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Abstract: Road defects are important factors affecting traffic safety. In order to improve the identifi-
cation efficiency of road diseases and the pertinence of maintenance and management, intelligent
detection technologies of road diseases have been developed. The problems of high cost and low
efficiency of artificial inspection of road diseases are solved efficiently, and the quality of road con-
struction is improved availably. This is not only the guarantee of highway quality but also the
guarantee of people’s lives and safety. This study focuses on the intelligent detection of road disease
and summarizes the commonly used detection equipment in the intelligent detection technology
of road diseases, which include cameras, GPR, LiDAR, and IMU. It systematically describes the
evolution and development of road disease detection technology. This study analyzes the common
problems existing in road disease detection technology and proposes corresponding improvement
suggestions. Finally, the development trend of road detection technology is discussed, which has
practical significance for the future development of road detection technology.

Keywords: intelligent transportation; defects detection; deep learning; image processing

1. Introduction

The quality of roads can directly affect the development of the city. With the erosion
of roads caused by rain and vehicles, various defects may appear on the road surface, such
as cracks, ruts, grooves, and subsidence [1]. The common types of pavement defects are
shown in Figure 1.

Cracks are one of the most common diseases on the pavement. It mainly has transverse
cracks, longitudinal cracks, and reticular cracks. It is extremely harmful to the road
surface. Especially in winter and spring, due to the infiltration of rain and snow water,
the road disease that is already in a crack state is more serious under the action of driving
load [2]. Ruts are the permanent grooves in the road surface under the repeated action
of vehicle loads [3]. This is mainly due to the unreasonable design of the asphalt mixture
gradation or insufficient compaction during construction. This can make the road surface
drainage poorly on rainy days, and the driving vehicle is prone to drifting and affecting
the safety of high-speed driving. The grooves [4] are mainly formed due to the lack of
timely maintenance after the surface layer is cracked, which has the potential to cause a flat
tire in a moving vehicle and cause a traffic accident. These defects can bring damage to
the vehicles on the road. Uneven or irregular roads can lead to tire wear. What is more, it
can lead to a flat tire and cause a traffic accident. To ensure driving safety, the funding for
road maintenance is increasing every year [5]. Identifying road defects timely is important
for pavement maintenance. Manual inspection is intuitive with the high cost and low
efficiency. In order to solve this problem, various intelligent detection methods for road
surface defects detection have been developed [6]. However, there is a lack of studies
summarizing the advantage and disadvantages of those intelligent detection methods.
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Figure 1. (a) The diagram of crack; (b) The diagram of rut; (c) The diagram of groove; (d) The dia-
gram of subsidence. 
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Figure 1. (a) The diagram of crack; (b) The diagram of rut; (c) The diagram of groove; (d) The diagram
of subsidence.

Therefore, this paper conducted a comprehensive literature review on intelligent road
defects detection technology. Firstly, the data collection methods of pavement defects,
including cameras, ground-penetrating radar (GPR), Light Detection and Ranging (LiDAR),
and an inertial measurement unit (IMU), were introduced. The data processing methods, in-
cluding fitting, a support vector machine (SVM), convolutional neural network (CNN), and
decision tree, were then discussed. Finally, it summarized and prospected the development
of road defects detection technology.

2. Data Collection

Data collection is the first but important step for road defects detection. Road defects
data can be obtained by different devices, such as cameras, ground-penetrating radar,
LiDAR, IMU, etc. [7–10], as shown in Figure 2.
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2.1. Camera

Many researchers used cameras for pavement image collection [11–15]. The image
can then be used for pavement texture analysis [16], pavement crack detection [17], and
asphalt mixture crack detection [18]. Y. Du et al. [19] collected a large number of pavement
defect images, including timestamp and location information, using car-mounted cameras.
Repeated collection and overlapping of pavement defects images were found during the
collection process. Therefore, a feature matching and image mosaic method for pavement
disease detection based on multi-vehicle images was proposed. Tang [20] developed
intelligent road inspection equipment with existing road inspection vehicles installed
with cameras. The qualitative and quantitative assessment of road surface quality can
be then achieved. Du et al. [21] used the high-resolution industrial cameras installed on
vehicles to collect pavement images. The detection and classification method of pavement
diseases based on the You Only Look Once (YOLO) network was combined. Grabowski,
D. et al. [22] proposed a method for estimating pavement conditions based on images
obtained from onboard cameras. A set of algorithms was created to process images from
depth cameras and RGB (red, green, blue) cameras. The neural network model was
trained by video samples from the camera for road defects classification. Studies showed
that the processing accuracy of the application of digital image processing technology
reached more than 80%. Jahanshahi, M. R. et al. [23] used RGB-D sensors to detect and
quantify pavement defects. The sensor system consisted of an RGB color image, an
infrared projector, and a camera as a depth sensor. Combined with the corresponding
algorithm, the automatic detection of road diseases such as cracks and potholes can be
completed. In addition, the global positioning system was combined with the proposed
system to locate the detected defects. It can be used as an auxiliary sensor system for
road surface assessment vehicles. Cui, X et al. [24] used profiling and digital image
technology to achieve a three-dimensional reconstruction of asphalt pavement contours.
Image processing technology helped to locate the precise coordinates of each point on
the model. According to the contour method, a comprehensive calculation program for
texture depth was established.

With the development of unmanned aerial vehicles (UAVs), more and more pavement
engineers or researchers are starting to install cameras on UAVs for the detection of various
road diseases [25–27], as shown in Figure 3. Junqing, Z. et al. [28] proposed that the
road detects information were collected by drones using high-resolution cameras. A
drone platform for road surface image acquisition was assembled, and the flight settings
were studied to obtain optimal image quality. The acquired images were processed and
annotated for model training. Combined with the YOLOv3 algorithm, the average accuracy
(MAP) of data processing was 56.6%. Zhijian, M. et al. [29] analyzed the development
technology of unmanned aerial vehicles in the field of intelligent transportation to improve
the accuracy of road surface disease detection. A framework for road disease recognition
and perception based on drones was constructed. The Yuneec H520 UAV was used to collect
road surface image data, and the road surface disease image preprocessing technology
based on wavelet threshold transformation was analyzed. Inzerillo, L. et al. [30] used
data collected by drones to analyze structural self-motion (SfM) techniques at different
heights. This technology was applied to old pavements on the campus of the University
of Palermo. The technology accurately identified pavement diseases and developed an
integrated approach to optimizing pavement management strategies.

Cameras are widely used in pavement disease detection technology. It has a high
dynamic range and resolution, and it is inexpensive. However, the imaging of the camera is
greatly affected by the lighting conditions of the road surface under test. The light intensity
is too strong, too weak, or the light is uneven and is not conducive to imaging. In order to
ensure that the system can work properly in any environment, auxiliary lighting equipment
needs to be configured to provide uniform lighting conditions and ensure image quality.
Moreover, the camera provides only 2D information and lacks depth information, which is
not conducive to a more comprehensive analysis of the problem [29,31,32].
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2.2. GPR

Compared to the camera, GPR detection technology [33,34] is more efficient for identi-
fying roadbed diseases. This method does not need to destroy or excavate road surfaces
and can effectively overcome the concealment of roadbed diseases.

Road disease detection is an important basis for road maintenance and maintenance.
Although the conventional drill core sampling method can achieve the purpose of pavement
inspection, the detection results of this method are not comprehensive, and the damage
to the pavement is large. As an efficient non-destructive testing technology, ground-
penetrating radar offers the possibility of non-destructive testing of road diseases. Zhu
et al. [35] discussed the effects of diseases such as road surface reflection cracks, subsidence,
and uneven pavement on ground-penetrating radar image results, as shown in Figures 4
and 5. Based on the influence of diseases on the image results of ground-penetrating radar
and the detection results of ground-penetrating radar, the types and causes of road lesions
in a certain section of the highway were successfully analyzed. Gao, J. et al. [36] used
ground-penetrating radar (GPR) for road surface damage detection. Data processing in
conjunction with the faster R-ConvNet algorithm to complete the task. The results showed
that the accuracy was 89.13%. The stability of this model was better under different road
structures. One of the problems encountered when conducting non-destructive testing of
the road surface with ground-penetrating radar is the detection of multi-layered reflectors
in the echoes of ground-penetrating radar. Lahouar, S. et al. [37] solved this problem by
iteratively detecting strong reflections in GPR signals by using threshold or match filter
detectors. The detected pulses were then used in the reflection model to synthesize a signal
that is “similar” to the measured ground-penetrating radar signal in the least-squares sense.
The synthesized signal was then subtracted from the measured signal to show the faint
reflections that were masked. Then these reflections were detected iteratively using the
same method. After testing, the study can be successful in disease detection. To test and
evaluate the field application effect of asphalt pavement ground-penetrating radar rapid
detection technology, Zhang et al. [38] conducted on-site test research based on the key
points and implementation process of on-site detection technology. They relied on physical
engineering and analyzed the accuracy of the detection results. The results showed that the
compaction of the asphalt surface layer detected by ground-penetrating radar on-site was
relatively accurate. The relative error can be controlled by 1%. The on-site detection results
of the pavement disease ground penetrating radar were consistent with the scoring results,
and the scanning image of the ground-penetrating radar can clearly reflect the structural
condition of the asphalt pavement. To study the defect detection and identification of the



Sustainability 2022, 14, 6306 5 of 19

road surface by ground-penetrating radar (GPR), Huang et al. [39] proposed a method with
obvious effects on improving abnormal resolution and singular value decomposition by
embedding metal plates at the interface of each layer in the surface of the road surface. It
was applied to road field detection. The results showed that this can reduce the amount of
work processing data and increase the accuracy of the detection.
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Ground-penetrating radar is a non-destructive and fast method of pavement detection.
It mainly has the following characteristics [40]. Its adaptability is strong. Geological radar
can be safely applied to the city or construction site of the engineering site by the use of
non-destructive testing technology. The working conditions are more relaxed. Its anti-
interference ability is strong, and its anti-electromagnetic interference ability is strong [41].
It can work in various noise environments in the city and is less affected by the bad
environment. Its positioning is fast and accurate. It has better inspection depth and
resolution and can provide real-time cross-sectional views directly with clear and intuitive
images [42]. It uses a laptop to control the acquisition, recording, storage, and processing
of data for ease of portability. However, the big data obtained by the ground-penetrating
radar delay the processing time, which leads to problems such as subjectivity in data
interpretation [43,44].

2.3. LiDAR

LiDAR is an emerging device for road surface defects detection with the unique
advantages of high precision, high resolution, high automation, and high efficiency [45,46],
as shown in Figure 6.

Zhang et al. [47] conducted data comparison and analysis on the stability of the speci-
fied laser road condition detection equipment from three angles (flatness, surface section
construction depth, and rut) in ordinary roads and special test roads. The applicability of
laser detection was demonstrated. Suggestions and methods for improving the reliability
of equipment detection were proposed. Zhao [48] proposed a change detection method
based on a digital elevation model and density map by using point cloud data obtained
by vehicle-mounted LiDAR scanning. After verification, the detection accuracy of this
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method can reach 93.1%. M.Bellone et al. [49] detected the uneven position on the road by
studying the driver warning system. LiDAR was used to generate the environment in the
form of a three-dimensional (3D) point cloud, which was analyzed and processed based on
a normal vector and presented to the driver in the form of a traversable grid. Li et al. [50]
adopted line laser technology to construct a 3D data acquisition system for pavement and
collected high-resolution (0.5 mm) 3D pavement depth data. Yan et al. [51] used LiDAR to
detect road irregularity information. Road environmental information was extracted and
segmented by the network structure of random sampling and local feature aggregation. In
order to solve the problem of the loss of key features in the process of road environment
information segmentation, a local feature aggregator was added to increase the acceptance
domain of each 3D point cloud to retain geometric details. The results showed that the
method could accurately identify the road environment information, and the recognition
accuracy of the convex hull, pit, and drivable area can reach 71.87%, 82.71%, and 93.01%,
respectively. Jiang et al. [52] took advantage of the three-dimensional data of the pavement
to propose an enhanced dynamic optimization algorithm to improve crack segmentation.
The four most common types of pavement cracks (longitudinal, transverse, block, and
crocodile-like) were tested. Experimental results showed that the average calculation time
of the algorithm was greatly shortened. At the same time, cracks in multiple directions
were better handled, and the accuracy of crack segmentation was improved. Song [53]
took the three-dimensional line laser technology as the research object and analyzed its
system composition and working principle. Comprehensively engineering examples were
introduced to discuss its application effect in road rutting detection and the factors af-
fecting the detection results so as to provide a reference for road rutting detection. Guo
et al. [54] applied the new three-dimensional laser detection technology with high precision
and high density, and the indoor rutted pattern simulation equipment was developed to
quantitatively evaluate the detection accuracy and reliability of the non-uniform 13-point
laser rutting detection equipment for the problem of rut depth. The results showed that
the detection error and dispersion of the 13-point laser detection equipment for the bump
type rut were significantly higher than those for the detection of no bump rut, and the
relative error exceeded 5%. Hu et al. [55] used a non-uniform 13-point laser detection
device to obtain cross-sectional data from 110 sets of measured rutted vehicles. The effect
of lateral offset of multi-point laser detection vehicles on the error of depth detection of
rutted vehicles in different forms was studied. To evaluate the pavement quality completely
and intuitively, Wang et al. [56] proposed a three-dimensional pavement detection method
based on a laser displacement sensor and gyroscope. The results showed that the method
can measure the pavement shape of the entire lane with high detection accuracy and fast
detection speed.
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The detection distance of LiDAR is long, and the angle measurement accuracy is
high. What is more, the resolution is high, and the viewing angle is wide. However, it is
susceptible to natural light and thermal radiation, and it is greatly disturbed in weather
such as rain and fog, wind and sand, etc. The working environment requirements are high,
and the cost is high [57–59].

2.4. IMU

The IMU installed on the detection vehicle can detect whether the road surface is
damaged by analyzing the data of the acceleration sensor, angular velocity sensor, and
other components [60–62], as shown in Figure 7. Acceleration changes, angular velocity
changes, and attitude changes in the process of vehicle movement can all be collected by
IMU, which requires a small amount of calculation and can achieve high accuracy [63–65].
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M. et al. [66] presented a road surface defect identification system based on 3D ac-
celerometers, a global positioning system (GPS), and video modules deployed on vehicles.
Anthony et al. [67] applied IMU and laser to evaluate road roughness and generate road
profile, improving the accuracy of vehicle-based longitudinal road profilometer in road
roughness and large texture evaluation. Christodoulou et al. [68] inputted acceleration and
angular velocity data into the designed artificial neural network to distinguish potholes on
the road, and the detection accuracy was about 90%. In order to solve the drift problem of
velocity and avoid affecting the accuracy of calculation and target positioning, a method for
velocity and displacement calculation based on stable numerical integration was proposed
by Kong et al. [69] The results showed that this method can reduce the drift error and
improve the accuracy of the integral results.

IMU is an autonomous system that does not rely on any external information and
does not radiate energy to the outside. It is well concealed and is not affected by external
electromagnetic interference. Plus, it can work at all times. It has a high data update
rate, short-term accuracy, and stability. However, because the navigation information is
generated by integration, the positioning error increases with time, it requires a long initial
alignment time before each use, and the price of the device is expensive [70–73].

2.5. Section Summary

The advantages and disadvantages of each device are summarized here, as shown in
Table 1.
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Table 1. Overview of data acquisition devices.

Device Advantage Disadvantage

Camera
1. It has high dynamic range
and resolution.
2. The price is inexpensive.

1. It affects by the lighting conditions.
2. It lacks depth information.

GPR

1. Its anti-interference ability is strong
and anti-electromagnetic interference
ability is strong.
2. It less affected by the
bad environment.
3. It has better inspection depth
and resolution.

1. The big data obtained by the ground
penetrating radar delay the processing
time, which leads to problems such as
subjectivity in data interpretation.
2. The detection depth needs to
be improved.

LiDAR

1. The detection distance is long and
the angle measurement accuracy
is high.
2. The resolution is high and the
viewing angle is wide.

1. It is susceptible to natural light and
thermal radiation.
2. The working environment
requirements are high.
3. The price is expensive.

IMU

1. It is not affected by external
electromagnetic interference.
2. It can work all times.
3. It has a high data update rate,
short-term accuracy and stability.

1. The positioning error increases
with time.
2. It requires a long initial alignment
time before each use.
3. The price is expensive.

3. Data Processing

Image processing technology is widely used in many research fields such as
medicine [74,75], aerospace engineering [76,77], civil engineering [78,79], meteorology [80],
biological science [81], transportation science [82]. The commonly used data processing
methods in the field of road disease intelligent detection include digital image processes,
fitting, support vector machines (SVM), neural networks, and so on.

3.1. Digital Image Process

Methods based on basic image analysis are the more common methods. This method
generally does pretreatment work, such as enhancement of the image first. Then the targets
are segmented and extracted by thresholds [83]. Finally, the targets are identified and
classified. It enables a specific quantitative analysis of the differentiated disease targets, as
shown in Figure 8.
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and external forces. Wang et al. [84] proposed a road crack automatic identification and
evaluation system based on digital image processing so that the degree of road cracks can
be more quickly and accurately determined. The appropriate treatment methods were
developed. To improve the recognition speed and recognition rate of highway pavement
crack automatic detection and recognition technology based on digital image processing
technology, Xiao et al. [85] proposed an adaptive rapid denoising method for enhancing
pavement crack images through equalization processing. It can improve the recognition
speed. Xu et al. [86] achieved automatic identification of pavement diseases through image
preprocessing, disease detection, morphological operations, disease localization, and classi-
fication. After comparing and analyzing various edge detection algorithms, the adaptive
threshold obtained by the OTSU algorithm was proposed as a high threshold input into the
collaborative operation method of Cany’s algorithm. It improved the accuracy of disease
detection by about 10% compared with traditional edge detection algorithms. This further
improved the practicality of image-based pavement disease detection solutions.

However, due to the particularity of pavement images and the weak signal of disease
targets, although researchers have proposed many different treatment methods, there has
not been a common and effective method to detect crack diseases on various pavements.
This is also a major problem that has plagued researchers. For example, the general disease
crack boundary has a certain marginality, so the edge detection method can be used. Abrupt
changes in grayscale are detected by using some suitable edge detection operators in the
image, reinforcing the information of the crack target. What is more, the overall gray level
of the image is corrected so that the light intensity of the entire image becomes uniform,
and then use methods of thresholds to segment the target. However, the limitation of these
methods is that the crack strength is uncertain. There are too many changes, and it is not
easy to divide the target. Moreover, there are too many noise targets that are split, which
has a great impact on the subsequent processing results [87–90].

3.2. Fitting

Road diseases are complex and diverse. There are often many thin and weak cracks in
terms of cracks alone, and there are also a large number of reticulated cracks [91].

Detection has become difficult by simply taking thresholds to segment the general
approach, and disease information must be extracted and identified by other special
methods [92]. A single crack is linear. If its width is ignored, it can be thought of as a
curve. From the curve fitting theory, it can be seen that the curve can be approximated
by segmented straight line segments [93]. Therefore, the possible crack pixels can be
considered extracted directly from the grayscale image. Then the cracks are fitted from
these points by fitting the method. Finally, the fitted crack target is identified. The false
target is discarded, leaving the real crack target [94], as shown in Figure 9.
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On the basis of the demonstration and analysis of the depression characteristics
of the pavement, Wang et al. [95] proposed the depth, area, edge density factor, slope
point identification factor, and other judgment indicators that describe the depression
characteristics. By using the fitted datum method, a Matlab automatic identification
program was prepared. The correct identification of known pits and subsidences in the
400 m test section was realized. Jianfeng Lu et al. [96] proposed an automatic detection and
recognition method for road cracks based on a multi-level fitting mechanism. Firstly, the
image was divided into small windows. It can be assumed that it is internal and contains a
crack. The crack point was extracted, and then these points were synthesized into a straight
line by using the method of fitting a straight line. In the process of fitting a straight line
by moving the window continuously, these lines were continuously combined to form a
composite curve (cracks) and form a multi-level fitting mechanism. A large number of
experimental data showed that the reliability, stability, and universality of this method
were satisfactory.

3.3. SVM

The support vector machine (SVM) is a binary classification model algorithm based on
supervised learning [97,98]. The basic principle of operation of the algorithm is to find an
optimal classification hyperplane that maximizes the distance between the two samples at
the lower edge of this hyperplane. The greater the edge distance, the more the two types of
samples are divided, and the results of the classification are better [99]. However, there are
usually more than two types of diseases on the road surface, so it is necessary to construct
a suitable multi-classifier. At present, the methods of constructing SVM multi-classifiers
mainly include the direct method and indirect method [100].

(1) Direct method

The direct method is to modify the objective function directly. Multiple classification
questions are combined into one optimization problem. By solving the optimization
problem, the multi-classification problem can be solved at once. Although this solution
seems simple and easy to understand, it is difficult to implement. The calculation process
is complex, and the generalization is poor.

(2) Indirect method

The idea of the indirect method is to achieve the construction of multiple classifiers
by combining a variety of binary classification methods. There are two commonly used
methods: one-to-many and one-to-one. This is shown in Figure 10.
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Wang [101] used the support vector machine (SVM) classification algorithm to study
the classification and identification of different diseases. In order to solve the optimization
problem of c and g of the super parameters of the SVM algorithm, the mesh search method
and the particle swarm optimization algorithm are used to optimize the parameters of
the SVM. The classification prediction results of the SVM model obtained by using these
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two optimization algorithms were 88.333% and 86.667%, respectively. It is found that
although the grid search method can still meet the detection requirements, it runs slowly.
Although the particle swarm algorithm increased speed, it was easy to fall into the local
maximum. Thus, an adaptive variation particle swarm optimization (PSO) algorithm was
proposed to improve the original algorithm. The classification prediction of the improved
SVM model was 91.667%, which improved the disease recognition rate. To solve the
problems of repeated acquisition and multiple overlaps of the same disease in the detection
of pavement diseases by cameras, Y. Du et al. [19] proposed a feature matching and image
Mosaic method for pavement disease detection based on multi-vehicle images. The mean
Euclidean distance (MEUD) and matching rate (MCR) were constructed to identify the
duplication between two images. Then support vector machines were used to determine
the thresholds of MEUD and MCR. The algorithm solved the problem of road surface
disease repetition effectively and provided a reliable method for road surface disease
detection in a multi-vehicle cooperative environment.

3.4. Neural Network

In recent years, as deep learning has been recognized, neural networks as the basis
of deep learning have become the hottest research direction. [102–104] At present, the
computing power of neural networks is becoming stronger and stronger, prompting dif-
ferent fields and disciplines to try to use neural networks to solve some problems in this
field [105–109]. Especially in the field of image processing [110,111], in view of its large
amount of computation and a large amount of data, neural networks can easily solve some
of the problems encountered. Neural networks are essentially simplified human brain
neuronal systems, connecting many neurons through different connection methods to form
a neural network similar to human brain nerves. This is shown in Figure 11 The neural
network is an adaptive, nonlinear data processing system consisting mainly of a multitude
of interconnected processing units [112,113]. It processes information obtained from the
outside world in a way that is similar to the brain’s neural thinking process, and it can
process data faster and more accurately than traditional artificial intelligence. Therefore, it
is particularly suitable for classification, recognition, and other issues in image processing.
Many scholars use neural networks to determine whether road images are diseased. The
diseased images are extracted from massive amounts of data, reducing the workload for the
next disease detection. At the same time as liberating manpower, it is possible to accurately
and quickly select pictures containing diseases, and the accuracy rate is almost close to the
level of manpower [114–116].
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A. Riid et al. [117] used a computer vision algorithm to automatically detect road
surface diseases. Based on several existing image classifier structures, a deep learning
convolutional neural network model was developed. In addition, a manual preprocess-
ing step was introduced to train the carefully selected frame sets and manually digitize
them to ensure adequate detector performance. The corresponding experimental results
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showed that the implementation of the detector was successful. The software was easy to
update, and hence it would soon be ready for deployment, further testing, and its eventual
application for improving highway road pavement conditions. Chang Ying et al. [118]
can detect road disease types and automatically identify road conditions through convolu-
tional neural networks and intelligent algorithms, helping road maintenance departments
carry out daily maintenance work efficiently. Based on a convolutional neural network,
a multi-category road surface disease recognition method was proposed. This method
can detect and recognize many kinds of road diseases, including cracks, potholes, and
looseness. The performance of the proposed recognition method was evaluated through
the pavement disease data set, and the recognition accuracy was confirmed to be up to
0.9438. However, this method had an obvious detection effect on large objects such as
pits and ponds, while the detection accuracy of small cracks needed to be improved. D.
Yuchuan et al. [21] proposed a pavement disease detection and classification method based
on the YOLO network to solve the problem of pavement disease detection and classification.
Target detection framework YOLO network based on deep learning was used to predict
possible disease locations and disease categories. The comprehensive detection accuracy
reached 73.64%. The processing speed reached 0.0347 s/PIC. The applicability of the model
under various illumination conditions was also discussed. Under proper illumination
conditions, the performance of the method was improved significantly. However, when
the main information on the road surface was blocked by shadows, detection became more
difficult. This aspect of work needs to be further improved. X. Lei et al. [119] proposed
a deep learning method based on a pre-trained neural network structure for real-time
identification and positioning of different diseases according to the interactive panorama of
the urban road network. Eight types of diseases were recorded using Yolov3 deep learning
architecture. A decision tree was designed to assess disease changes over time. Experi-
mental results showed that the average accuracy of the proposed algorithm was 88.37%.
Because street view maps provided a time-by-time view of disease conditions, they can help
departments arrange repairs more efficiently and efficiently. In addition, street view images
were inevitably obscured by obstacles such as trees and vehicles, which still needed to be
improved. J. Gao et al. [36] proposed a deep learning method for faster R-Convnet. The
optimal model was determined by training, verification, and testing with massive images.
The accuracy of the faster R-Convnet was 89.13%. The stability of the model under different
pavement structures was desirable. The performance of the faster R-Convnet was not
obviously influenced by the pavement structures and materials. However, its performance
was influenced by the transmitting frequencies of the GPR due to the detail loss of the
pavement distresses in the GPR images. Tian Yang et al. [120] adopted the fast regional con-
volutional neural network (Fast-RCNN) method to organically combine image recognition
technology, a global positioning system (GPS) position information, and vehicle-mounted
signal information. Road pictures collected by road inspection vehicles were automatically
identified. The Fast-RCNN model was established for training and testing based on disease
characteristics, and the performance of the model was tested by an automatic partitioning
algorithm. Experimental results showed that the recognition accuracy of the model could
reach 84.9%. This can effectively improve the efficiency of road disease identification.
The road disease model based on FastRCNN had the characteristics of high recognition
accuracy, fast response speed, strong system portability, and low cost. It can be seamlessly
deployed on mobile terminals and mobile phones. S. Liang et al. [121] adopted a detection
method based on faster R-CNN to automatically identify and locate defects such as road
cracks, potholes, oil stains, and spot surfaces. The optimal faster R-CNN was obtained
through analysis and training. Finally, the stability and superiority of this method were
verified by experiments and comparative studies. Compared with the CNN model, the
faster R-CNN model was more efficient in identifying and locating road surface diseases.
However, it was impossible to classify the types of cracks based on their cause just by using
pavement images. In further works, other pavement data, such as infrared scanning and
ground-penetrating radar, should be utilized to help the faster R-CNN classify the types
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of cracks based on their cause. Guan. J.C. et al. [122] proposed an improved u-net deep
learning structure to efficiently complete the segmentation of cracks and potholes in the
actual environment and reduce the amount of calculation, which introduced the detachable
depth convolution for the segmentation of cracks and potholes. This method was tested on
asphalt pavement in different environments. The results showed that the accuracy of the 3D
road image was up to millimeter level. The automatic detection of other pavement diseases
based on this framework needs further development and improvement in future research,
especially the automatic detection of three-dimensional pavement diseases such as rutting
and spalling. Xianyan Tang [20] proposed that the convolutional neural network intelligent
algorithm can be used to train the road video images collected by inspection vehicles, which
can effectively identify various types of road diseases such as cracks, pits, cracks, crushing,
and repair. Pavement diseases also successfully developed intelligent identification and
maintenance management information system platform, using the information of road
disease in maintenance management platform. It had positive data value for analyzing the
cause of road disease and making road maintenance strategies. Yu Jun et al. [123] proposed
an intelligent detection system of road surface disease based on deep learning for highway
safety. In the abnormal detection stage, the convolution encoder was constructed to extract
the disease map from a large number of road surface images. In the stage of anomaly
extraction, the feature of road surface disease was extracted by the threshold segmentation
method. In the stage of highway pavement disease classification, ResNet structural training
model was used to determine the classification of highway pavement disease. The results
showed that the method can train the model for about 3 min and the classification accuracy
was above 90%. This greatly improved the efficiency of disease detection.

3.5. Case Introduction

As urbanization accelerates and urban populations proliferate, the number of urban
roads and their ancillary facilities increases, which poses challenges to municipal road
management. For the custody enforcement unit, the manual-based inspection method is
not only inefficient, but also the safety of the staff during the inspection process is difficult
to guarantee. For industry regulatory units, the manual-based inspection method is too
inspection results are difficult to guarantee. The result of the inspection is unstructured
data, which is difficult to use to promote the fine management of road facilities. Therefore,
Heze City, Shandong Province, China, implemented the “Urban Municipal Road Rapid
Inspection System”. The system was based on artificial intelligence vision AI technology
innovation and development, using artificial intelligence technology to automatically patrol
municipal roads. Compared with the traditional inspection method, the work efficiency
was increased by 70%, which not only saved labor but also ensured the safety of the staff.
This system consisted of an onboard high-definition camera, an edge computing analysis
all-in-one machine, and an artificial intelligence visual recognition platform. Roads can
be inspected automatically. As long as the patrol vehicle is within 100 km per hour, it can
automatically identify 12 road diseases in 3 lanes at the same time. The system currently
supports the detection of 12 types of asphalt and cement pavement diseases, including
transverse cracks, longitudinal cracks, strip repair, cracks, exposed bones, looseness, ruts,
potholes, block repairs, subsidence, broken markings, and road area water. It can be further
updated and iterated according to the actual use needs and road health characteristics of
pavement disease types. The rapid inspection and identification of vehicles with problems
such as sidewalk disasters, broken guardrails, damaged anti-collision barrels, and green
plant lodging will be gradually realized.

3.6. Section Summary

This section described several approaches to image processing, including traditional
digital image processing techniques, fitting, SVMs, and neural networks. Currently, image
processing technology is characterized by high speed and high precision, which liberates
human resources. However, there are still deficiencies. The current problems are mainly
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incomplete identification of disease types, which needs to be further developed and im-
proved in future research. In addition, street view images are inevitably obscured by
obstacles such as trees and vehicles, and the impact of these obstacles on subsequent image
processing still needs to be improved.

The advantages and disadvantages of each method are summarized here, as shown in
Table 2.

Table 2. Overview of data processing.

Device Advantage Disadvantage

Digital image
processing

1. It has high accuracy and is easy
to operate.
2. Image quality will not be degraded
because of image storage, forwarding,
copy and other operations.

1. The processing speed is
relatively slow

Fitting
1. It models quickly.
2. It works well for
simple relationships.

1. It is difficult to model
nonlinear data.

SVM

1. It does not need to rely on the
entire data set.
2. It can solve higher
dimensional problems.

1. It is not very efficient when
you have a lot of samples.

Neural network
1. It has high accuracy
of classification.
2. It has associative memory function.

1. It needs a lot of parameters.

4. Conclusions

The study summarized the content of intelligent pavement disease detection technol-
ogy. From the perspective of research significance, the development history and significance
of intelligent pavement disease detection were briefly described. Several methods of acquir-
ing road disease image data and data processing methods in the field of intelligent disease
detection were introduced. There was still one shortcoming in this article. This paper lacked
a summary of pavement maintenance. The maintenance of roads is becoming increasingly
heavy. The limited design life, increasing traffic flow, and overload state operation test the
highway maintenance work. Once the security maintenance cannot be completed in time,
it will cause huge economic loss and negative social impact. Therefore, the construction of
a perfect maintenance system for traffic road development has far-reaching significance.

The research on intelligent detection of road diseases has been relatively mature for
the identification of cracks, but other road disease detection methods are not mature. It is
necessary to ensure the practicability and universality of the research. Existing technologies
should be moved from the laboratory to practical engineering applications, and they need
to be able to cover as many diseases as possible. Of course, with the increase in the types of
diseases studied, the requirement for the corresponding technology also increases, which
needs to overcome difficulties and actively solve the problem. Moreover, most of the
studies are limited to urban roads, and subsequent studies need to take rural roads into
account. In addition, a data management platform needs to be established to record disease
types, disease locations, and detection times to provide a complete platform for big data
collection, storage, sharing, and application.

In general, the basic theoretical framework related to the intelligent detection of road
diseases has been relatively perfect, and various image processing technologies have also
been relatively mature. However, considering the actual engineering demand, we still need
to constantly absorb new methods of theory and technology to achieve the universality
and high accuracy of road disease intelligent detection.
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