increasing 9033 14.68 
2.20 × 
10−3 

0.0400 0.0376 0.0424 

 Summer Increasing 9893 16.07 
2.20 × 
10−3 

0.0686 0.0658 0.0711 

 Autumn Increasing 9595 15.59 
2.20 × 
10−3 

0.0571 0.0542 0.0598 

Tmin Annual Increasing 10,189 16.56 
2.20 × 
10−3 

0.0640 0.0614 0.0666 

 Winter Increasing 9613 15.62 
2.20 × 
10−3 

0.0782 0.0745 0.0819 

 Spring Increasing 9483 15.41 
2.20 × 
10−3 

0.0469 0.0443 0.0494 

 Summer Increasing 10,125 16.45 
2.20 × 
10−3 

0.0656 0.0629 0.0679 

  Autumn Increasing 9889 16.07 
2.20 × 
10−3 

0.0612 0.0584 0.0639 

4.1.3. Projected Changes in Extreme Temperature and Precipitation 
Changes in the frequency distribution of daily maximum/minimum of temperatures 

and precipitation, between 60–year past (1951–2010) and future (2041–2100) periods, are 
evident in the probability distribution functions (PDFs) fitted with a normal distribution 
in Figure 4. The PDF of daily precipitation shows wetter conditions in the future with 
higher intensity rainfalls. Figure 4a suggests only a slight increase in the frequency (den-
sity) of the most common (modal) precipitation amounts, but a significant increase in the 
magnitude of the most infrequent events, with extreme daily precipitation exceeding 50 
mm. There is a clear shift in the higher future minimum/maximum temperatures; how-
ever, the shifts in the tails of the seasonal distributions differ between seasons, with in-
creased minimum temperatures in winter and higher maximum temperatures in summer. 
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Figure 4. The PDFs of the daily precipitation (a) and minimum/maximum temperature (b,c) and for 
the summer (d,e) and winter (f,g) for contrasting 60–year baseline (1951–2010) and future (2041–
2100) periods. 

4.2. MESH Modeling and Future Flows of the ARB 
In this study, we are mostly concerned about the impact of climate change on the 

dynamics of watershed hydrology, and therefore, we simulated natural or naturalized 
flow that does not account for artificial storage and current watershed management. 

4.2.1. Calibration and Validation of the MESH Model 
The MESH model was forced with bias–corrected WFDEI–GEM–CaPA with spatio-

temporal resolution of 3 h × 10 km to calibrate the ARB MESH model at four naturalized 
hydrometric stations and validated at all eight hydrometric stations to capture the histor-
ical seasonal and snowmelt dynamics of all sub–basins and the entire catchment. Figure 5 
shows observed and simulated daily flows in the ARB at the eight hydrometric stations. 
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The results show that the simulated peak flows of naturalized flows are nearly underesti-
mated and for other stations are overestimated. This catchment has experienced some ex-
treme floods and droughts and heavy precipitation events. The ARB was mostly dry in 
the early 1980s and, therefore, we used a long calibration period (1979–2002) of 24 years 
to include some wet years. The validation period (2003–2016) of 14 years is a mixture of 
wet and dry years. The overall performance of model dynamics and the seasonal variabil-
ity in river flows are well captured by the MESH model. The goodness of fit statistics in 
Table 4 indicates some good agreement between observed and modeled flow. The calibra-
tion Nash––Sutcliffe efficiency (NSE) ranges from 0.61 to 0.71, while the validation NSE 
ranges from 0.59 to 0.72. The calibration of low flow is important in ARB as the catchment 
has a sub–humid climate. We used the lnNSE method to assess the simulation of low 
flows. The performance is not as good as when compared to high flows. The results are 
always under an acceptable PBIAS range of 10%. The MESH model provides a close fit to 
the observed flows for the calibration, while for the independent validation period, the 
performance of the MESH model is somewhat reduced. The reduction is, however, limited 
and the model maintains a very good representation of the overall water balance and the 
inter–annual and seasonal dynamics. 

 
Figure 5. Comparison of observed and simulated daily runoff of ARB at eight hydrometric stations 
for calibration (1979–2002) and validation (2003–2016) periods. The calibration and validation peri-
ods are separated by a light blue dashed line. 
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Table 4. Goodness of fit results for the calibration and validation period of the MESH for the ARB 
at eight hydrometric stations. 

  Calibration Period (1979–2002) Validation Period (2003–2016) 
Sub–Basin  NSE lnNSE PBIAS NSE lnNSE PBIAS 

Souris River Sherwood 0.68 0.71 6.5 0.70 0.68 5.3 
 Westhope 0.71 0.66 4.9 0.68 0.61 9.4 
 Wawanesa 0.68 0.43 8.4 0.64 0.39 5.9 

Qu’Appelle River Welby 0.68 0.64 8.8 0.72 0.61 7.3 
Assiniboine River Sturgis 0.58 0.65 8.5 0.59 0.51 8.6 

 Kamsack 0.64 0.53 5.3 0.62 0.47 5.0 
 Miniota 0.61 0.43 6.1 0.64 0.38 5.7 
 Holland 0.66 0.48 8.9 0.65 0.41 9.3 

4.2.2. Projected Changes in Streamflow 
The future flows of the ARB were simulated using bias–corrected data from an en-

semble (15–member) of CanRCM4 under the RCP8.5 emission scenario. We analyzed his-
torical (1951–2010) and future (2041–2100) daily flows at eight hydrometric stations in the 
ARB. An ensemble of annual hydrographs at each hydrometric station is plotted for past 
and future periods in Figure 6. At every station, flows are substantially higher in winter 
to early summer. In July to November, river flow is generally lower or not significantly 
increased. Peak annual runoff occurs earlier in the year and a second peak, in response to 
summer rainfall, is amplified by some of the climate ensembles. The MESH modeling re-
sults for future scenarios show that the seasonal snowmelt plays a significant role in the 
amount and peak of runoff, and warmer temperatures can bring more rain–on–snow 
events, with warm rains inducing faster snow melting. The combination of rain and melt-
ing snow can aggravate spring flooding as it is under high–in–moisture and often still 
frozen soils, and therefore less able to absorb runoff. The ARB is expected to see higher 
streamflow and higher flood risks in the future. 

Table 5 gives the summary of annual and seasonal percentage changes in median 
runoff for a 60–year future period (2041–2100) compared to a baseline period of equivalent 
length (1951–2010). Only the headwater sub–basin Sturgis has reduced future flows in 
winter and autumn. However, when we analyzed the non–parametric Mann––Kendall 
(MK) test and Sen’s slope estimator for median annual and seasonal runoff simulated by 
MESH (Table 6), we found that the autumn flows are decreasing throughout the catch-
ment as a result of future declines in summer precipitation. In addition, the headwater 
hydrometric stations (Sturgis and Kamsack) show significantly reduced flows in summer. 

Table 5. Percentage changes in annual and seasonal median runoff simulated by MESH using an 
ensemble of bias–corrected forcing data from CanRCM4 (RCP8.5) for the future period (2041–2100) 
compared to the base period (1951–2010). 

Changes in % Annual Winter Spring Summer Autumn 
Assiniboine River near Holland 87.33 6.38 59.90 205.79 18.65 
Assiniboine River near Miniota 84.88 0.94 53.44 216.49 4.61 
Assiniboine River at Kamsack 67.11 −0.85 76.94 137.06 5.27 
Assiniboine River at Sturgis 112.09 −13.38 97.21 194.52 −25.00 

Qu’Appelle River near Welby 61.38 11.68 46.91 149.49 25.18 
Souris River at Wawanesa 133.46 24.29 69.19 315.40 52.04 

Souris River near Westhope 152.91 29.23 103.10 330.68 52.04 
Souris River near Sherwood 130.81 44.93 141.66 235.31 81.80 
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Figure 6. Comparison of the median of 60–year daily river flows in the ARB for a baseline (1951–
2010) in blue and future (2041–2100) in red. These hydrographs were generated using the MESH 
hydrological model run with the 15–member ensemble of bias–corrected CanRCM4 data (RCP sce-
nario 8.5). Solid lines represent the ensemble mean values. 

Table 6. Non–parametric Mann––Kendall (MK) test and Sen’s slope estimator results for the median 
of annual and seasonal runoff simulated by MESH using an ensemble of bias–corrected forcing data 
from CanRCM4 (RCP 8.5) from 1951 to 2100. 

  
Mann––Kendall 

Trend Test 

Mann–
Kendall 
Statistics 

Normalized 
Test 

Statistic 
p–Value  Sen’s Slope 95% Confidence Interval 

   (S) (Z)   Min Max 
Annual Holland Increasing 6643 10.79 2.20 × 10−16 0.3651 0.3085 0.4229 

 Miniota Increasing 6369 10.35 2.20 × 10−16 0.2128 0.1743 0.2543 
 Kamsack Increasing 5581 9.07 2.20 × 10−16 0.0268 0.0213 0.0321 
 Sturgis Increasing 6361 10.34 2.20 × 10−16 0.0112 0.0094 0.0129 
 Welby Increasing 6229 10.12 2.20 × 10−16 0.0635 0.0536 0.0753 
 Wawanesa Increasing 6705 10.89 2.20 × 10−16 0.1221 0.1017 0.1441 
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 Westhope Increasing 6715 10.91 2.20 × 10−16 0.0938 0.0789 0.1100 
 Sherwood Increasing 7353 11.95 2.20 × 10−16 0.0224 0.0187 0.0268 

Winter Holland Increasing 7207 11.71 2.20 × 10−16 0.0836 0.0720 0.0959 
 Miniota Increasing 7322 11.897 2.20 × 10−16 0.0451 0.0393 0.0514 
 Kamsack Increasing 7857 12.766 2.20 × 10−16 0.0091 0.0082 0.0100 
 Sturgis Increasing 8282 13.463 2.20 × 10−16 0.0014 0.0013 0.0016 
 Welby Increasing 6487 10.54 2.20 × 10−16 0.0178 0.0153 0.0207 
 Wawanesa Increasing 7306 11.871 2.20 × 10−16 0.0280 0.0244 0.0322 
 Westhope Increasing 7391 12.009 2.20 × 10−16 0.0219 0.0187 0.0254 
 Sherwood Increasing 7987 12.978 2.20 × 10−16 0.0104 0.0091 0.0118 

Summer Holland Increasing 2157 3.5035 0.0004593 0.1271 0.0597 0.1959 
 Miniota Increasing 598 0.97011 0.332 0.0168 −0.0170 0.0497 
 Kamsack Decreasing −846 −1.3731 0.1697 −0.0047 −0.0119 0.0020 
 Sturgis Decreasing −3410 −5.5396 3.03 × 10−8 −0.0081 −0.0114 −0.0052 
 Welby Increasing 4119 6.6917 2.21 × 10−11 0.0347 0.0256 0.0439 
 Wawanesa Increasing 3754 6.0986 1.07 × 10−9 0.0655 0.0468 0.0843 
 Westhope Increasing 4378 7.1126 1.14 × 10−12 0.0388 0.0296 0.0491 
 Sherwood Increasing 6041 9.8151 2.20 × 10−16 0.0128 0.0108 0.0151 

Spring Holland Increasing 7417 12.051 2.20 × 10−16 0.9961 0.8341 1.1781 
 Miniota Increasing 6858 11.142 2.20 × 10−16 0.4786 0.3995 0.5735 
 Kamsack Increasing 5471 8.8887 2.20 × 10−16 0.0922 0.0721 0.1131 
 Sturgis Increasing 5531 8.9862 2.20 × 10−16 0.0356 0.0286 0.0426 
 Welby Increasing 7187 11.677 2.20 × 10−16 0.1190 0.1015 0.1371 
 Wawanesa Increasing 6248 10.151 2.20 × 10−16 0.2736 0.2177 0.3362 
 Westhope Increasing 6425 10.439 2.20 × 10−16 0.1868 0.1432 0.2330 
 Sherwood Increasing 7314 11.884 2.20 × 10−16 0.0392 0.0327 0.0477 

Autumn Holland Decreasing −364 −0.58987 0.5553 −0.0054 −0.0237 0.0123 
 Miniota Decreasing −1477 −2.3985 0.01646 −0.0117 −0.0222 −0.0022 
 Kamsack Decreasing −2168 −3.5215 0.0004291 −0.0027 −0.0042 −0.0012 
 Sturgis Decreasing −4487 −7.2912 3.07 × 10−13 −0.0015 −0.0019 −0.0011 
 Welby Increasing 1584 2.5724 0.0101 0.0048 0.0012 0.0083 
 Wawanesa Increasing 3265 5.304 1.13 × 10−7 0.0126 0.0084 0.0169 
 Westhope Increasing 3785 6.149 7.80 × 10−10 0.0103 0.0071 0.0133 
  Sherwood Increasing 4708 7.6491 2.02 × 10−14 0.0053 0.0041 0.0065 

4.2.3. Projected Changes in Extreme Streamflow 
The changes in the magnitude and timing of extreme flows have great importance in 

the ARB. The risk of flooding in the ARB is much higher in the future periods with in-
creasing precipitation in all seasons. Soil moisture at freeze–up is one of the major factors 
affecting spring runoff potential and spring flood risk. The runoff potential is significantly 
affected by the amount of additional snow and spring rains, frost depth at the time of 
runoff, and timing and rate of spring thaw, and the timing of peak flows in the ARB. Fig-
ure 7 illustrates the high and low flow changes per month (1951–2100) with the color cod-
ing of the months. The daily high flows are in the left column and low flows are in the 
right column at the eight hydrometric stations in Figure 7a–h. Spring high flows are sig-
nificantly increased and tend to occur earlier in the year. There is a large increase in the 
range of low flows with a dramatic mid–21st century shift in timing from late winter to 
late summer and throughout the autumn. As winter becomes wetter and precipitation 
occurs more often as rain, winter is no longer the season of minimum flow, and rather the 
timing of low flows reflects the drier summers. 
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Figure 7. The magnitude and timing of daily high flows (left column) and low flows (right column) 
in the ARB at eight hydrometric stations (a–h) derived from the MESH model run with a 15–member 
ensemble of bias–corrected CanRCM4 (RCP8.5). 

5. Discussion 
For discussion, we refer again to the previous studies on the hydrology of the ARB 

and the impact of climate change [6–10]. As mentioned above, all of these studies con-
ducted hydrological modeling using the Soil and Water Assessment Tool. SWAT has been 
applied extensively throughout the world; however, it has limitations when applied to 
cold climates because SWAT simulates captures primarily temperature–driven snowmelt 
processes [24–26]. The MESH model we used, on the other hand, was developed by Ca-
nadian scientists specifically for cold–region watersheds. Among the previous studies of 
the ARB [8,10], the authors used SWAT model that they modified to account for the hy-
drology of prairie pothole wetlands, which fill and spill, resulting in a dynamic contrib-
uting area. There is no indication, however, in the previous studies of the ARB, that SWAT 
was modified to simulate runoff generated during rain on snow events and by snowmelt 
runoff over frozen ground. 

Even though this paper describes research with similar objectives to several previous 
studies, we used a hydrological model that is built for a cold climate. We also simulated 
runoff over a larger part of the basin and at more gauge locations. Therefore, we consider 
our results more relevant and robust. Furthermore, we took a different approach to the 
climate forcing of the hydrological model. Other researchers have derived the climate 
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forcing from a few models and greenhouse gas emission scenarios (SRES and RCP), 
providing a range of future projections reflecting uncertainty related to differences among 
climate models and emission scenarios. We controlled for these two sources of uncertainty 
by using climate forcing from a single RCM and one RCP (8.5). The range of climate and 
streamflow’s generated by a 15–member initial–condition ensemble from CanRCM4 rep-
resents one source of uncertainty—the natural internal variability of the modeled hydro-
climate. This is particularly relevant to the ARB because prior research [27] revelated that 
natural variability is the dominant source of uncertainty for projecting the future hydro-
climate of western Canada. A strong signal of climate variability emerges at a regional 
scale in the interior of large continents. The geographic center of North America falls in 
the ARB, which thus has one of the most continental and variable climates on earth. The 
results that we produced reflect this variability as distinct from the uncertainty arising 
from the use of different climate models and emission scenarios. 

In response to the projected climate change, there is a one–month earlier shift in the 
spring runoff and snowmelt period. Cold season (winter and spring) flows will be signif-
icantly higher. While some model simulations project little change in average warm sea-
son (summer and early autumn) river levels, other projections suggest higher flows in 
response to heavy summer rains. As a warming climate intensifies the hydrological cycle, 
the range of river levels will expand, particularly in winter. High flows are significantly 
increased and will tend to occur earlier in the year. Low flows are also increased, but there 
is a shift in timing from winter to late summer and early autumn. These incremental long–
term changes in runoff, and extreme fluctuations in runoff and precipitation, will have 
impacts that require the adaptation of water resource planning and climate change poli-
cies. 

Interannual to decadal variability and extreme hydrologic events, rather than long–
term trends in mean runoff, present most of the challenges for managing water resources 
and for designing and maintaining water conveyance and storage structures. The changes 
in the severity of extreme hydrological events and seasonal distribution of runoff due to 
climate change will have major impacts on terrestrial and aquatic ecosystems, and on the 
availability of municipal and industrial water supplies [28–30] in the ARB. Low runoff 
will have repercussions for surface water supplies during the season of highest demand. 
Whereas more efficient use of water supplies signifies an important adaptation to a chang-
ing climate, adjustments to water policy, planning and management will be essential 
given the changes in climate and water supplies projected by our research. 

6. Conclusions 
Research on climate change impacts on water supplies is more challenging in the 

ARB than in other river basins in Canada, given the extent of streamflow regulation and 
the extreme continental climate. The impoundment and diversion of river water cause 
fluctuations in water levels that are independent of the variation in climate, and thus are 
a source of noise and uncertainty in our attempt to determine the response of the hydro-
logical cycle to climate change. The availability of more naturalized streamflow data 
would facilitate further research on the impacts of climate change on the hydrology of the 
ARB. There is nothing we can do, however, about the extreme continental climate. The 
most variable climate on Earth is in the interior of the two largest continents: Eurasia and 
North America. The geographic center of North America is in the ARB. The extreme var-
iability between years and decades obscures trends in climate and hydrology that are in-
dicative of the regional response to global climate change. Thus, even though we can de-
tect trends in climate and water variables, and project future changes, these generally lie 
within the large range of natural variability. 
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