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Abstract: Facing the sustainable use of electric power resources, many countries in the world focus on
the R&D investment and application of electrochemical energy storage projects (i.e., EESP). However,
the high R&D cost of EESP has been hindering large-scale industrial promotion in the energy-intensive
manufacturing industry represented by the tobacco industry. Reducing and controlling the R&D cost
has become an urgent problem to be solved. In this context, this paper innovatively proposes a multi-
technology driven R&D cost improvement scheme, which integrates WBS (i.e., Work Breakdown
Structure), EVM (i.e., Earned Value Method), BD (i.e., Big Data), and ML (i.e., Machine Learning)
methods. Especially, the influence of R&D cost improvement on EESP application performance is
discussed through mathematical model analysis. The research indicates that reducing EESP R&D
costs can significantly improve the stability of EESP power supply, and ultimately improve the
application value of EESP in energy-intensive manufacturing industries. The R&D cost management
scheme and technical method proposed in this paper have important theoretical guiding values and
practical significance for accelerating the large-scale application of EESP.

Keywords: new energy; electrochemical energy storage projects (EESP); R&D cost control; application
utility; multi-technology methods

1. Introduction

Due to the massive increase in world population and the sharp decrease in the natural
energy available on the earth, the development and use of alternative energy directly
impacts the survival and continuation of human beings. Energy consumption is constantly
increasing, especially large-scale traditional energy, such as coal and oil, which has affected
the natural environment and the world climate. It poses a great threat to the goal of human
sustainable development. The current situation of excess electricity and the development
and use of renewable energy makes the energy storage industry play an increasingly
important role.

To achieve the Sustainable Development Goals (SDGs) in terms of energy use, govern-
ments around the world have successively introduced supporting policies for the energy
storage industry and continuously increased the scale of investment in the energy storage
market. In 2020, in addition to China, Japan, and South Korea, the United States, Aus-
tralia, Germany, and the United Kingdom set off another high tide of development. The
US Department of Energy (DOE) issued the Energy Storage Grand Challenge Roadmap
and the European Commission issued the BATTERY 2030+ innovation roadmap, both
of which systemically advance strategic objectives for the future development of energy
storage. According to the statistics from the China Energy Storage Alliance (CNESA), by
the end of 2020, the global operational energy storage project capacity totaled 191.1 GW, an
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increase of 3.4% compared to 2019. The importance of energy storage for energy regulation
is self-evident.

Despite the COVID-19 pandemic, 2021 was a record-breaking year for investment
in the energy transition and the deployment of renewable power, battery storage, and
sustainable transportation, according to the 2022 Sustainable Energy in America Fact-
book published by BloombergNEF (BNEF) and the Business Council for Sustainable
Energy (BCSE) (Available online: https://about.bnef.com/blog/record-2021-investment-
demand-highlight-critical-role-sustainable-energy-technologies-play-in-the-u-s-economy/,
(accessed on 3 March 2022)). This growth was fueled by strong consumer demand, unprece-
dented injection of new capital into companies, technologies, and projects, and a wave of
supportive new policies. Decarbonizing Europe’s energy system creates a USD 5.3 trillion
(EUR 4.9 trillion) investment opportunity in new electricity generating and green hydrogen
production capacity, according to BloombergNEF’s European Energy Transition Outlook
2022 (Available online: https://about.bnef.com/blog/europes-path-to-clean-energy-a-
5-3-trillion-investment-opportunity/, (accessed on 13 April 2022)). In China, the “14th
Five-Year” Development Plan for Emerging Businesses proposes that during the “14th
Five-Year Plan” period, in promoting the realization of the carbon peaking and carbon
neutrality goals and building a new power system based on new energy resources, the
government and companies will explore to promote the construction and operation of new
energy storage technologies. The installed capacity of peak and frequency regulation power
supply will exceed 15 GW, and the scale of new energy storage technologies will reach
2GW (Available at: http://en.cnesa.org/new-blog/2022/3/23/china-southern-power-
grid-issued-the-14th-five-year-development-plan-for-emerging-businesses, (accessed on
23 March 2022)).

From the perspective of energy demand, the electricity consumption of the global
manufacturing industry has maintained steady growth every year, and the high-tech and
equipment manufacturing industry and the consumer goods manufacturing industry have
maintained a leading growth rate of electricity consumption. For example, China’s electric-
ity consumption of the manufacturing industries was 968.6 TWh (January to March 2022), a
year-on-year increase of 2.3%, while the electricity consumption of the four energy-intensive
industries (namely the high-tech and equipment manufacturing industry, consumer goods
manufacturing industry, ferrous metal smelting industry, and building materials indus-
try) totaled 534.1 TWh, increased by 0.5% year-on-year. The electricity consumption
of the high-tech and equipment manufacturing industry was 203.3 TWh, an increase
of 5.0% year on year; the electricity consumption of the consumer goods manufactur-
ing industry was 123.0 TWh, an increase of 2.9% year-on-year (Data of Electricity Con-
sumption (January to March 2022), issued by China Electricity Council, Available online:
https://english.cec.org.cn/detail/index.html?3-1451, (accessed on 22 April 2022)). As a
traditional pillar industry, the tobacco industry consumes a large number of electric power
resources in the manufacturing process of cigarettes. It is of great significance to research
and develop and apply new energy electrochemical energy storage technology to realize
effective energy storage and scientific output of electricity, which will effectively promote
energy conservation and emission reduction, and significantly reduce the cost of cigarette
products [1,2].

EESP is mainly developed for an energy storage system. The energy storage system
consists of Battery Pack (BP), Power Conversion System (PCS), Energy Management System
(EMS), Battery Management System (BMS), and Container and Equipment Inside (CEI), see
Figure 1. Batteries and PCS account for the highest proportion of value in energy storage
systems. As shown in Figure 2, the cost of a battery pack accounts for nearly 60% and PCS
accounts for about 15%.
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The high R&D cost of electrochemical energy storage projects (i.e., EESP) has been hin-
dering the large-scale industrial promotion in the energy-intensive manufacturing industry
represented by the tobacco industry, and reducing and controlling the R&D cost has be-
come an urgent problem to be solved. This reality prompted us to explore a more effective
scheme for controlling EESP R&D costs. At the same time, the technology development
and performance evaluation issue of energy storage has been attracting the attention of
scholars in sustainable development-related research fields. Energy storage technologies
(ESTs) enable the ability to cope with intermittency of energy sources by storing excess
energy to use when it is needed. Therefore, the evaluation of energy storage alternatives (or
technologies) is completely critical and can be exactly considered a multi-criteria decision-
making problem [3]. Some scholars proposed the Sustainable Development Goal 7 (SDG7)
composite index, hybrid hesitant fuzzy decision-making method, and joint technology
performance evaluation approach [4–7]. Their research provides methodological guidance
for the industrial promotion of electrochemical energy storage projects (i.e., EESP), and also
provides some references for our study.
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Based on EESP practice needs and industry-wide sustainability goals, our paper
proposes a multi-technology driven R&D cost improvement scheme, which has impor-
tant theoretical guiding value and practical significance for accelerating the large-scale
application of EESP. Especially, the influence of R&D cost improvement on EESP appli-
cation performance is discussed through mathematical model analysis. The research
indicates that reducing EESP R&D costs can significantly improve the stability of EESP
power supply, and ultimately improve the application value of EESP in energy-intensive
manufacturing industries.

The innovation of this paper mainly includes the following two points. Firstly, this
research comprehensively integrates multi-technology methods and provides a more sys-
tematic and effective R&D cost improvement scheme. Secondly, by identifying the character-
istics of EESP, this study constructs a mathematical expression function of EESP application
utility and analyzes the impact of reducing EESP R&D cost on the application utility of
EESP project. The R&D cost management scheme and technical method proposed in this
paper have important theoretical guiding value and practical significance for accelerating
the large-scale application of EESP.

According to our concerns, this work is divided into six sections. The next section
presents the literature review. Section 3 displays the EESP market demand in the energy-
intensive industry. Section 4 puts forward the multi-technology-driven EESP R&D cost
improvement scheme, involving WBS-driven EESP R&D workflow improvement, big-data-
driven EESP data workflow improvement, machine learning-driven EESP cost management
workflow improvement, and EVM-driven EESP R&D cost evaluation and improvement.
Further, a mathematical model is constructed to study the impact of reducing EESP R&D
cost on the application utility of EESP in Section 5 and the main model results are analyzed
and discussed. The last section summarizes the whole research results and managerial
implications and outlines the limitations and opportunities for future research.

2. Literature Review

The research topics of EESP in existing literature mainly focus on technology innova-
tion, economic life evaluation, and large-scale application of EESP [8–10]. Some researchers
believe that EESP has technological superiority and can produce considerable economic
benefits. In particular, biomass-derived materials have made a breakthrough in electro-
chemical energy storage and conversion, making the large-scale application of EESP an
inevitable trend [11,12]. For example, Sasikala et al. analyzed the R&D status of energy
storage systems in South Korea [13]. How do you select the optimal electrochemical energy
storage planning program? To answer this question, some scholars discussed the hybrid
MCDM method, electrochemistry and control-based idea, and virtual enterprise risk assess-
ment based on a fuzzy analytic hierarchy process [14–16]. Due to the complexity of EESP’s
R&D engineering, EESP’s R&D management is critical. Using the bibliometrics method,
Liu et al. analyzed research hotspots and frontiers of product R&D management under the
background of the digital intelligence era [17]. Existing scholars also put forward some
questions and made some reflections. How do companies respond to growing research
costs: cost control or value creation? To answer this question, scholars have analyzed
R&D activities, technology absorption ability, and energy intensity in different countries,
such as China, Japan, the EU, and the USA [18–20]. How do you leverage the impact of
R&D on product innovation? To answer this question, existing studies have discussed
the moderating effect of management innovation, dynamic R&D choice, the impact of
the firm’s financial strength, and the effect of cost control techniques on organizational
performance [21–23].

In the current cost management system, project R&D cost control theory has been
a crucial component. To a certain extent, driven by social and economic development
and advanced production technology, some western developed countries are in a very
active leading position in new product research and development. The theories of project
R&D cost control in these countries have also developed rapidly, and the cutting-edge
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theoretical research framework has been established in the first place. Now, in the research
of product R&D cost control, after a long amount of time of evolution and improvement, its
theoretical system has reached maturity. The existing literature mentions many cost control
methods, such as target cost method, activity-based cost method, and value engineering.
The relevant theories and methods have been fully demonstrated in actual production
activities. Effective control of new product R&D costs is the key to successful project
management, and it requires comprehensive consideration of cost minimization and benefit
maximization. As for how to control the R&D cost, Lucas designed the Hamilton equation
method and found that the optimal R&D fund management decision of the same project
has obvious differences under different execution situations [24]. Based on his research,
Grossman further improved the Hamilton equation and added some other influencing
factors, such as technical uncertainty, into the equation construction process [25]. Given
the new product development problem, Anderson and Sedatole used accounting data to
design quality into products [26]; Handfield et al. considered the participation of suppli-
ers [27]; Behncke et al., developed an extended model for integrated value engineering [28].
Because of the inseparable relationship between project R&D cost control and project R&D
process, some scholars have explored various control methods from the perspective of the
project R&D process. For example, Dutta noted that R&D work requires the integration of
many activities, and many activities affect each other. They proposed to design a method of
R&D cost management and control from the perspective of whole-process management [29].
Activity-based costing (ABC) and target costing have been promoted and applied to differ-
ent practical fields and industrial operation scenarios. Based on the practice of enterprises,
Cooper and Kaplan conducted a case study on the application of activity-based costing to
Tektronite and found that activity-based costing had significant practical effects on cost
control in the product design stage [30]. Shortly thereafter, other scholars (such as Merz
and Hardy) investigated HP that adopted ABC and suggested that ABC should be applied
in the development stage of new products, which could help managers to make more
correct business decisions [31]. The research of the target cost method emerged in the
1990s and has been widely used in the Japanese manufacturing industry. Hertenstein and
Platt proposed in their book that enterprises should learn from and introduce the target
cost method when evaluating the performance of new product R&D, to achieve effective
control of the new product R&D process [32]. Davila and Wouters compared and analyzed
a variety of cost control methods based on new product R&D process management and
believed that the target cost method had better application value [33].

After entering the era of the digital economy, many modern technology methods have
been widely used in R&D cost management. Currently, the WBS method has been applied
to R&D cost management in many different scenarios, involving quantitative similarity
assessment of construction projects [34], model development of mobile cloud service [35],
quality planning of high rise building architectural works [36], schedule planning in Steel
Bridge construction projects [37], pricing management of prefabricated concrete construc-
tion project [38], risk evaluation index system construction for power grid engineering
cost [39], and multi-dimensional BIM database construction for total construction as-built
documentation [40]. By analyzing the studies of existing scholars on EVM, it is found
that EVM has been widely used in the supervision and management of engineering cost
and schedule [41–46], and many engineering practices (such as the construction of the
Karanggeneng Nawacita Cs Suspension Bridge [44], goods transportation of coastal enter-
prises [45], and traditional software projects [46]) prove that it is an effective method to
monitor practice and engineering deviation. With the advent of the data era, management
innovation driven by big data has been favored by scholars and industry experts [47–49].
In the process of project management, a large amount of cost-related data has been accumu-
lated, which provides the foundation and conditions for the research of intelligent project
cost management driven by big data. Many scholars have studied the application of big
data technology in cost control in project management [50–52], especially in construction
project management. Blackburn et al. explored the concept of big data and whether, and to
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what extent, it might affect R&D management in the future [53]. They indicate the rise of
big data and big data analytics will have significant implications for R&D and innovation
management in the next decade. As we all know, machine learning is the core technology
of artificial intelligence. Through data or previous experience, clustering, classification,
regression, reinforcement learning, and other algorithms are used to mine hidden rules
from massive data, which can serve the accounting, prediction, decision-making, and
control of project cost management. The application of interpretable machine learning
models can help enterprises to develop intelligent decisions, such as R&D budget [54–57].
Jang proposes a new decision support framework for allocating an R&D budget. They
employed a machine-learning algorithm to accurately estimate future R&D output and
demonstrated the effectiveness of the proposed model by applying it to a national R&D
program conducted by the Korean government. A machine learning-driven R&D budget
allocation plan can achieve an output 13.6% greater than the actual R&D output [57]. Con-
sidering the complex characteristics of EESP R&D work, this paper selected and integrated
WBS (i.e., Work Breakdown Structure), EVM (i.e., Earned Value Method), BD (i.e., Big Data),
and ML (i.e., Machine Learning) and Mathematical Modeling methods to put forward a
multi-technology driven EESP R&D cost control and improvement scheme.

In terms of EESP application scenarios, this study focuses on energy-intensive man-
ufacturing industries. This paper specifically addresses the high energy consumption
(especially electrical energy) of the tobacco industry. The tobacco industry has been re-
garded by many researchers as the typical representative of the high energy consumption
industry, attracting much attention. For example, Laković et al., conducted the numerical
computation and prediction of electricity consumption in the tobacco industry [58]; Liu and
Wang conducted case studies of the tobacco industry to design the planning mechanism
of energy conservation and emissions reduction and analyze the benefit of electric energy
substitution [59,60]; Wang conducted a case study of Chinese cigarette manufacturers to ex-
plore the influences of a green industrial building on the energy consumption of industrial
enterprises [61]; Thollander et al. systematically studied the industrial energy efficiency
issues involving the tobacco industry from the perspectives of energy auditing, energy
management, and policy formulation [62].

To sum up, although there is some research on the theories and methods of project
cost management, there is still no systematic study on the R&D cost management of
EESP projects by integrating multi-technology methods (involving WBS, EVM, BD, ML
mentioned above) in the application context of the energy-intensive manufacturing industry.
This study complements this field. It can provide an operational approach and technical
guidance to decrease the R&D cost and improve the application performance of EESP in
energy-intensive enterprises.

3. EESP Market Demand in Energy-Intensive Industry

We take the tobacco industry as an example to show the energy consumption in the
production process of tobacco products, thus illustrating the necessity of introducing EESP
in the energy-intensive industry to improve energy consumption and shortage.

Due to the particularity of tobacco products, there are many working procedures,
including not only the primary processing processes, such as field planting, preliminary
baking, repeated baking, and fermentation, but also the tobacco production processes, such
as leaf selection, cigarette formula, and packaging [1,2]. Cigarette production in tobacco
production enterprises can be mainly divided into silk-making and cigarette packaging,
and the silk-making process is further refined into the processing stages of leaves, filaments,
and stalks [2]. Energy consumption is concentrated in these links, which is the key to
management, see Figures 3–6.
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The above analysis shows that the normal operation of the main links of cigarette
production depends on the support of energy, especially when the electric energy occupies
a large proportion. Electric energy consumption has also become one of the main sources
of cost for tobacco manufacturing enterprises, and the supply of electric energy has a direct
impact on product production and production cost.
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Electrochemical Energy Storage Projects (EESP) have a huge impact on the energy-
intensive industry. EESP has the effect of peak clipping and valley filling, which is con-
ducive to the sustainable use of electricity and helps the energy-intensive industry achieve
better benefits. The energy-intensive industry is mainly some large-scale manufacturing
industries. Therefore, the development and application of EESP in the tobacco industry
have important economic benefits and long-term strategic significance. Electrochemical
energy storage uses chemical elements as energy storage media. Electrochemical energy
storage technology is not limited by the geographical environment and can directly store
and release electric energy, which has aroused widespread concern in emerging markets
and scientific research fields.

According to the Energy Storage Industry Research White Paper 2021 released by
the China Energy Storage Alliance (CNESA), by the end of 2020, the operational energy
storage project capacity in China accounted for 18.6% of total global capacity. EESP ac-
counted for the second-largest portion of installed capacity, at 3269.2 MW, a growth of
91.2% compared to 2019. Among the variety of electrochemical energy storage technologies,
lithium-ion batteries comprised the largest portion of installed capacity at
2902.4 MW. In 2020, the newly installed capacity of global EESP reached 4.7 GW, 1.6 times
more than that of 2019. China, the United States, and Europe took the leading position
in the global electrochemical energy storage market in 2020 and together accounted for
86% of the total scale of newly added EESP in the world, and the scale of newly added
electrochemical energy storage operation all reached GW level (Energy Storage Industry
White Paper 2021, published by China Energy Storage Alliance (CNESA), Available on-
line: https://static1.squarespace.com/static/55826ab6e4b0a6d2b0f53e3d/t/60d2fff40aec5
96dc9e5cd65/1624440841870/CNESA+White+Paper+2021-PDF (accessed on 14 April 2021)).
The application scenarios of electrochemical energy storage projects are relatively rich.
It mainly involves the power generation side, user side, grid side, auxiliary services,
centralized renewable energy field, and other fields. Generally, the user side is the
largest application scenario of electrochemical energy storage, followed by the auxiliary
service field.

4. Multi-Technology Driven EESP R&D Cost Improvement Scheme

The cost management schemes of EESP given by the existing research are all at the
strategic level. This paper combines the modern project cost management theory and
proposes a multi-technology driven EESP R&D cost improvement model at the operational

https://static1.squarespace.com/static/55826ab6e4b0a6d2b0f53e3d/t/60d2fff40aec596dc9e5cd65/1624440841870/CNESA+White+Paper+2021-PDF
https://static1.squarespace.com/static/55826ab6e4b0a6d2b0f53e3d/t/60d2fff40aec596dc9e5cd65/1624440841870/CNESA+White+Paper+2021-PDF
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level, as shown in Figure 7. The new model considers project resource planning, project cost
estimation, project cost control, and other links from the tactical operation level according
to the cost management characteristics of EESP. Moreover, by optimizing each process of
R&D cost management, the EESP cost control standard is promoted to a higher level from
the actual point of view, making it more universal.
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4.1. WBS-Driven EESP R&D Workflow Improvement

Project decomposition is to use the working principle of WBS to gradually decompose
large and complex projects into small and clear units at different levels until the work can
no longer be subdivided. To clarify the division of tasks at all levels of EESP, the method of
WBS work breakdown structure was used to formulate the project route and the project
schedule. The structure tree model of EESP R&D work is shown in Figure 8. The EESP R&D
process is divided into five second-level items, from project approval to project product
improvement, and each second-level item is transformed into a third-level minor item
according to its work tasks.

According to the division of R&D work in the WBS work breakdown structure chart
of EESP, the whole project can be divided into 14 work packages according to the specific
work content of the project (see Table 1).

Table 1. Work package detailed breakdown form.

Work Number Work Stage WBS Code Work Package
Data Footprint

Data Sources Data Records

1 Project Approval
1.1 Demand Analysis � u

1.2 Product Research •� Fu

2 Concept Planning
2.1 Product Development Plan • Fu

2.2 Overall Scheme Design • u
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Table 1. Cont.

Work Number Work Stage WBS Code Work Package
Data Footprint

Data Sources Data Records

3
Detailed Product

Design

3.1 Electrical Design • u

3.2 Structure Design • u

3.3 Software Design • u

3.4 Design Review •� u

4
Trial-produce
Experiment

4.1 Material Purchasing •� Fu

4.2 Prototype Test Assembly •� u

4.3 Prototype Debugging •� u

4.4 Prototype Production • Fu

5
Product

Improvement

5.1 Electrical Assembly Improvement • u

5.2 Structural Component
Improvement • u

Note: •—Internal data, �—External data, F—Financial management system, u—Project management system.
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4.2. Big Data-Driven EESP Data Workflow Improvement

The traditional EESP data workflow is visible on the surface, mainly represented by
data recording and extraction. While the big data driven EESP data workflow is ordered
and deeply analyzed, mainly represented by data classification and marking, data law and
logic analysis, and two-dimensional or three-dimensional visual display. The improved
EESP data workflow using big data mainly consists of four parts, namely data source,
data storage and management, data analysis and mining, data visualization, followed by
result presentation.

(1) Data source. It mainly involves financial management systems, project management
systems, Excel files, and related log, text, and image, and image files. Depending on
the source channel of the data, they can be divided into internal data and external
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data. In the project management system and financial management system, the project
category, project content, personnel output value, and other internal data related to
project cost can be obtained, such as the project management table, personnel basic
information table, personnel output value information table, project output value
paper, balance table, and personnel payroll data.

(2) Data storage and management. Firstly, an ETL (i.e., Extract-Transform-Load) tool is
used to collect the data related to project cost from the data source. To ensure the
reliability and effectiveness of the data, data are cleaned, transformed, and integrated
according to the requirements of project cost management. After data processing
is completed, the project cost management big data platform based on the Hadoop
architecture builds a project cost management data warehouse (Hive), including
data marts, such as cost planning, cost estimation, cost budget, cost analysis, and
evaluation, and stores it through HDFS distributed files, which can then use machine
learning algorithms to achieve project intelligent cost management based on the
data warehouse.

(3) Data analysis and mining. Based on the project cost management data warehouse, the
corresponding project cost management model is constructed by a machine learning
algorithm aiming at various business activities of project cost management. For
example, in the project cost forecasting activities, according to the historical data, the
ridge regression algorithm is used to analyze the influencing factors of project cost
and the degree of influence of each factor on cost, establish the cost forecasting index
system, and finally establish the project cost forecasting model based on the ridge
regression algorithm.

(4) Data visualization and result display. Visually display the information obtained by
the machine learning algorithm, including the result data of cost prediction, cost
estimation, cost budget, cost analysis, and evaluation, or form a report and send
it to managers. Managers can also master the project cost status through real-time
inquiry, and finally realize the digital, intelligent, and scientific management of the
project cost.

4.3. Machine Learning-Driven EESP Cost Management Workflow Improvement

Given the similarity between EESP and LAP (Landscape Architecture Project) in the
development and design process, the machine learning algorithm mentioned in this study
refers to the mature practice of Cheng et al. (2021) in LAP [63].

(1) Cost prediction—based on the RR algorithm

Ridge regression (RR) algorithm is a type of biased estimation regression method
specially used for collinear data analysis, which has a smaller mean square error than least
square estimation.

The process of using a ridge regression algorithm to forecast the project cost can
be divided into two stages. The first stage is to build the cost forecasting index system
according to the construction of the project cost; the second stage is cost prediction based
on the ridge regression algorithm. This work includes four steps. First, collect the historical
data of project cost and preprocess it. Second, based on the index of project cost prediction,
feature extraction is carried out on the historical data, and project cost data samples are
established, which are divided into the training set and test set. Third, the cost forecasting
model and training model are established based on the ridge regression algorithm. Fourth,
the cost forecasting model is tested by comparing the fitting degree of training samples and
predictive testing samples.

(2) Cost planning—based on the SVM algorithm

The support vector machine (SVM) is a binary classification model and a machine
learning algorithm that classifies data sets according to supervised learning. Its basic
principle is to find an optimal hyperplane, which can not only divide the two types of
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sample points correctly but also maximize the geometric distance between the sample
points closest to the hyperplane and the plane.

The project target cost calculation process based on SVM is divided into four steps.
First, collect the historical cost data of the project, and divide them into labor cost, design
cost, and management cost according to the composition characteristics of the planning
and design project cost. The cost influencing factors are taken as the index of the target cost
measurement, and the project cost is taken as the target to build a case library. Second, based
on the attribute reduction of the rough set, the qualitative target cost index is quantified,
and the data in the case library are discretized to produce the decision table suitable for the
rough set, forming the reduced attribute set of labor cost, design cost, and management
cost. Third, build a target cost calculation model based on SVM. Select the sample data
similar to the content to be measured from the cost instance database and preprocess the
sample data. After constructing the learning sample set as the input and determining the
kernel function and parameters, SVM learning is carried out, and then the regression model
is established to find the regression function. Fourth, the regression function is used to
obtain the target cost of the EESP project, which is summarized to a higher level to obtain
the target cost of the whole project.

(3) Cost control—based on the BPNN algorithm

BP neural network (BPNN) is a type of feedforward network with an arbitrary complex
pattern classification ability and a good ability for multidimensional function mapping. It
is based on the error backpropagation training of the multilayer which aims to determine
the mapping relationship between the input and the output of the mathematical equations.
Only through their training and learning some rules in a given input value can it be the
closest to the desired output results.

The construction of a cost control model based on the BP neural network is divided
into three steps. First, the cost control point and cost control system of the project are formed
through the decomposition of cost components and identification of cost influencing factors.
Second, by pre-processing the project cost data and quantitative evaluation of the project,
the project cost control evaluation data sample table is obtained and normalized. Third, a
three-layer BP neural network evaluation model of project cost control composed of input
layer-hidden layer-output layer is established and tested to verify the effectiveness of the
BP neural network for project cost control.

(4) Cost accounting—based on the PCA and HC algorithm

A reasonable selection of cost drivers and an effective combination of cost drivers
can avoid consuming a lot of accounting costs based on ensuring cost accuracy. PCA is a
feature selection analysis method based on the principle of statistical optimality. Its idea is
to reduce the dimension of the data set while preserving as much variance as possible in
the data set. The hierarchical clustering (HC) algorithm is a common clustering method. It
is a series of division and multi-step classification to produce a nested cluster, which can be
divided into condensed hierarchical clustering and split hierarchical clustering according
to the order of hierarchical decomposition.

The integration process of project cost drivers based on PCA and HC algorithms is
divided into four steps. First, several different EESP projects were selected, and the R&D
cost data of each project were collected to form a relative scale of project cost drivers.
Second, the correlation coefficient matrix is obtained according to the principal component
analysis data, and the number of cost drivers is determined according to the marginal effect
of the principal component and contribution rate. Third, the HC analysis of cost drivers is
carried out, the two classes with the smallest distance are selected to merge into a new class,
and the distance between the new class and other classes is calculated until all the classes
are merged into one class. Fourth, by calculating the factor load matrix of cost drivers, the
importance of cost drivers in corresponding factors is determined, and the cost drivers are
combined with the results of hierarchical cluster analysis. Finally, the errors before and
after the cost drivers merge are calculated to verify the feasibility of this method.
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4.4. EVM-Driven EESP R&D Cost Evaluation and Improvement

In the R&D process of EESP, we need to supervise the project cost in real-time and
effectively control the project R&D cost. The goal of project cost control is to ensure that
the actual cost of the project does not exceed the scope of the project budget. If there is
any deviation, we shall timely adjust the original project R&D cost budget or take feasible
corrective measures to remedy the deviation. Compared with other R&D cost management
evaluation methods mentioned in the literature review, Earned Value Method (EVM) is
more suitable for EESP because it can analyze the current situation of R&D cost control
more directly and quickly [64].

Specific execution steps: first, parameters, such as BCWS (budgeted cost of planned
workload), BCWP (budgeted cost of completed workload), ACWP (actual cost of completed
workload), CPI (cost performance index), and SPI (schedule performance index), are
calculated. Then, the magnitude of the cost deviation and schedule deviation can be
determined simply by making a difference or comparison operation. Table 2 shows a
cost data sheet provided by the EESP R&D supervisor of H company, China, which was
extracted from the sixth month (i.e., the beginning of the prototype trial phase) [64]. Using
earned value analysis to carry out simple calculation, we can find the cost performance
index CPI = 528000/531731 = 0.099 < 1, progress performance index SPI = 528000/820000
= 0.643 < 1 and the relationship among the cost control indicators is as follows: BCWS
> BCWP, BCWP < ACWP. This indicates that the current EESP R&D work is seriously
delayed, the project is inefficient, and the project fund is overspent.

Table 2. A research case of EESP R&D cost data [64].

Work Stage Work Package Budgeted Cost
(CNY)

Completion
Ratio (%)

Budgeted Cost to
Complete the Work

Actual Cost
(CNY)

Project Approval
Demand Analysis 36,000 100 36,000 36,825

Product Research 48,000 100 48,000 47,615

Concept Planning
Product Development Plan 72,000 100 72,000 72,350

Overall Scheme Design 90,000 100 90,000 91,158

Detailed Product
Design

Electrical Design 90,000 100 90,000 89,056

Structure Design 60,000 100 60,000 62,197

Software Design 75,000 90 67,500 65,050

Design Review 45,000 90 40,500 45,480

Trial-produce
Experiment

Material Purchasing 30,000 80 24,000 22,000

Prototype
Test Assembly 50,000 0 0 0

Prototype Debugging 40,000 0 0 0

Prototype Production 40,000 0 0 0

Product
Improvement

Electrical Assembly
Improvement 48,000 0 0 0

Structural Component
Improvement 96,000 0 0 0

Budgeted Cost for Work Scheduled (BCWS) 820,000

Budgeted Cost for Work Performed (BCWP) 528,000

Actual Cost for Work Performed (ACWP) 531,731
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5. Influence of R&D Cost Improvement on EESP Application Utility

To further illustrate the necessity of reducing EESP R&D cost, we constructed the
following mathematical model to measure and evaluate the impact of reducing EESP R&D
cost on the application utility of the EESP project.

5.1. Features of the EESP

This model comprehensively describes the following three specific functions of EESP
in the application of utility functions:

(1) Energy Storage, Peak Clipping Utility: On the transmission and distribution side, the
problems of peak and frequency regulation, peak clipping and valley filling, intelligent
power supply, and distributed energy supply should be solved to improve the multi-
energy coupling efficiency and achieve energy saving and emission reduction.

(2) Energy Release, Valley Filling Utility: On the power generation side, it solves the
problem of discontinuous and uncontrollable power generation of renewable energy,
such as wind and solar energy, and ensures its controllable grid-connection and
on-demand transmission and distribution.

(3) Value-added Utility of Electricity Diversification: On the electricity side, support the
electrification of the automobile and other energy use terminals to further achieve its
low-carbon, intelligent goals.

5.2. Variable Descriptions of the Model

EUEESP is the expected utility of running EESP. As shown in Formula (1), the objective
function consists of three parts, which correspond to the three functional characteristics of
the EESP energy supply mentioned above. In our modeling, cR&D represents the marginal
R&D cost of EESP for designing different power supplies qe; pe is the benefit generated
by per unit of EESP power supply during production activities; ve is the marginal benefit
brought by energy storage for backup production when electricity supply is sufficient;
and ve is closely related to cR&D, expressed as ve(cR&D). Generally, the higher cR&D is,
the higher ve(cR&D) is, namely, the better the efficiency and practical value of energy
storage. se represents the marginal benefit loss caused by the energy released when the
electricity supply is insufficient, which is preferentially used for “Valley Filling”. se(cR&D)
is also closely related to cR&D, expressed as se(cR&D). Generally, the higher cR&D is, the
lower se(cR&D) is, that is, the lower the potential cost of supplementary electricity supply.
ue represents the marginal value-added benefit from the diversified use of EESP electricity,
and ue � ve(cR&D), ue � se(cR&D). Key notations are summarized in Table 3.

Table 3. Decision variables and related parameters.

Attribute Symbol Description

Decision variables
qe The capacity of EESP power supplies.

cR&D The marginal R&D cost of EESP for designing different power supplies qe.

Related parameters

EUEESP The expected utility of running EESP.

pe The benefit of each unit of EESP power supply in production activity.

ve
The marginal benefit brought by energy storage for backup production when

electricity supply is sufficient.

se
The marginal benefit loss caused by the energy released when the electricity

supply is insufficient.

ue The marginal value-added benefit from the diversified use of EESP electricity
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5.3. Utility Function Construction
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As shown in Formula (1), the objective function is divided into four parts, involving
three types of utility and one R&D cost. Especially, three kinds of utility, namely marginal
energy storage utility, marginal energy release utility, and marginal value-added utility of
electricity diversion, correspond to the three functional characteristics of the EESP energy
supply mentioned in Section 5.1.

Surprisingly, the form of Formula (1) is similar to the Newsvendor Model under
stochastic inventory demand. It can be easily proven that the expected utility function
is concave, and the solving formula can obtain the demand distribution function of the
optimal design of the EESP power supply (qe

∗).

F(qe
∗) = 1− F(qe

∗) =
(cR&D + ue − ve(cR&D))

pe + se(cR&D)− ve(cR&D)
(2)

5.4. Influence Analysis

(1) Direct influence variables: cR&D, ue

In the above mathematical model, the total R&D cost (cR&D) is a direct variable
affecting the application utility of EESP and a key relationship that must be determined
before developing an improvement scheme to reduce EESP R&D cost.

Through simple deduction, we can obtain:

dF(qe
∗)

dcR&D
= − (1− ve

′(cR&D))(pe + se(cR&D)− ve(cR&D)) + (ve
′(cR&D)− se

′(cR&D))(cR&D + ue − ve(cR&D))

[(pe + se(cR&D)− ve(cR&D)]
2 < 0

Thus, it supports cR&D ↓ → F(qe
∗) ↑ → EUEESP ↑ . The relationship reveals that

reducing EESP R&D cost can increase the probability of abundant power supply, improve
the stability of EESP power supply, and ultimately improve the application value of EESP
in energy-intensive manufacturing industries.

In addition, ue is also a directly influencing variable. Since dF(qe
∗)

due
=

− 1
pe+se(cR&D)−ve(cR&D)

< 0, the larger ue we gain, the lower the application utility of EESP,
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that is to say, excessive pursuit of value-added utility will reduce the whole application
value of EESP. Needless to say, electricity diversification can bring users a certain amount
of marginal value-added utility. However, this is not the focus of EESP R&D work, and
the R&D investment for value-added utility can be appropriately reduced according to
the situation.

(2) Indirect influence variables: ve(cR&D), se(cR&D)

According to the working principle of the electrochemical energy storage device, we
use ve(cR&D) and se(cR&D) to represent the marginal benefit brought by energy storage for
backup production and the marginal benefit loss caused by energy released respectively.
The former is the positive utility effect parameter, while the latter is the negative utility effect
parameter, and ve

′(cR&D) > 0, se
′(cR&D) < 0. By simple calculation based on Formula (2), we

can get:
dF(qe

∗)

dve(cR&D)
=

(pe − cR&D) + (se(cR&D)− ue)

[(pe + se(cR&D)− ve(cR&D)]
2 > 0

dF(qe
∗)

dse(cR&D)
= − (cR&D + ue − ve(cR&D))

[(pe + se(cR&D)− ve(cR&D)]
2 < 0

Thus, the following relationship was found:

cR&D ↓ → ve(cR&D) ↓ → F(qe
∗) ↓ →

i
(EUEESP)

−

cR&D ↓ → se(cR&D) ↑ → F(qe
∗) ↑ →

i
(EUEESP)

+

Since cR&D ↓ → EUEESP ↑ is true,
a
(EUEESP)

+ >
a
(EUEESP)

− can be further ob-
tained. This reveals that se(cR&D) has a relatively greater impact on the application utility of
EESP than ve(cR&D), which is also consistent with the actual situation. Although se(cR&D)
and ve(cR&D) have a certain offset effect on the application performance of EESP, the overall
effect is still positive. We show this result in Table 4 with a colored background section.
Therefore, EESP R&D work should be carried out more effectively to achieve better perfor-
mance, especially greater generation stability, in order to minimize the impact of power
supply shortages on the utility of EESP applications.

Table 4. Mathematical model analysis of application value of EESP.

EESP Performance
Indicators Direct Variable Indirect Variable Change in Demand Application Value

of EESP
Total R&D Cost cR&D ↓ F(qe

∗) ↑
Marginal Energy Storage Utility ve(cR&D) ↓ F(qe

∗) ↓
Marginal Energy Release Utility se(cR&D) ↑ F(qe

∗) ↑
↑

Marginal Value-added Utility of
Electricity Diversification ue ↑ F(qe

∗) ↓ ↓

Although se(cR&D) and ve(cR&D) have a certain offset effect on the application performance of EESP, the overall
effect is still positive. We show this result in Table 4 with a colored background section.

The influence relationship of variables related to R&D cost is summarized in Table 4.

5.5. Results and Discussion

By using the mathematical modeling method, we found that reducing EESP R&D costs
can significantly improve the application value of EESP in energy-intensive manufacturing
industries. The conclusion of the above model research provides theoretical support for the
implementation of the multi-technology driven R&D cost improvement scheme proposed
in this paper. In practice, however, the utility advantages of introducing EESP far outweigh
the disadvantages of increased R&D costs, which may discourage companies from pursuing
multi-technology-driven R&D management solutions that would better reduce R&D costs.
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For example, the tobacco industry, which has a recognized high demand for electricity
supply, develops and designs its EESP with a large power supply and storage function as
the first goal. Once successfully developed, the positive performance of electric energy
savings via EESP is significant and far exceeds R&D costs. This is also taken into account in
our modeling of applied utility. We assume that the higher cR&D can lead to an increase in
the efficiency and practical value of energy storage (i.e., the higher ve(cR&D)) and decrease
the potential cost of supplementary electricity supply (i.e., the lower se(cR&D)). To pursue
functional utility, many enterprises choose the maximization of EESP benefit as the goal,
rather than the optimization of R&D cost-benefit. In the modeling, we consider the balance
of R&D cost and performance and consider three kinds of utility synthetically: marginal
energy storage utility, marginal energy release utility, and marginal value-added utility
of electricity diversion. The conclusion of our modeling study has theoretical guidance.
However, to promote the effective implementation of a multi-technology driven R&D
cost improvement scheme, energy-intensive enterprises must change their thinking and
implement lean management and R&D cost control during the introduction of EESP to
achieve the optimization of R&D cost-benefit.

6. Conclusions

The Sustainable Development Goals (SDGs) set out by the United Nations aim to com-
prehensively address the social, economic, and environmental dimensions of development
from 2015 to 2030. The Sustainable Development Goals refer to “reliable and sustainable
modern energy” and “sustainable production methods”, which are closely related to the
implementation of electrochemical energy storage projects (EESP) in energy-intensive man-
ufacturing industries. The R&D of EESP for energy-intensive manufacturing industries is
of great significance to improve the stability of the power system during production and
help achieve sustainable development goals, such as energy conservation and emission
reduction. As the main form of new energy storage, electrochemical energy storage is
considered one of the most promising energy storage technologies, and its application
scale continues to expand in recent years. China’s 2030 Carbon Peak Action Plan calls for
more than 30 gigawatts of new energy storage capacity to be installed by 2025. In addition,
many sensitive loads are concentrated on the power side at present, including all kinds of
precision processing enterprises, high-tech manufacturing, hospitals, and other important
departments, which have higher and higher requirements on power quality and power
supply reliability. The above background provides an opportunity for the application of
EESP in energy-intensive manufacturing industries.

This paper focuses on electrochemical energy storage projects (EESP) and makes an
in-depth study on the theory and application of R&D cost management. Our research has
made three major contributions. Firstly, considering the current market demand for EESP in
energy-intensive manufacturing industries represented by the tobacco industry, this paper
identifies the R&D process of EESP, and innovatively proposes a multi-technology driven
R&D cost improvement scheme, which comprehensively integrates WBS (i.e., Work Break-
down Structure), EVM (i.e., Earned Value Method), BD (i.e., Big Data) and ML (i.e., Machine
Learning) methods. Especially, it involves WBS-driven EESP R&D workflow improvement,
big-data-driven EESP data workflow improvement, machine learning-driven EESP cost
management workflow improvement, and EVM-driven EESP R&D costs evaluation and
improvement. Secondly, the influence of R&D cost improvement on EESP application
performance is discussed through mathematical model analysis. Thirdly, the research
indicates that reducing EESP R&D costs can significantly improve the stability of EESP
power supply and ultimately improve the application value of EESP in energy-intensive
manufacturing industries.

This paper draws the following management implications from the study:

(1) With the continuous reduction of traditional energy, emission reduction and energy
saving have entered the normal state, and the related fields of new energy themes
are developing increasingly vigorously, especially in the field of electrochemical
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energy storage. Electrochemical energy storage has a variety of application scenarios,
mainly involving the power generation side, user side, grid side, auxiliary services,
centralized renewable energy field, and other fields, which have broad industry
adaptability and research and promotion value.

(2) As an emerging hot field, EESP has prominent problems in R&D cost control, and it is
urgent to strengthen project cost control and management. The combination of various
advanced technologies will yield surprisingly good results through more comprehen-
sive, detailed, and rigorous management of workflow, data flow, and cost budgeting
processes. Meanwhile, the intuitive data are used in the project cost management
method to provide a basis for the subsequent reasonable improvement measures.

(3) EESP has a good application prospect in the energy-intensive manufacturing industry
represented by the tobacco industry. Its wide application will effectively promote the
upgrading of the manufacturing industrial structure and is of great significance to the
long-term sustainable development of the manufacturing industry in China and even
the world.

The limitations of our study are as follows. First, the scheme we proposed is only a
theoretical method guidance framework, and this paper does not provide a specific case
analysis of a complete project supported by enterprise operation data. This is because
different types of energy-intensive manufacturing industries may have different implemen-
tation processes of EESP. In the follow-up, we will carry out practical research on various
types of high-energy-consuming manufacturing enterprises, such as high-tech equipment
manufacturing enterprises and food manufacturing enterprises. Second, in the design of
the objective function of EESP’s application utility, total R&D cost is simply regarded as a
linear function of energy supply capacity. In practice, the relationship may be non-linear,
and marginal R&D costs may increase and then decrease. In addition, to facilitate the
analysis of the relationship between R&D cost and total utility, we also simplified the
marginal value-added utility of electricity diversification, which may have a greater impact
on total utility. We hope that follow-up researchers can supplement the research content
and modeling cases.

In the future, we will focus on practical case studies driven by multi-technology
approaches, collect and analyze EESP R&D cost data, and explore the optimal R&D cost
optimization scheme and specific project implementation plan for target enterprises. In
addition, we will use a machine-learning algorithm to iteratively optimize the design of
the objective function and use computer simulation technology to evaluate and predict the
impact of R&D cost on application performance.
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