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Abstract: Recent years have witnessed an increased interest in online education, both massive open
online courses (MOOCs) and small private online courses (SPOCs). This significant interest in
online education has raised many challenges related to student engagement, performance, and
retention assessments. With the increased demands and challenges in online education, several
researchers have investigated ways to predict student outcomes, such as performance and dropout in
online courses. This paper presents a comprehensive review of state-of-the-art studies that examine
online learners’ data to predict their outcomes using machine and deep learning techniques. The
contribution of this study is to identify and categorize the features of online courses used for learners’
outcome prediction, determine the prediction outputs, determine the strategies and feature extraction
methodologies used to predict the outcomes, describe the metrics used for evaluation, provide a
taxonomy to analyze related studies, and provide a summary of the challenges and limitations in
the field.

Keywords: MOOCs; SPOCs; student performance; student dropout; machine learning; learning
behaviour; learning analytics

1. Introduction

Online education has revolutionized the way people learn and has made education
more accessible and affordable to numerous people worldwide. Despite the advantages and
increased interest in online and distance learning, educational institutions are becoming
increasingly concerned about students’ performance and retention rates, particularly low
certification/graduation and dropout/completion rates. Failing or dropping out of an
online course or program is often considered a key parameter by institutional authorities for
assessing program/course quality and allocating resources. Dropout and low certification
rates can also pose a potential risk to an institution’s reputation, profit, and funding [1].
These outcomes also have significant consequences for a student’s self-esteem, well-being,
employment, and chances of graduating [1,2]. As a result, finding more efficient approaches
to forecasting students’ performance as early as possible is critical for institutions, stu-
dents, and educators to take proactive steps toward improving students’ online learning
experiences and establishing intervention strategies that target students’ needs. With the
increased interest in online education and the large amount of data produced by learners
through their interactions with online platforms, researchers have proposed methods to
analyze learners’ behavioral data to predict and improve educational outcomes.

Learning analytics (LA), more commonly known as educational data mining (EDM) [3],
the task of analyzing and finding patterns in learners’ data for decision-making purposes,
has attracted many researchers in recent years. Learning analytic tools enable institutions
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to gain an understanding of their students’ status, actions and preferences individually,
and in relation to their peers and the targeted educational objective. This allows the tai-
loring of material for individual students based on the projected outcomes and preferred
learning styles. In online education, LA systems assess students’ learning behavior by
utilizing extensive data collection of learners’ data, including student enrollment informa-
tion, past and current academic records, students’ online behavior, student surveys via
questionnaires concerning courses and teaching techniques, and data from online discus-
sion forums. Scholars have also examined various learning-behavior attributes to predict
learning outcomes, such as learners’ performance and retention. To predict and analyze
students’ outcomes in online courses, researchers have examined several machine learning
models, including support vector machines (SVMs), linear regression (LR), random forest
(RF), and deep learning models such as convolutional neural networks (CNNs) and long
short-term memory (LSTM).

1.1. Previous Reviews of Student Outcome Prediction

Several studies have provided a comprehensive analysis of the literature in the field
of learning analytics, investigating studies that analyzed learners’ behavior to optimize
educational outcomes. Three studies presented a review analysis similar to the survey
conducted in this research. Moreno-Marcos et al. [4] presented a meta-analysis of state-
of-the-art predictive models based on MOOC data. The analysis provides an overview of
the features, methods, and metrics used in the literature. The authors of [5,6] presented
a survey of learning analytic studies covering related studies and methodologies used in
the literature. Several studies have also presented literature reviews on online learners’
dropping out from massive open online courses (MOOCs) [7]. In addition, another review
paper [8,9] focused on performance prediction in MOOCs and small private online courses
(SPOCs).

1.2. Method

This study presents a review of studies that aim to predict student outcomes, which we
define in terms of achievement, completion, and continuation in online educational courses.
The study also provides an overview and taxonomy of the current related work with a
detailed analysis of the features and methods used in the literature. It also covers different
types of online learning environments, including MOOCs and SPOCs. In particular, this
study aimed to answer the following research questions:

1. What is the process followed by researchers for learner outcome prediction?
2. What are the predictive variables used to predict learner outcome?
3. What are the learner outcomes used in the literature?
4. What are the online learning platforms used in the literature?
5. What are the machine learning methodologies used in the literature?
6. What are the challenges and limitations, and future directions of this field?

The literature contains numerous studies that examine online learner data to better
understand learners’ progress and outcomes in online courses. We included all stud-
ies published between 2017 and 2021 that utilized users’ learning-behaviour data and
employed machine learning and deep learning techniques to predict learner outcomes
in online courses, including student dropout and student performance (students at risk,
student grade, and student certificate acquisition). We searched a number of electronic
databases, such as Scopus and Web of Science, and publishers, such as Springer, IEEE,
Elsevier, and Sage, using the keywords and queries shown in Table 1. The search was
expanded using snowball search methods to identify additional related studies.
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Table 1. Search strings used in the web search engine.

Concept Search Query

Learner Performance (“Grade” OR “Performance” “Success” OR “Failure” OR “Certificate” OR
“At-risk”)

Learner Dropout (“Dropout” OR “Retention” OR “Completion” OR “Attrition” OR “With-
drawal”)

Online Learning (“Online learning” OR “MOOC” OR “Online course” OR “Online Educa-
tion”)

Machine Learning (“Classification” OR “Prediction” OR “Machine Learning” OR " Predictive
model” OR “Deep learning”)

1.3. Study Selection

The search was conducted between 1 May 2021 and 30 June 2021, and returned a total
of 137 research studies. To exclude studies that do not match the inclusion criteria, we
examined the research’s paper title, abstract, and sometimes the proposed methodologies
if needed. We excluded studies that did not employ any machine learning models in
their proposed methodology, those that utilized learning features obtained from blended
learning or face-to-face learning, and those that used features obtained from mobile-based
or e-book platforms. Studies that aimed to detect and analyze other aspects of students’
online experiences, such as sentiment, engagement, satisfaction, and learning style, were
also excluded from this review. Studies that only utilized features obtained from learning
systems, such as previous academic achievements and demographic data, were excluded
from the study. We also excluded studies that only looked into linguistic features of students’
posts or comments on discussion boards. Studies that predict students’ performance in
assignments, exams, or quizzes, rather than final grades or final exams, were excluded
from this study. After removing irrelevant research, we were left with 67 studies. Figure 1
shows the number of dropout and performance-prediction studies after applying the
exclusion criteria.

Figure 1. The number of dropout and performance-prediction studies after applying exclusion criteria.

1.4. Student Outcomes Prediction Model Process

The problem of forecasting student outcomes using learner-interaction data is often
formulated as a supervised problem that requires a dataset of pairs of values (xij, yj), in
which xij denotes the ith feature or attribute that characterizes the jth student and yj is the
learner outcome (e.g., 1 = dropout or 0 = no dropout). The goal of the predictive model is to
learn a function h = y(x) that estimates the relationship between the input or independent
variables and the predicted outcome, which is the dependent variable in this problem.
The dependent variables can be continuous real values (e.g., grade = 93.0), dichotomous
variables that take two possible values (e.g., fail = 1, success = 0), or polychotomous
variables that have more than two possible values (e.g., high, intermediate, and low).

Similar to other problems in machine learning, predictive models in this domain com-
monly follow a five-step procedure, as shown in Figure 2. The first step involves collecting
datasets from online platforms. The samples in the dataset represent learners’ information
and activities in one or more courses over a period of time. A preprocessing stage is then
performed to extract and select valuable features. After extracting the features, several
machine learning models are trained on the training set and validated on a validation set.
Then, hyper-parameter (e.g., number of training epochs, regularization penalty) optimiza-
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tion techniques are implemented to choose the optimal hyper-parameters of the model.
Then, the trained model is evaluated on an unseen testing set, and the prediction accuracy
is estimated using metrics in the last step. The following sections provide information
related to each of these steps.

Figure 2. The procedure of student outcome prediction.

The remainder of the paper is organized as follows: Section 2 provides a summary of
the online learning environments used in the literature; Section 3 provides an overview of
the courses or subjects used in the literature; Section 4 presents a summary of the predictive
variables used in the literature, with detailed analysis of feature-extraction and feature-
selection techniques in Sections 5 and 6, respectively. Section 7 provides an overview of
the models used in previous studies. Section 9 provides details about learner outcomes,
a summary of the studies that predict student performance in Section 9.1 and student
dropout in Section 9.2. Finally, Sections 10 and 11, give a summary of the related studies
and challenges in the field. Online courses that are delivered to a large scale of learners
are called massive open online courses (MOOC), while those that target private or specific
groups of students are called small private online course (SPOC) [10]. Despite the similarity
between these two types of courses, they have distinctive characteristics. The number of
enrolled students in SPOCs, for example, is much smaller (15 to 20 students per course)
than that of students in MOOCs (up to 10, 000 per course). The small number of SPOC
enrolments has contributed to enhancing teachers’ guidance and increasing retention rates
in comparison to MOOCs [10].

2. Online Learning Environment

Several MOOC and SPOC learning systems, such as Coursera, edX, Moodle, and other
private online platforms, have been used to predict student outcomes. However, because of
their large number of students and courses, the majority of studies leveraged data from
MOOCs. MOOCs also have a higher dropout rate; thus, a large number of studies have
investigated methods to forecast dropout in MOOCs [10]. Figure 3 shows the number of
studies that uses MOOCs and SPOC in dropout and performance prediction. In the litera-
ture, we found that datasets are often collected from various courses that range from one
course to 56 courses, with several samples/records that range from 104 to 597, 692 records.
The duration of data collection also varies among studies. The researchers considered
two strategies: collecting data over a fixed period, such as four weeks or 30 days, or over
different durations, such as two, three, and four weeks.

Figure 3. The distribution of the studies that use MOOCs and SPOCs.

Several public datasets have been used in related studies to predict student perfor-
mance and dropout rates. These datasets can be considered benchmark datasets, allowing
researchers to evaluate the performance of the model compared with the others. The public
datasets in this domain are the Students’ Academic Performance Dataset (SAPData) [11],
which has been utilized for grade prediction [12]; Open University Learning Analytics
Dataset (OULAD) [13] developed by the Open University (OU) and used for at-risk [14],
pass/fail [15], grade [16], dropout [15], and engagement prediction [17]; Center for Ad-
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vanced Research Through Online Learning (CAROL) [18] has been used for dropout [19]
and fail/success prediction [20,21]; KDD Cup 2015 (KDDcup) [22] has been extensively
used in the literature as a whole or subset to predict dropout, such as [23,24]; and HarvardX
and MITx dataset (HMedx) [25] have been used for dropout prediction [26] and perfor-
mance prediction [26,27]. Figure 4 shows the statistics of each dataset used in previous
studies. Most of the studies use the KDDcup 2015 dataset, where 19 studies have utilized
this dataset, followed by OULAD with 6 studies, CAROL with 3 studies, and HMedx with
2 studies. A summary of the public-dataset usage is provided in Table 2.

Figure 4. The distribution of the studies that use publicly available dataset.

Table 2. Public learning-analytic datasets used in the literature.

Ref. Dataset Platform Courses Records Features Outcomes

[11] SAPData Kalboard 360 12 480 Demographic, Academic
Background, Interaction Performance

[13] OULAD OU VLE 22 32,593 Demographic, Registration,
Assessment, Interaction Performance

[18] CAROL OpenEdX 5 78,623 Interaction, Assessment Dropout,
performance

[22] KDDcup XuetangX 39 120,542 Enrollment, Course,
Interaction Dropout

[25] HMedx edX 17 597,692
Academic Background,
Video Interaction,
Assessment

Dropout,
performance

3. Courses

When analyzing students’ learning outcomes, researchers use two approaches with
respect to the course subject, focusing on subject-independent or subject-dependent features.
Most studies in the literature use subject-independent features by examining/analyzing
students learning behavior independent of the course subject, such as the number of
download sources. However, a few studies have focused on analyzing features related to
the subject of the study, such as utilizing variables related to learning mathematics [28].

In the literature, student-outcome predictive systems are often developed based on a
single course or multiple subjects. Researchers have identified five subject categories in the
literature: humanities, social sciences, natural sciences, formal sciences, professions, and ap-
plied sciences [29]. Table 3 provides an overview of some subjects and their categories.
As shown in Figure 5, the most widely used subject categories are formal science, and more
specifically, computer-related subjects such as programming and computer networking.



Sustainability 2022, 14, 6199 6 of 23

Table 3. Subject categories used in the literature.

Subject Category Example Subject No. of Studies

Humanities Online foreign language teaching, understanding language 6
Social sciences General sociology, Social science 7
Natural sciences Analytical chemistry laboratory, Physics III 6
Formal sciences Assembly Language, C programming, Calculus I 33
Medical sciences First aid general knowledge, Public health research 4
Professions and applied sciences Circuits and Electronics 17
Not mentioned - 37

Figure 5. Distribution of subject categories used in the related studies.

4. Predictive Variables

Existing methods for forecasting online learners’ outcomes, such as dropout, grade,
and completion, are based on data-mining techniques, which entail collecting attributes
from learners’ data provided during their online study and then making predictions using
various data-mining tools. Several features have been investigated to predict and estimate
students’ learning outcomes. These features can be categorized into pre-course information,
such as demographic background, previous academic background, course information;
in-course information, such as interaction data and learning behavior; and post-course
data, such as graded assessment and final grade.

Demographic information, registration, or enrollment data mainly describe the char-
acteristics of the learners, including their name, gender, age, mother tongue, geogra-
phy/origin, occupation, socioeconomic status, and hobbies. Previous academic background
describes a learner’s past academic achievements, including information about students’
cumulative grade point averages. Learning behavior, also referred to as engagement data
or log data, is the behavior students exhibit during their interaction with an online course.
Learning behavior features are often represented in terms of frequency or duration, focus-
ing on particular targets such as content, assessment, and forums. Learning behavior also
includes multimedia learning behavior (i.e., video-related features), download courseware
behavior, text learning behavior (i.e., browsing online content), and exercise-related be-
havior. The granularity of the extracted pattern can constitute another level, by focusing
on more fine-grained interaction data with specific events such as multimedia or video,
practice, and participation events. Video or multimedia interaction data, for example, can
be pausing, stopping, and replaying. Studies in the literature looked at different types of
features. The most widely used features are interaction learning behavior features. Only a
small number of studies looked into fine-grained multimedia, practice, and participation
features. A summary of the learner data used in the related studies is provided in Table 4.
Throughout the analysis of the studies, behavioral (log data) followed by demographic
data were the most widely used in both dropout prediction and performance prediction,
as shown in Figure 6.
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Figure 6. Statistics of feature categories used in dropout prediction and performance prediction.

Table 4. Summary of learner data used in the literature and their categories.

Category Features

Demographic features Date of birth, birthplace, age, gender, parent responsible for student, nationality, mother tongue
Academic background Studying semester, GPA, grade level, section, education
Enrollment data Information about student’s enrollment on a course
Course data No. of enrolled students, drop rate, course modules
Attendance data Student absent from class
Learning interaction (log data) Activity, visit resources, downloaded resources, play resources, access a piece of content, class participa-

tion, logins, starting a lesson, page navigation, page closes
Multimedia/video interactive data Pause, replay, stop, open, close
Practice data Questions answered, tests, tries, assessment scores
Participation data Discussions on forums, polls, messages posted, messages read

5. Features Engineering

The initial form of learning-behavior data is log data or a clickstream, which contains
two major variables: the timestamp and events (e.g., opening a page). In the literature,
four forms of features have been used to represent learning behavior patterns: statistical,
statistical-temporal, raw, and raw-temporal features. Most studies on this subject have
relied on a coarse-grained statistical process to represent learning events in terms of fre-
quency, rate, or length computed and accumulated over a specific time frame, such as a day,
week, or several weeks. As a result, the learner is represented in the predictive model as a
fixed-length flat vector of some continuous values as a whole or as a sequence of features
(e.g., the total number of activities in a day or the rate of practicing behavior over time).

Other researchers have considered the statistical-temporal approach by analyzing
learner activity over any period (weeks or days). The data of each learner are represented
by a dynamic-length flat vector that varies in length according to the chosen duration.
Recent research has focused on employing more fine-grained feature analysis to extract
temporal properties from raw data using deep-learning algorithms. To automatically extract
temporal features from raw textual or categorical data, one first needs to encode these
raw data into representations, such as the one-hot encoding scheme. Then, deep-learning
models with convolutional layers have been utilized to automatically extract the most
significant features in the prediction task. As shown in Figure 7 in both dropout prediction
and performance prediction tasks, statistical features have been the most commonly used
feature-extraction methodology. In contrast, a small number of studies have looked into
raw temporal features.

Figure 7. Statistics of feature-extraction methodologies used in the related studies.
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6. Feature Selection

To lower the dimensionality of the feature space, two paradigms are often employed
in machine learning: feature selection and dimensionality reduction. The feature-selection
approach is a preprocessing procedure that is performed before the learning stage to choose
the most relevant features for the predictive task and increase the model’s accuracy and
efficiency. In addition to the strategy of manually selecting pertinent features adopted by
most researchers in the field, several automatic feature-selection methodologies have also
been used in the field. These methodologies can be categorized into correlation-based,
wrapper-based, and ensemble-based feature selection.

Several studies have applied correlation-based feature selection approaches such as
chi-square (X2), mutual information (MI), information gain, fast correlation-based filter
(FCBF), relief, and Pearson’s correlation coefficient [21,30,31] to select the topmost related
features to the targeted values and discard irrelevant and noisy attributes. This approach
has the benefit of being adaptable to any machine-learning model.

Wrapper methods, in contrast, search the attribute space and use a classifier to de-
termine the best set of features. Several wrapper-based methods have been used in the
literature, including recursive feature elimination (RFE) [32], random hill climbing [27],
and WrapperSubsetEval [33]. Ensemble-based feature selection methods have been exam-
ined in several studies [21]. Dimensionality reduction approaches such as principal compo-
nent analysis (PCA) map the feature space to a lower-dimensional space. Several studies
have applied this method to reduce the dimensionality of the feature space [20,34,35].
The main drawback of dimensionality reduction approaches is that the newly generated
features do not reveal much information regarding the original feature space.

7. Models

Researchers have used a wide range of machine- and deep-learning techniques to pre-
dict online student outcomes from their online interaction data. The machine-learning mod-
els utilized in the field are categorized into probabilistic models such as Naive Bayes (NB),
linear models such as logistic regression (LR), ensemble methods such as AdaBoost, tree-
based methods such as decision trees (DT), rule-based methods such as fuzzy-logic-based
approaches, and instance-based learning such as K-nearest neighbor (kNN). In addition,
some studies have developed optimization methods or heuristic search-based algorithms,
such as the Kstar algorithm, to predict student outcomes. Deep-learning models, such as
convolutional neural networks (CNNs) and long short-term memory (LSTM), have been
investigated in recent studies to predict learners’ outcomes in online learning. Table 5
summarizes the machine- and deep-learning methods used in previous studies. Figure 8
shows the predictive-model categories used in relevant studies. As shown in the figure,
deep-learning models are the most widely used in the literature. It is worth noting that
the term deep learning refers to models that implement neural network models with more
than three layers; thus, studies that develop a feed-forward neural network with more than
three hidden layers are categorized as deep learning.
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Figure 8. Distribution of machine-learning models in the literature.

Table 5. Summary of the machine-learning models used in the literature and their categories.

Model Category Models

Probabilistic model Naive Bayes, Bayes network, Bayesian generalized linear (BGL), Bayesian belief networks,
Linear models Logistic regression (LR), support vector machine (SVM), linear discriminant analysis (LDA), general-

ized linear model (GLM), lasso linear regression (LLG), boosted logistic regression
Ensemble methods Bagging, boosting, stacking, AdaBoost, gradient boosting (GB), eXtreme gradient boosting (xgbLin-

ear), stochastic gradient boosting (SGB)
Tree-based models Decision tree (DT), random forest (RF), Bayesian additive regression trees (BART)
Rule-Based models Rule-based classifier(JRip), fuzzy set rules
Instance-based learning k-nearest neighbors (kNN)
Neural network Multilayer perceptron(MLP) or artificial neural network (ANN)
Sequence ML models Conditional random fields (CRF)
Deep neural network Recurrent neural network (RNN), gated recurrent unit (GRU), long short-term memory (LSTM),

convolutional neural network (CNN), squeeze-and-excitation networks (SE-net)
Others Search algorithms (Kstar), optimization algorithm (pigeon-inspired optimization (PIO)), matrix

completion, unsupervised learning model (self organized map (SOM))

8. Evaluation Metrics

Predicting student outcomes is regularly formulated as a supervised learning prob-
lem, either as a classification or regression problem. The predictive performance of the
proposed classification model has been evaluated using metrics such as accuracy (acc.),
sensitivity, specificity, precision, recall, f1-measure (f1), and area under the ROC curve
(AUC) [36,37]. The confusion matrix summarizes the prediction outcomes for a given
classification problem in terms of true positive (TP), true negative (TN), false positive (FP),
and false negative (FN), which are positive examples correctly predicted by the classifier,
negative examples correctly classified by the model, negative instances incorrectly classified
by the model, and positive examples incorrectly classified by the model, respectively. Accu-
racy is the most commonly used metric in both performance prediction (55%) and dropout
prediction (63%), even though accuracy is not suitable for highly imbalanced datasets.

The performance of the regression model is measured using the error or difference
between the actual outcome (yi) of an instance (i) and the estimated outcome by the model
(ŷi). Several error measures have been used in this task, such as mean absolute error (MAE),
root mean square error (RMSE), and root mean square error of approximation (RMSEA) [38].
In addition, statistical measures such as r2 (R-squared) have been used to estimate the
performance of regression models. Table 6 provides the metrics used in the literature.
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Table 6. The performance metrics used for classification and regression.

Prediction Task Metric Formula

Classification

Precision (P)
TP

TP + FP

Recall (R)
TP

TP + FN

Accuracy
TP + TN

TP + TN + FN + FP

F-score 2 ∗ R ∗ P
R + P

Regression

MSE
1
m

m

∑
i=1

(yi − ŷi)
2

RMSE
1
m

m

∑
i=1

√
(yi − ŷi)2

MAE
1
m

m

∑
i=1
| (yi − ŷi) |

R2 1− ∑m
i=1 (yi − ŷi)

2

∑m
i=1 (yi − ȳ)2

9. Student Outcomes

Researchers have explored and analyzed students’ characteristics and learning behav-
ior for various reasons, including providing personalized learning by building students’
profiles, understanding students’ learning styles, and optimizing educational outcomes.
They have investigated a wide range of outcomes that can be grouped into two major
categories: learners’ performance predictions and retention and completion predictions,
as success and retention rate are essential variables that institutions need to measure and
assess frequently. Learner-performance prediction systems aim to predict students’ per-
formance upon the completion of a given course, such as certificate, grade category, grade
value, success/failure, and risk prediction. Student-dropout prediction has attracted many
researchers in the field in recent years. The literature has witnessed a large increase in
contributions to this issue owing to the increased use of MOOCs. Finding more efficient
approaches to mitigate online student withdrawals is of fundamental importance to institu-
tions, students, and staff. These problems are often formulated as classification (binary or
multi-class) or regression. In the following subsection, a summary of the proposed studies
on student performance and student retention/dropout is presented.

9.1. Predicting Students Performance

To predict student performance, studies have examined four performance measures:
certificate acquisition, grade, failure/success, and at-risk prediction. Table 7 summarizes
the proposed models for student-performance prediction.
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Table 7. Summary of the performance-prediction studies that include type of online education
(MOOC or SPOC), platform (the dataset or the platform; blank if not mentioned), sample (the sample
of instances in the dataset; blank if not mentioned), courses (number of courses in the dataset; blank
if not stated), features (B: learning behavior or log data, D: demographic information, V: video click
stream, A: assessment data (grade, answer data), C: course data, O: other, such as a forum, discussion,
and academic background, attendance data, features extraction (FE) method, either statistical (S),
temporal (T), or raw data (R), classes, output, best-performing model/s, and best performance-
accuracy scores. F1-score (F1), AUC, or regression metrics is provided if the accuracy score was not
reported. Scores are rounded up to two decimal places and reported with the week if the performance
was estimated during different time spans. ** and * indicate the performance using different classes
(binary, multi, or regression) or using different features.

Ref. Type
Platform
Dataset

Sample/
Course

Features FE
Model Class Output Accuracy

B D V A C O S T R

[39] SPOC 336/1 X X SVM Multi Grade 0.95

[12] MOOC SAPData 500/12 X X X X MLP Multi Grade 0.84

[40] SPOC 202/- X X X LR Binary At risk F1 = 0.66

[41] MOOC edX 3530/1 X X RF Binary Certificate w5:0.95

[27] MOOC HMedx 597,692/15 X X X RF Binary Certificate 0.99

[42] MOOC 9990/1 X X X LSVM Binary Certificate w7:0.99

[43] SPOC Moodle -/1 X X DT Binary Grade w7:F1 = 0.85

[44] MOOC Coursera -/2 X X X RNN Reg. Grade RMSE = 0.058

[45] MOOC edX 18,927/15 X X X X BGL Binary Certificate w3:AUC = 0.90

[31] MOOC 603/1 X X X X RF+
Bagging Binary Certificate 0.79

[46] MOOC edX 5537/9 X X LR Binary Pass/fail w5:0.94

[47] SPOC Blackboard -/- X X X X GP Binary At risk 0.89

[48] MOOC 300/1 X X X CART Multi Grade 0.90

[20] MOOC CAROL 3585/1 X X X X DL Multi Pass/fail w8:0.98

[49] SPOC Moodle 6119/1 X ** X * X FURIA Multi Grade 0.76 *, 0.99 **

[50] SPOC Fanya 5542/1 X X X X X LR *
DNN **

Reg. *
Multi **

Grade MSE = 20 *
0.88 **

[34] MOOC UCATx,
coursera

24,789/5 X X X SMOTE
SSELM Binary Complete 0.97

[51] MOOC HMedx
OULAD

8000/6 X X X GBM Binary At risk 0.95

[30] SPOC -/3 X X X X RF Binary Pass/fail w1:AUC = 0.85

[52] MOOC 1528/1 X X X LSTM +
DSP Binary Pass/fail 0.91

[15] MOOC OULAD 22,437/22 X X X X GBM Binary Pass/fail AUC = 0.93

[53] MOOC HPU LMS 1073/1 X X X X SSL
Regression Reg. Grade MAE = 1.146

[54] SPOC edX 124/1 X X X X TrAdaboost Binary At risk AUC = 0.70

[55] MOOC XuetangX 12,847/1 X X GRU-RNN Reg. Complete r2 = 0.84

[26] MOOC HMedx 641,138/- X X DNN Binary Certificate 0.89

[56] SPOC 122/1 X X X Regression
analysis Reg. Grade 0.85

[57] MOOC Lagunita 130,000/1 X X X RNN **
RNN *

Multi **
Reg. * Grade

w5:0.55 **
RMSE = 8.65 *

[58] MOOC HPU LMS 1073/1 X X X X X
Multiview
SSL
Regression

Reg. Grade MAE = 1.07

[59] MOOC 1075/2 X X X SVT Reg. Grade RMSE = 0.30
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Table 7. Cont.

Ref. Type
Platform
Dataset

Sample/
Course

Features FE
Model Class Output Accuracy

B D V A C O S T R

[60] MOOC edX 6241/2 X X JRIP Binary Grade 0.70

[33] MOOC edX -/3 X X X RF Binary Grade 0.79

[21] MOOC CAROL 49,551/4 X X X X Ensemble Multi Pass/fail w7:0.93

[61] SPOC Moodle 69/1 X X ARM Binary Grade

[14] MOOC OULAD 32,593/7 X X X X X RF *, GB ** Binary *
Multi **

At risk,
Grade

0.91 *
0.73 **

[62] MOOC Moodle 66/1 X X KNN Binary At risk 0.65
[63] SPOC 104/ 1 X X X X NB Multi Grade 0.86

[16] MOOC OULAD 32,593/- X X X X CNN +
LSTM Multi Grade 0.61

[64] SPOC Moodle 150/1 X X X X KNN Multi Grade 0.87

[38] MOOC Moodle 802/4 X X X LR Reg. Grade RMSEA = 0.13

[65] MOOC 2556/2 X X X X DNN Reg. Grade w5:MAE = 6.8

9.1.1. Certificate Acquisition Prediction

Student certificate acquisition is one of the effective measures of learner performance
in professional courses. In MOOCs, learners earn a certificate of completion if they finish
the course and meet the course requirements. Other specialty credentials are available upon
request and are often expensive. All research in this category has focused on predicting the
attainment of a certificate of completion. Thus, predicting certificate and course completion
attainment are considered the same.

Korosi et al. [31] developed a certificate-prediction algorithm based on features re-
lated to learning behavior, mouse behavior, video-watching attitudes, and text inputs.
The gain-ratio feature selection approach was implemented using different classification al-
gorithms, and the best performance was obtained by random forest and bagging. Similarly,
Al-Shabandar et al. [27] proposed an approach that uses a random forest algorithm and
hill climbing to automatically select statistical features from learners’ demographical and
behavioral attributes. The model was evaluated on the HMedx dataset [66] with undersam-
pling of the majority class to solve the class imbalance problem. Imran et al. [26] proposed a
deep neural network model to predict student dropout and certificate acquisition based on
learner behavioral data. Liang et al. [42] proposed an approach to improve online learning
by offering a personalized profile to guide student behavior. The authors explored different
classification models to predict whether a student will obtain a certificate based on the
Jaccard coefficient similarity of student profiles and learning behavior. The model was
tested over different weeks (5–7 weeks), and the best results were obtained using the SVM
model at 7 weeks. Ruipérez-Valiente et al. [41] proposed an approach that uses statistical
learning behavior and progress features with several machine-learning methods to predict
whether a student will obtain a certificate or not.

9.1.2. Grade Prediction

Another perspective on student success is students’ grades. Several publications have
proposed models for predicting student grades in various assessments, such as the course
grade or final-exam grades, quizzes, or assignments in a course. Researchers have ap-
proached student-grade predictions through classification and regression models. Several
studies have used binary classification to predict learner failure and success [33,43,54,60,61].
Other studies categorized grades into multiple categories, such as excellent, good, moderate,
and fail [48]; withdrawn, fail, pass, and distinction [14]; and good, medium, and low [12].

Mainstream studies examined several machine-learning models with manually se-
lected statistical learning behavior features to predict learners’ grades. Xiao et al. [48]
employed the classification and regression tree (CART) algorithm on statistical demo-
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graphic and learning behavior data to classify students’ final grades into one of four classes.
Similarly, Rahman and Islam [12] developed an approach based on demographic, academic
background, behavioral, and parents’ participation data to classify learners’ grades into
three categories. They employed different algorithms with ensemble filtering, and the artifi-
cial neural network (ANN) model provided the best results. In addition, Villagra et al. [39]
proposed a machine-learning model that utilized normalized learning-behavior data to
classify students into the five categories of the standard grading system. An SVM model
outperformed other baseline models in this task.

Adnan et al. [14] employed several machine models that use learners’ demographics,
and learning-behavior attributes to classify student performance into binary and multiclass cat-
egories. The results show that gradient boosting (GB) and RF scored the highest performance
for multiclass and binary classification, respectively. In addition, Singh and Sachan [64] uti-
lized learning behaviors, along with some secondary features, such as intermediate quiz
performance and class attendance, to predict learner grade category. SVM and kNN were
employed, and kNN showed better accuracy. Huang et al. [33] proposed a binary academic-
performance prediction model using behavioral data. Several machine-learning models
were tested, and the best performance was achieved using RF.

Chi and Huang [63] proposed a naive Bayes algorithm with the Laplace smoothing
method to predict student performance and produce midterm-stage warnings. Using
assessment, attendance, and other learning-behavior features, the model was evaluated on
a one-course dataset and achieved the best accuracy in comparison with other techniques.
Yu [50] developed a regression and classification models for student performance. They
used statistical features from log data with a linear regression model (LR) to estimate
students’ grades and a deep neural network (DNN) to classify students into three classes.
KokoÃğ et al. [61] utilized assignment submission pattern and association rule mining
(ARM) analysis to determine whether a student will pass or fail a course. Karlos et al. [58]
developed a multi-view semi-supervised regression model to predict distance-learner
grades based on learning activities, demographic, attendance, and assessment information.
The model was trained on data obtained from Hellenic Open University (HOU) LMS.

Other studies have employed feature-selection strategies to select the most-relevant
features for predictive tasks. Chen et al. [30] proposed an early predictive model that
utilized clickstream events to capture student interactions with course content and other
students in social learning networks, and classify students into pass or fail. Feature selection
based on correlation analysis were employed for each course, and different classifiers were
examined in this task. In addition, Mourdi et al. [20] developed a multiclass classifier
that utilized demographic, interactive, and assessment features to determine whether
a student will pass, fail, or dropout. The dimensionality was reduced using principal
component analysis (PCA). In comparison to other machine-learning models, the deep
neural network had the greatest accuracy. Chiu et al. [46] proposed a model to predict
student performance based on behavioral data. Logistic regression and linear regression
models were employed to determine whether a student would pass or fail and estimate
their final grade, respectively.

Recent studies have examined temporal features and deep-learning models to predict
learners’ grades. Kőrösi and Farkas [57] proposed a recurrent neural network (RNN)
to predict students’ final grade scores and category from raw log data. For both tasks,
the RNN model showed better accuracy than baseline models. In addition, Qu et al. [52]
employed an LSTM model trained on temporal assignment-related attributes, such as
submission order and completion time, to describe students’ learning behavior and used a
discriminative sequential pattern (DSP) adapter to predict students’ achievement. Similarly,
Song et al. [16] developed a CNN-LSTM model based on demographic and engagement
patterns to predict learners’ academic performance.

Fine-grained behavioral features were also examined to predict learners’ grades.
Lee et al. [65] presented a deep neural network model for student-performance prediction
based on video-watching and exercise-answering behaviors. Similarly, Lemay and Doleck [60]
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presented a grade-prediction model for weekly assignments based on statistical video-
viewing behavior (e.g., the number of fast-forwards, pauses, and playback). Different clas-
sifiers were employed, and JRip achieved the best performance. Similarly, Yang et al. [44]
proposed an RNN grade-prediction model utilizing video-watching data and assessment
grades, such as the number of pauses, rewinds, and average quiz grades. Fuzzy-based
approaches have also been investigated for this problem. Hussain et al. [49] employed
FURIA [67], among other models, to predict learners who will perform poorly on tests
based on learning activities and grades.

Several studies have considered grade prediction as a regression problem. Chunzi et al. [56]
explored factors that affect college students’ online foreign-language learning performance.
The author focused on learning-ability attributes reflected by students’ grades of text
recitation and translation before and after the course, duration of learning, login times,
and the scores obtained in online quizzes. Students’ online answers followed by login
times were found to be the most-significant variables for estimating students’ grades.
Xiao et al. [59] developed a matrix-completion-based model to predict online and offline
unit tests and final grades. They organized the MOOC data into a matrix with missing
values and then applied the singular value thresholding (SVT) algorithm to obtain the
values of missing grades. Kostopoulos et al. [53] developed a model to predict students’
grade values using semi-supervised learning (SSL) regression.

9.1.3. Students-at-Risk Prediction

Identifying students who are at risk of failing a course is a prevalent objective in
the literature. Kondo et al. [40] used learning interaction and the attendance attributes of
SPOCs dataset to identify off-task and at risk students. Cano and Leonard [47] presented
an early-warning system based on genetic programming (GP) rules to address students
with socioeconomic disadvantages. The system automatically extracts classification rules
based on student demographic, learning interaction, academic background, registration,
and family and socioeconomic data. Similarly, Al-Shabandar et al. [51] presented an
approach that identifies failure and withdrawal among MOOC online learners based on
demographic and learning-behavior data. The synthetic minority oversampling approach
(SMOSE) was applied to address the class imbalance issue, and several machine-learning
models were examined, including gradient boosting machine (GBM), which provided
the highest accuracy. Wan et al. [54] proposed a transfer-based model to predict at-risk
students on a weekly in-class project test. Statistical behavioral features, such as the total
time spent on video resources and percentage of total correct submissions, were extracted
from the data and combined with previously learned weights from former courses to
predict students at risk of failing in the current course. El Aouifi et al. [62] proposed a
model to predict final grade based on students’ interactions with pedagogical sequences of
educational video behaviors such as play, pause, jump forward, jump backward, and end.
The author extracted sequences as features according to the pedagogical sequences in
which the student performed an action. K-nn and MLP were used, and the best results
were achieved using K-nn.

9.2. Student Dropout and Retention Prediction

Dropping out and failing to complete a course are serious challenges for educational
institutions, which is why several studies have focused on these topics. Various methods for
feature extraction have been proposed. Most studies examined different machine-learning
methods trained on manually selected statistical features to predict dropout in MOOCs [68]
or used temporal features obtained from raw or statistical data. Table 8 summarizes the
dropout prediction approaches.

9.2.1. Statistical Features

Most of the proposed approaches utilize learning-behavior data with demographic
or academic background to predict dropouts. MonllaÃş OlivÃl’ et al. [69] presented a
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framework that explored multiple prediction analyzers (students, users, or courses), classi-
fication targets (at-risk students, course effectiveness), indicator features (e.g., the number
of clicks made by the student), and machine-learning models (ANN or LR). To predict
student dropout, learning behavior indicators were extracted and used to train the ANN
model, which yielded a good performance. Similarly, Zhou and Xu [24] developed a
multi-model stacking ensemble learning (MMSE) approach to predict student dropout in
MOOCs. The classification was performed in two stages; first, five base classifiers were
employed and produced an output that an XGBoost model examined to produce the final
prediction. Assessment data has also been examined as indicators of learner dropout rates.
Burgos et al. [70] developed a course-specific logistic regression model to predict student
dropouts. Similarly, Jha. et al. [15] implemented several machine-learning algorithms
with a different set of features to predict student dropout and performance. The authors
examined demographics, assessment, and learning-interaction data separately and learner
interaction provided the highest accuracy.

Several studies have incorporated course data to predict dropout in MOOCs. Cobos
and Olmos [45] utilized course and log data to predict dropout and certificate acquisitions.
Bayesian generalized linear (BGL) and stochastic gradient boosting (SGB) achieved the
best accuracy among other classifiers for certificate and dropout prediction, respectively.
Laveti et al. [71] proposed a stacked ensemble model with features extracted from course,
log, and enrollment data for dropout prediction. Similarly, Coussement et al. [72] developed
a logit leaf model (LLM) trained on data obtained from student demographics, cognitive,
engagement, and academic attributes in addition to classroom characteristics for dropout
prediction. Hong et al. [73] proposed a two-layer cascading classifier that combines three
classifiers for student dropout prediction in MOOCs.

Early predictions of learner dropout have also been studied in the literature. Pana-
giotakopoulos et al. [74] presented an early-dropout-prediction model based on students’
demographics, academic background, and first week interaction collected from a sin-
gle MOOC course. Several machine-learning models were examined, and LightGBM
outperformed the other models. In addition, Alamri et al. [75] proposed a next-week
dropout-prediction model that predicts students who do not access 80% of the course
content in the following week based on their learning behavior and expressed opinions in
the discussion forum. Multiple classification models were tested and AdaBoost provided
the highest accuracy. A study by Xing and Du [76] used the weekly accumulated statistical
log data with a deep neural network model to predict student dropouts on a weekly basis.

Likewise, Liu et al. [77] proposed a temporal-behavior features weighting approach
that can be incorporated with other machine-learning models to predict dropout at any
point during the course. The proposed approach was compared with other feature genera-
tion methodologies, such as non-stacked [78,79], stacked [78,80,81], aggregated [79,82] and
recursive-aggregated [54] approaches. The proposed method achieved a higher F-score and
lower false-positive rates in early-weeks prediction. Studies have also examined feature-
selection strategies in dropout prediction. Qiu et al. [83] developed a dropout-prediction
model that integrates ensemble feature ranking based on MI, RF, and RFE. The model
also incorporates a forward search method that gradually examines features that improve
prediction. The selected features were tested with a LR model. Ardchir et al. [84] used
different machine-learning models with feature selection based on information gain RF
to weight features based on their importance. Neighborhood component analysis feature
selection was used with several machine-learning models to predict student dropout [85].

Optimization techniques have also been used for dropout prediction. Jin [86] proposed
an approach that initiates the weight of predictive models according to the maximum neigh-
borhood definition of the training sample using an improved quantum particle swarm
optimization (IQPSO) algorithm. To overcome the class imbalance issue, Mulyani et al. [87]
proposed the SMOTE-ensemble learning (SEL) model for dropout prediction using the syn-
thetic minority over-sampling technique (SMOTE) for the non-dropout class in addition to
the ensemble learning technique with three machine learning algorithms, LR, KNN, and RF.
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Gregori et al. [34] also used the synthetic minority oversampling (SMOTE) algorithm with
a semi-supervised extreme learning machine (SSELM) model.

9.2.2. Temporal Features

Recent studies on dropout prediction have used temporal features extracted from raw
or statistical data and employed deep-learning techniques to estimate learning behavior
dynamics over time. Lai et al. [23] developed a random vector functional link neural
network (RVFLNN) to predict student dropout in MOOCs. MOOCs generate periodical
data that varies in dimensionality; therefore, RVFLNN were used to increase input and
update the weight dynamically. Likewise, Xiong et al. [88] proposed an RNN-LSTM model
to predict student dropouts in MOOCs based on statistical weekly features aggregated
from students’ log data. Sun et al. [55] developed a GRU-RNN model to predict the
percentage of course content completed in an entire course syllabus. Several dropout-
prediction models use CNNs to extract features from raw data. Wu et al. [89] proposed a
model that combined CNN, LSTM, and SVM to predict student dropout on a daily basis.
The model transforms raw data into a one-hot vector and represents each enrollment in a
number of matrices that each describe the learner’s behavior in a single day. The proposed
model outperformed other standard machine-learning methods, such as SVM, RF, and LR,
and temporal deep-learning techniques, such as CNN-RNN.

Several studies have developed CNN model to extract features from statistical tem-
poral features and predict dropout. Studies in [90,91] developed a CNN model to analyze
the students’ learning behavior represented by a matrix that encodes the daily statistical
features over a period of time. Likewise, Zheng et al. [92] presented a model that extracts
statistical learning-behavior data, performs feature weighting and selection based on a
decision tree, and then uses CNN to predict dropout from students’ time-series learning
behavior frequencies. Recently, several studies have proposed connectionist approaches to
estimate learning outcomes by combining CNN and sequence models (LSTM). Mubarak
et al. [19] proposed a hypermodel of CNN and LSTM to extract features from the raw data
of MOOCs and predict student dropout. Wang et al. [93] proposed a dropout-prediction
model with automatic feature extraction from the raw MOOC data. The raw data of each
event were first converted into a one-hot vector and concatenated to produce matrices
representing a student’s learning behavior over a number of days. Then, a CNN and RNN
model was used to extract features and utilize time-series relationships. Similarly, Fu et al.
[94] developed a novel approach that employs a CNN to extract local features from raw
clickstream data and LSTM to obtain a time-series incorporating vector representation.
Yin et al. [95] designed a novel neural network structure that combined the convolutional
attention mechanism and conditional random field (CRF) for MOOC dropout prediction.
The proposed approach was compared with several baseline classifiers, including CNN-
LSTM, and significantly outperformed the baseline methods.
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Table 8. Summary of the dropout prediction studies that include type of online education (MOOC
or SPOC), platform (the dataset or the platform, blank if not mentioned), sample (the sample of
instances in the dataset, blank if not mentioned), courses (number of courses in the dataset, blank if
not stated), features (B: learning behavior or log data, D: demographic information, V: video click
stream, A: assessment data (grade, answer data), C: course data, O: other, such as a forum, discussion,
and academic background, attendance data, features extraction (FE) method either statistical (S),
temporal (T), and raw data(R), classes, output, best-performing model/s, and best performance
accuracy scores. F1-score (F1), AUC, or regression metrics is provided if the accuracy score was not
reported. Scores are rounded up to two decimal places and reported with the week if the performance
was estimated during different time spans.

Ref. Type Platform
Dataset

Sample
Course

Features FE
Model Class Output Accuracy

B D V A C O S T R

[73] MOOC KDDcup 96,529/39 X X X c-RF Binary Dropout 0.93

[71] MOOC KDDcup 200,000/39 X X X X Stacked
ensemble Binary Dropout 0.91

CNN + RNN Binary Dropout 0.92

[76] MOOC Canvas 3617/1 X X X X X DL Binary Dropout w7:0.97

[83] MOOC KDDcup 120,542/39 X X X RFE + LR Binary Dropout 0.87

[88] MOOC LMS -/6 X X X RNN-LSTM Binary Dropout 0.90

[89] MOOC KDDcup 79,186/39 X X X CNN + LSTM + SVM Binary Dropout F1 = 0.95

[84] MOOC KDDcup 112,448/39 X X X X X GB Binary Dropout AUC = 0.89

[15] MOOC OULAD 32,594/22 X X X X GBM Binary Dropout AUC = 0.91

[26] MOOC HMedx 641,138/- X X DNN Binary Dropout 0.99

[85] MOOC OULAD 32,593/22 X X X X ANN Binary Dropout AUC = 0.93

[72] MOOC - 10,554/- X X X X X LLM Binary Dropout F1 = 0.84

[92] MOOC KDDcup 79,186/39 X X X FWTS-CNN Binary Dropout 0.87

[77] MOOC KDDcup 112,448/39 X X Gaussian NB Binary Dropout F1 = 0.85

[96] MOOC KDDcup 120542/39 X X X X CNN + SE + GRU Binary Dropout 0.95

[69] MOOC Moodle 46,895/8 X X ANN Binary Dropout 0.89

[23] MOOC KDDcup 120,542/39 X X X RVFLNN Binary Dropout 0.93

[86] MOOC KDDcup 53,596/6 X X SVM Binary Dropout F1 = 0.90

[24] MOOC KDDcup 120,542/39 X X X MMSE Binary Dropout 0.88

[90] MOOC KDDcup 120,542/39 X X X CNN Binary Dropout 0.88

[95] MOOC KDDcup 12,004/1 X X X Attention + CRF Binary Dropout 0.84

[74] MOOC Moodle 700/1 X X X X LightGBM Binary Dropout 0.96

[75] MOOC Future
Learn 251,662/7 X X X RF, Adaboost Binary Dropout 0.95

10. Summary, Challenges and Limitations

As demonstrated in Tables 7 and 8, most of the studies were conducted on a dataset
obtained from a MOOC. Only a limited number of studies considered predicting student
outcomes in SPOCs. Researchers have utilized data collected for different durations, for ex-
ample, a month, two months, a semester, or several years. In addition, researchers have
developed predictive models using the learner-interaction data from a whole course or
across multiple course periods (e.g., three weeks, five weeks, seven weeks). Assessing
predictive models on different course periods shows that models give better predictive
results of student outcomes when the evaluation duration increases. In addition, the sam-
ples and number of courses vary among the studies. Some studies worked on a subset of a
publicly available dataset, whereas others worked on the entire dataset. The SPOC sample
size was much less than the MOOC sample size, which impacted the performance of the
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SPOC-based models. Similar to any machine-learning problem, the size of the dataset (i.e.,
number of samples) can impact the performance of the model.

Various sets of indicators have been used to predict student outcomes in the literature.
The most widely employed group of information in predicting student performance was
learning behavior (log data), followed by assessment and demographic features. Learning
behavior was also the most widely utilized set of features in predicting learner dropout;
demographic and assessment features were less-frequently used. Statistically extracted
characteristics were studied more than raw features by the researchers. The number of
statistically retrieved features differs among research as well. Some studies focused on
a small number of features (e.g., five features [42]), whereas others examined a larger
number of features (e.g., 79 features [83]). Those features were often selected manually,
and automatic feature selection was less-widely utilized. Several machine-learning models
were evaluated in this task. RF and ANN were among the best-performing machine-
learning models.

Several limitations were observed in the literature, which can be summarized as follows:

– There is no consensus among researchers on the definition of dropout, success,
and other related terminologies. For example, some researchers considered a stu-
dent to be a dropout if they fail to complete a specific percentage of the assessments
(e.g., 50%) [70], or if they were not active for several consecutive days [73]. Others
considered dropout to be the inability to pass a course, and some did not provide any
precise definition. The inconsistency in defining dropout and other related terminolo-
gies could be a concern to researchers, since it influences how dropout is assessed,
addressed, and investigated [97].

– Most proposed approaches use MOOC datasets in which students are self-motivated
and are not required or obligated to participate in the courses. Thus, there is an enor-
mous disparity between learners who are registered for curiosity, who, for example,
view some videos and do not complete the required assignments, and those who
are registered to finish the course, which may make identifying dropouts or failure
relatively easy tasks. Exploring other types of online environments, such as SPOCs,
might introduce more challenges, as learners may attempt to finish the course but fail
or withdraw due to their lack of knowledge or other reasons.

– Most studies also proposed systems that predict student outcomes when students
approach the end of the course. Only a small number of studies considered early
predictions of user outcomes, while many studies did not report the duration of data
collection. This made it difficult to compare the different proposed methods, as the
duration of the extracted features varied significantly. In addition, some studies used a
subset of publicly available datasets, making it difficult to compare different methods
on benchmark datasets.

– Most studies employed feature-engineering techniques to calculate students’ statistical
features as a whole. These features were often chosen arbitrarily or using statistical
techniques such as correlation analysis. Some recent studies looked into methods that
automatically extract temporal features from raw data by mapping raw features into
numerical representations, such as one-hot encoding, and then using deep-learning
methods, in particular, convolution functions, to extract features. Despite the useful-
ness of these techniques, the generated representations are often very sparse and less
useful for comparing user behavior.

– Several limitations have been addressed by researchers in this field. One of these limi-
tations is the problem of multi-valued instances, in which some instances containing
the same patterns have different outcomes [98]. In addition, the dropout-prediction
task is well known to be imbalanced because the proportion of the positive class is
much larger than that of the negative class. Several studies also use methods to handle
the problem of class imbalance by either oversampling of the minority class [34,87] or
under-sampling of the majority class [66].
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– One of the observed challenges is the quality of the training samples in which a large
number of attributes are clickstream data which might be less representative when
learners do not interact or engage in learning activities. This practice is common
among students who register in MOOCs for curiosity [86].

– Learning analytic systems are based on large volumes of real-time data collected over a
protracted period. Analyzing, combining, and linking multiple forms of learners’ data
to forecast their outcomes or any part of the learning process has raised many ethical
challenges that cannot be properly measured using traditional ethical procedures [99].
The risks of de-anonymizing learners’ identities [100] and decontextualizing data [101]
are some of the potential risks of this practice.

11. Conclusions and Future Directions

With the emergence of MOOCs and the expansion of online education in recent years,
the prediction of learners’ outcomes in online environments has attracted considerable
attention. The spread of COVID-19 has also aided the growth of SPOCs, blended edu-
cation, and an interest in monitoring student engagement and performance. Therefore,
this study reviewed current strategies for predicting online-student outcomes in MOOCs
and SPOCs. It summarized the predictive variables, online learning platforms, feature
extraction, selection techniques, evaluation metrics, and the predictive models employed in
this area. It also provided a thorough analysis and taxonomy for related research. Through-
out our analysis, we found that most studies in the field utilized statistical features such
as the number of downloaded materials and duration of video watching in a given time
period. A small number of studies examined statistical temporal and raw temporal fea-
tures in predicting learner outcomes. Studies conducted on benchmark datasets showed
that statistical temporal features provide better results than raw features. Thus, further
investigation of temporal features will provide a valuable understanding of users’ learning
progress and, eventually, their learner outcomes. Most temporally based LSTM or GRU
models learners’ time-series features. Further investigation of other recent sequence-based
models, such as the attention-based model, is required. Studies using one-hot encoding to
represent raw features and different representation techniques for raw features are worth
investigating. Different machine-learning and deep-learning models have been used to
predict learners’ outcomes. RF and ANN are among the most effective machine learning
models’ performance and dropout prediction, whereas the sequence-based model provides
the best performance on the publicly available dropout dataset. Further investigation of
deep-learning models is recommended to predict student performance.
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4. Moreno-Marcos, P.M.; Alario-Hoyos, C.; MuÃśoz-Merino, P.J.; Kloos, C.D. Prediction in MOOCs: A Review and Future Research
Directions. IEEE Trans. Learn. Technol. 2019, 12, 384–401. [CrossRef]

5. Ranjeeth, S.; Latchoumi, T.; Paul, P.V. A survey on predictive models of learning analytics. Procedia Comput. Sci. 2020, 167, 37–46.
[CrossRef]

6. Hamim, T.; Benabbou, F.; Sael, N. Survey of Machine Learning Techniques for Student Profile Modelling. Int. J. Emerg. Technol.
Learn. 2021, 16, 136–151. [CrossRef]

7. Prenkaj, B.; Velardi, P.; Stilo, G.; Distante, D.; Faralli, S. A survey of machine learning approaches for student dropout prediction
in online courses. ACM Comput. Surv. (CSUR) 2020, 53, 1–34. [CrossRef]

8. Gardner, J.; Brooks, C. Student success prediction in MOOCs. User Model. User-Adapt. Interact. 2018, 28, 127–203. [CrossRef]
9. Katarya, R.; Gaba, J.; Garg, A.; Verma, V. A review on machine learning based student’s academic performance prediction

systems. In Proceedings of the 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), Coimbatore,
India, 25–27 March 2021; pp. 254–259. [CrossRef]

10. Filius, R.M.; Uijl, S.G. Teaching Methodologies for Scalable Online Education. In Handbook for Online Learning Contexts: Digital,
Mobile and Open; Springer: Berlin/Heidelberg, Germany, 2021; pp. 55–65.

11. Amrieh, E.A.; Hamtini, T.M.; Aljarah, I. Mining Educational Data to Predict Student’s academic Performance using Ensemble
Methods. Int. J. Database Theory Appl. 2016, 9, 119–136. [CrossRef]

12. Rahman, M.H.; Islam, M.R. Predict Student’s Academic Performance and Evaluate the Impact of Different Attributes on the
Performance Using Data Mining Techniques. In Proceedings of the 2017 2nd International Conference on Electrical Electronic
Engineering (ICEEE), Rajshahi, Bangladesh, 27–29 December 2017; pp. 1–4. [CrossRef]

13. Kuzilek, J.; Hlosta, M.; Zdrahal, Z. Open university learning analytics dataset. Sci. Data 2017, 4, 170171. [CrossRef]
14. Adnan, M.; Habib, A.; Ashraf, J.; Mussadiq, S.; Raza, A.A.; Abid, M.; Bashir, M.; Khan, S.U. Predicting at-Risk Students at

Different Percentages of Course Length for Early Intervention Using Machine Learning Models. IEEE Access 2021, 9, 7519–7539.
[CrossRef]

15. Jha, N.; Ghergulescu, I.; Moldovan, A. OULAD MOOC Dropout and Result Prediction using Ensemble, Deep Learning and
Regression Techniques. In Proceedings of the 11th International Conference on Computer Supported Education, Heraklion,
Greece, 2–4 May 2019; SciTePress: SetÃžbal, Portugal, 2019; Volume 2, pp. 154–164. [CrossRef]

16. Song, X.; Li, J.; Sun, S.; Yin, H.; Dawson, P.; Doss, R.R.M. SEPN: A Sequential Engagement Based Academic Performance
Prediction Model. IEEE Intell. Syst. 2021, 36, 46–53. [CrossRef]

17. Hussain, M.; Zhu, W.; Zhang, W.; Abidi, R. Student Engagement Predictions in an e-Learning System and Their Impact on
Student Course Assessment Scores. Comput. Intell. Neurosci. 2018, 2018, 6347186. [CrossRef] [PubMed]

18. Stanford, U. Center for Advanced Research through Online Learning (CAROL). Available online: https://carol.stanford.edu
(accessed on 24 August 2021).

19. Mubarak, A.A.; Cao, H.; Hezam, I.M. Deep analytic model for student dropout prediction in massive open online courses.
Comput. Electr. Eng. 2021, 93, 107271. [CrossRef]

20. Mourdi, Y.; Sadgal, M.; El Kabtane, H.; Berrada Fathi, W. A machine learning-based methodology to predict learners’ dropout,
success or failure in MOOCs. Int. J. Web Inf. Syst. 2019, 15, 489–509. [CrossRef]

21. Mourdi, Y.; Sadgal, M.; Berrada Fathi, W.; El Kabtane, H. A Machine Learning Based Approach to Enhance Mooc Users’
Classification. Turk. Online J. Distance Educ. 2020, 21, 47–68. [CrossRef]

22. KDD. KDD Cup 2015. Available online: https://kdd.org/kdd-cup (accessed on 24 August 2021).
23. Lai, S.; Zhao, Y.; Yang, Y. Broad Learning System for Predicting Student Dropout in Massive Open Online Courses. In

Proceedings of the 2020 8th International Conference on Information and Education Technology, Okayama, Japan, 28–30 March
2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 12–17. [CrossRef]

24. Zhou, Y.; Xu, Z. Multi-Model Stacking Ensemble Learning for Dropout Prediction in MOOCs. J. Phys. Conf. Ser. 2020, 1607, 012004.
[CrossRef]

25. Ho, A.D.; Reich, J.; Nesterko, S.; Seaton, D.T.; Mullaney, T.; Waldo, J.; Chuang, I. HarvardX and MITx: The first year of Open Online
Courses; HarvardX and MITx Working Paper No. 1; Harvard University: Cambridge, MA, USA, 2014.

26. Imran, A.; Dalipi, F.; Kastrati, Z. Predicting Student Dropout in a MOOC: An Evaluation of a Deep Neural Network Model. In
Proceedings of the 2019 5th International Conference on Computing and Artificial Intelligence, Bali, Indonesia, 19–22 April 2019;
pp. 190–195. [CrossRef]

27. Al-Shabandar, R.; Hussain, A.; Laws, A.; Keight, R.; Lunn, J.; Radi, N. Machine learning approaches to predict learning outcomes
in Massive open online courses. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN),
Anchorage, AK, USA, 14–19 May 2017; pp. 713–720. [CrossRef]

28. Liu, K.F.-R.; Chen, J.-S. Prediction and assessment of student learning outcomes in calculus a decision support of integrating
data mining and Bayesian belief networks. In Proceedings of the 2011 3rd International Conference on Computer Research and
Development, Shanghai, China, 11–13 March 2011; Volume 1, pp. 299–303. [CrossRef]

29. Wu, W.H.; Jim Wu, Y.C.; Chen, C.Y.; Kao, H.Y.; Lin, C.H.; Huang, S.H. Review of Trends from Mobile Learning Studies:
A Meta-Analysis. Comput. Educ. 2012, 59, 817–827. [CrossRef]

http://dx.doi.org/10.1007/978-1-4614-3305-7_4
http://dx.doi.org/10.1109/TLT.2018.2856808
http://dx.doi.org/10.1016/j.procs.2020.03.180
http://dx.doi.org/10.3991/ijet.v16i04.18643
http://dx.doi.org/10.1145/3388792
http://dx.doi.org/10.1007/s11257-018-9203-z
http://dx.doi.org/10.1109/ICAIS50930.2021.9395767
http://dx.doi.org/10.14257/ijdta.2016.9.8.13
http://dx.doi.org/10.1109/CEEE.2017.8412892
http://dx.doi.org/10.1038/sdata.2017.171
http://dx.doi.org/10.1109/ACCESS.2021.3049446
http://dx.doi.org/10.5220/0007767901540164
http://dx.doi.org/10.1109/MIS.2020.3006961
http://dx.doi.org/10.1155/2018/6347186
http://www.ncbi.nlm.nih.gov/pubmed/30369946
https://carol.stanford.edu
http://dx.doi.org/10.1016/j.compeleceng.2021.107271
http://dx.doi.org/10.1108/IJWIS-11-2018-0080
http://dx.doi.org/10.17718/tojde.727976
https://kdd.org/kdd-cup
http://dx.doi.org/10.1145/3395245.3395252
http://dx.doi.org/10.1088/1742-6596/1607/1/012004
http://dx.doi.org/10.1145/3330482.3330514
http://dx.doi.org/10.1109/IJCNN.2017.7965922
http://dx.doi.org/10.1109/ICCRD.2011.5764024
http://dx.doi.org/10.1016/j.compedu.2012.03.016


Sustainability 2022, 14, 6199 21 of 23

30. Chen, W.; Brinton, C.G.; Cao, D.; Mason-Singh, A.; Lu, C.; Chiang, M. Early Detection Prediction of Learning Outcomes in Online
Short-Courses via Learning Behaviors. IEEE Trans. Learn. Technol. 2019, 12, 44–58. [CrossRef]
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