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Abstract: In conventional low-voltage grids, energy-storage devices are mainly driven by final
consumers to correct peak consumption or to protect against sources of short-term breaks. With the
advent of microgrids and the development of energy-storage systems, the use of this equipment
has steadily increased. Distributed generations (DGs), including wind-power plants as a renewable
energy source, produces vacillator power due to the nature of variable wind. Microgrids have output
power fluctuations, which can cause devastating effects such as frequency fluctuations. Storage can
be used to fix this problem. In this paper, a grid-connected wind turbine and a photovoltaic system
are investigated considering the atmospheric conditions and wind-speed variations, and a control
method is proposed. The main purpose of this paper is to optimize the capacity of energy-storage
devices to eliminate power fluctuations in the microgrid. Finally, the conclusion shows that, in
microgrids with supercapacitors, the optimal capacity of microgrid supercapacitors is determined.
This method of control, utilizing the combined energy-storage system of the battery supercapacitor,
in addition to reducing the active power volatility of the wind turbine and photovoltaic generation
systems, also considers the level of battery protection and reduction in reactive-power fluctuations.
In the proposed control system, the DC link in the energy-storage systems is separate from most of
the work conducted, which can increase the reliability of the whole system. The simulations of the
studied system are performed in a MATLAB software environment.

Keywords: distributed generation (DG); wind turbine (WT); power fluctuation; photovoltaic system;
microgrid (MG); smart gride; renewable energies; artificial intelligence; energy; optimal control

1. Introduction

Initially, all electricity was supplied by fossil-fuel (FC) power plants, but as the popu-
lation grew and pollution from fossil fuels increased, the use of alternative sources, such as
renewable energy that includes fuel cells, photovoltaics (PVs), and wind energy, has signifi-
cantly increased. An active grid, the processes of production and distribution, and energy
consumption implemented in a controlled manner can form a microgrid. A microgrid is an
independent distribution grid that has been formed from the community of distributed
production units, controlled loads, and, usually, energy-storage systems (ESSs) [1–7].

In renewable-energy sources (RESs), such as wind turbines (WTs), since productive
power directly depends on the atmospheric circumstances and wind blowing, the energy
output of wind farms has one random nature. This issue challenges the power quality
at common connectivity points, as well as voltage and frequency regulation and relia-
bility. One effective solution to improve the reliability and performance of wind-energy
systems is the integration of energy-storage equipment in a system grid [8–13]. In [14],
different energy-storage technologies were compared in terms of returns and their prices at
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different time scales, and the key aspects of the use of energy storage were investigated
by the probabilistic method. Among the storage equipment, the large battery, flywheels,
supercapacitors, and superconductor magnetic-energy-storage systems as storage options
of promised wind energy have been identified and their applications to the wind-energy
system have been widely studied. In [15], a dynastic structure power-quality control for a
combined wind/battery system suggested that, due to these levels of control and because
battery-energy-storage systems on a large scale are relatively expensive, the battery charge
status within a defined range is kept constant. In this reference, the level of a converter
control voltage source includes an internal loop for current control, which complicates the
control system. In [16], to reduce wind-power fluctuations, compressed air storage was
used. These forms of storage need a lot of investment; however, they have slow-speed-
adjustment dynamics and are not suitable for wind farms. To compensate for wind-turbine
output power fluctuations, a superconducting magnetic energy-storage system was ap-
plied [17]. However, again, the price of this storage equipment restricts its use to reduce
wind-turbine-power fluctuations. In [18], to reduce output power fluctuations in a wind
farm, a battery storage-based control method was suggested. In this reference, in order to
reduce the output power fluctuation, the energy-storage system was installed in the DC
link for each wind turbine.

Compared to batteries, the advantages of supercapacitors as pulsed-power devices
included higher power densities, higher efficiencies, longer lifetimes, and more charge
and discharge times. The first disadvantage of supercapacitors in comparison to batteries
is their relatively low energy density (watt-hour per kilogram or watt-hour per pound),
which are used in applications with relatively high energy values before recharging the
supercapacitor is required. Additionally, the high cost of supercapacitors is one of these
disadvantages. Supercapacitors can be recharged in a very short time compared to batteries
(seconds or a fraction of a second), of course, if an energy source is available to provide the
power needed at a high level. Therefore, considering the advantages and disadvantages of
each, the combination of battery storage and the supercapacitor can be a useful tool [19,20].
In [1], the combination of battery- and supercapacitor-storage systems has been used to
reduce wind-turbine-power fluctuations and reduce frequency fluctuations based on the
DROOP method. The purpose of this paper is to determine the optimal capacity of storage
devices in order to reduce power fluctuations in the form of an optimization problem.
Intelligent control methods can also be used for this purpose in the future [21,22].

In this paper, a control method is proposed in which, in addition to reducing the active
power fluctuation of wind-turbine-power generation and photovoltaic systems, the level
of battery protection and the reduction in reactive-power fluctuations in a network bus
based on a battery–supercapacitor combination energy-storage system for the benefits of
both storage systems are considered. In the proposed control system, the DC link in the
energy-storage systems is separate from most of the work conducted, which can increase
the reliability of the whole system. Ultimately, the supercapacitor’s energy-storage resource
is optimized by the Imperialist Competitive Algorithm method in the presence of this
control system and the final results are shown here.

2. The Studied Structure of the Grid

The block diagram of the studied overall grid is shown in Figure 1. The microgrid is
operated in grid-connected mode and includes a wind-turbine system, photovoltaic system,
fixed load, ESS, and supercapacitor to reduce grid-power fluctuations.
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Figure 1. The studied grid structure.

2.1. Wind-Turbine System

In a decade, wind turbines with high power and a high cost were properly con-structed
and exploited. On the other hand, the global market for turbine-generator electric power
is still increasing. In most cases, induction generators (usually with a squirrel-cage rotor)
are used for electrical power generation in wind turbines, the issue of which is due to the
high strength and cheap cost of this machine [23]. Inductive generators are mostly used in
a grid-connected mode because they require system stimulation. The induction generators
can be used in separate systems of the network, which have enough reactive power to
stimulate their own system [24].

Wind-energy systems restrict the energy movement of the wind and convert it to
electrical energy. Real power extracted by turbine rotor blades from wind energy is equal to
the difference between turbine high-flow wind power with turbine low-flow wind power:

p =
1
2

km(v− v0)
2 (1)

In this equation, v is the wind speed of the turbine’s high flow at the inlet of the turbine
blades and v is the wind speed of the low flow at the outlet of the turbine blades. Km is
the mass-flow rate of the wind flow that is produced by the following equation. A is the
cross-section swept by turbine blades.

Km = ρA
v + v0

2
(2)

Finally, assuming CP = 1
2 (1

V
V0
)

[
1−

(
V
V0

)2
]

(Cp is the rotor-efficiency factor), the

mechanical power extracted by the rotor is expressed in Equation (3). The schematic of a
wind turbine is shown in Figure 2.

P =
1
2

ρAv3Cv (3)
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2.2. Battery-Energy-Storage System

Batteries are one of the elements that are advantageous to the economy that are
available nowadays. Each battery consists of electrochemical cells that are connected
in series–parallel combination. This series–parallel combination consists of a set of low-
voltage/power batteries that have an optimal electrical characteristic. An energy-storage
system modeled by one series-controlled voltage source with one fixed-resistance was based
on [25]. The state of charge (SOC) is in fact the ratio of the amount of energy in the battery
to its total capacity expressed as a percentage and determined according to Equation (4).

SOC = 100(SOCint −
∫

Ibatdt
Q

) (4)

In the SOCint state of the battery’s initial state, Q is the capacity of the battery, which is
modeled according to a controlled voltage source based on Equation (5).

Ebat = E0 − K
1− SOC

SOC
Q + Ae−B(1−SOC)Q (5)

In this equation, Ebat is an open-circuit voltage, E0 is the rated voltage of the battery,
K is the polarization voltage, Q is the capacity of the battery, A is the exponential voltage,
and B is the exponential capacity [19]. Figure 3 represents the simple nonlinear model
of battery.
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2.3. Supercapacitor Energy-Storage System

The capacitor’s stored energy informs an electric field with an accumulation of positive
and negative loads on two parallel plates. Different models for supercapacitors have been
presented in various papers, which were very complex or simple, as needed.

In [26], the model that was the easiest to present for a supercapacitor includes a
capacitor and a series resistance. This model is similar to the presentation model shown
in Figure 4, with the difference that there is no parallel leakage resistance. In spite of its
simplicity, this model is a good model of super capacity behavior in such a system, while
reducing the complexity of the system to a great extent.
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In the present study, the aim was not to study and model the supercapacitor, so a
simple model was sufficient. In this paper, the model for a supercapacitor was considered.

As shown in Figure 5, the superconducting control system includes a VSC connector
with a pulse-width modulation, a DC-link capacitor, a chopper with two IGBT switches an
LCL filter, and a triangle star transformer [20]. The VSC connector was connected between
the AC power system and the supercapacitor. The voltage-source converter consisted
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of two IGBT bridges for low-rising harmonics. The voltage source and DC–DC copper
converter were connected to each other with a DC-link capacitor [27,28]. The voltage-source
converter provided an electronic power intermediary between the AC power system and
the superconductor coil. The phase lock loop method was used to hold the converter’s
switching at a predetermined fixed-frequency level [29,30]. The DC-link and network-point
voltages were kept constant by the VSC.
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The power control of the supercapacitor was performed by the chopper. The reference
power generated for the short-term supercapacitor was transferred to the supercapacitor
power control and, as shown in Figure 6, generated the duty cyclic dictation needed to
control the DC/DC chopper. Based on the amount of duty cycle D, there are three areas for
the operation of the chopper. If the D cycle is larger or smaller than 0.5, the supercapacitor
is charged or discharged, respectively. When the supercapacitor was in standby mode
(D = 0.5), the supercapacitor voltage was constant and the current of the supercapacitor
was zero. To generate choke-switch switching pulses based on Figure 7, the PWM reference
signal was compared with a sawtooth wave. The coefficients of the PI controllers are
presented in Table 1.
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Table 1. PI controllers’ parameters.

PI-1 PI-2 PI-3 PI-4 PI-5

Kp 1 0.1 1 0.1 1
Ti 0.02 0.002 0.02 0.002 0.02

2.4. Battery and Supercapacitor Combined Energy-Storage Control Systems to Reduce
Power Fluctuations

As noted, the energy generated by distributed turbine and solar cell systems fluctuates
with the changing atmospheric conditions. These power fluctuations can cause undesired
voltage, frequency, and grid-transient stability.

In this paper, a control method was introduced that used both the battery and super-
capacitor storage systems and reduced the network power fluctuations, including wind
turbines and photovoltaic systems. This control system benefits from both the battery and
supercapacitor storage systems.

In order to smooth the injection power to the network, the instantaneous output
power of the distributed generation sources as sampled and a first-order low-pass filter was
used to filter high-frequency oscillating components. The difference between the power
before and after filtering was used as a signal for charging or discharging the output of the
battery and supercapacitor storage systems. With regard to the stated characteristics of
each energy-storage system, reference powers were produced in proportion to each one, as
shown in Figure 7.

This control strategy was based on three goals. The first goal was to reduce the output-
power fluctuations of wind-turbine- and photovoltaic-distributed generation systems. The
second goal was to keep the balance and the status of the battery charging and to prevent
excessive charging and discharging. The third goal was to reduce network voltage changes,
or to reduce the volatility of reactive power.

For this purpose, the control of the closed loop was based on the feedback from both
the output power of the distributed generation sources, the battery-charging state, and
the network voltage at the connection point. Battery-charging status is provided by the
battery-management system. Signal P*ref, which is shown in Figure 8, ensured that the
battery-charge mode stayed within the specified range. Otherwise, if the battery was below
the permissible discharge limit (identified by the manufacturer) and reduced the active
material inside it, as a result, the battery life was reduced. This range is usually equivalent
to 30 capacity batteries considered. These limits are usually considered to be 30% of the
battery capacity. It is desirable that the battery within the range of 30% to 70% of its
capacity is charged and discharged. For this purpose, based on the level of protection that
is considered in this article, when the difference between the state-of-charge reference and
state-of-charge current, SOCbot, is placed inside the dead area, then P*ref = Pref; otherwise,
to calculate the reference active power, we have: P*ref = Pref + Pbat.
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The block diagram of this level of control is shown in Figure 9, and its relations are also
based on formulas (6)–(8). For battery protection and to keep the SOC between 0.3 to 0.7,
the SOC value should equal 50% and hold C1 = 0

∆SOC = SOCre f − SOCbat (6){
eSOC = ∆SOC |SOC| ≥ C1

eSOC = 0 |SOC| < C1
(7)

PSOC = eSOCGpl1 = eSOC

(
KP1 +

Kl1
s

)
(8)
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The other part of the network that demands a calculation is the reactive-power cal-
culation, calculated by the block diagram (10) and relations (9)–(11). The reactive-power
compensation unit receives a reference-, voltage input and a real-voltage input measured
at the common connecting point; then the reference voltage decreases from the network
voltage and the resulting signal is used to activate the function. A dead area and a PI
controller were used to obtain Qref values for reactive-power control. When the voltage
deviation ∆V is small (between the dead region), the block of the dead region produces
zero output and Qref is zero.

∆V = Vgrid −Vre f (9){
eV = ∆V |∆V| ≥ C2
eV = 0 |∆V| < C2

(10)

Qre f = eV

(
KP2 +

Kl2
s

)
(11)

In the control method, the power reference signal was used to generate switching
reference signals for the battery and supercapacitor DC converters. The proposed control
diagram is shown in Figure 10. However, this requires being sampled from the bus linear
voltages of the grid. The sampled voltages of (VaVbVc) are converted by transforming
the park into voltage signals of the three-phase voltage of the d and q axes. The modified
and final power of the active and reactive references, coupled with the feedback from
the network voltage and the transformation of the park, generates reference currents id
and iq using Equation (12). These currents must be followed by BESS/VSC and SC/VSC
output currents in order to compensate for the wind-turbine-power fluctuations by proper
injection by the combined battery–supercapacitor energy storage system. Finally, in order
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to produce suitable switching pulses for the purpose mentioned, these currents, along with
the SC/VSC and BESS/VSC output currents, are given to the hysteresis controller.[

i∗d
i∗q

]
=

[
Vgd Vgq
−Vgq Vgd

]−1[ P∗re f
Q∗re f

]
(12)
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Generally, the capacity of the battery is determined by its energy capacity and its rated
power. Energy capacity is the ability of the energy-storage system to store energy, and the
nominal power determines the power that the energy-storage system can store or deliver
to the network during charging or discharging.

The wind pattern plays an important role in determining the size of the storage system,
which means that, as the wind changes increase, storage capacity should also increase,
which is itself an increase in economic costs. As shown in Figure 11, the grid power is
constant. Before 4 s, the grid power is greater than the wind power, during which the
storage must enter the circuit, and, after 4 s, the storage must absorb the power. According
to Figure 11, the storage capacity required to exchange the network at any moment is
equal to:

PEnergy Storage = PWind − PinfBus (13)
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3. Optimal Supercapacitor Size

After performing simulations in the MATLAB software environment, first, by placing
a large amount of experience in other papers, the accuracy of the proposed control system’s
performance is verified. Then, using the imperialist competitive algorithm, the optimal
value for the supercapacitor is found in such a way that reduces both the wind-turbine-
power fluctuations and the lowest possible or least cost, and, on the other hand, a set of
sustainability conditions are also included. Finally, using the optimized value, RUN is
simulated once again and the results are verified.

The Imperialist Competitive Algorithm (ICA) is a method in the field of evolutionary
computing that addresses the optimal answer to various optimization issues. This algorithm
provides an algorithm for solving mathematical optimization problems by the mathematical
modeling of the socio-political evolution process. The Imperialist Competitive algorithm
is the initial set of possible solutions. These initial responses (countries) are gradually
improved and ultimately provide the optimal answer (optimal country). The main pillars of
this algorithm consist of national solidarity, royal competition, and revolution (revolution).
This algorithm provides an algorithmic algorithm with the help of the process of developing
social, economic, and political states, and mathematical modeling, which can help solve
complex optimization problems. In fact, this algorithm examines country-level optimization
responses and tries to improve these responses during the recurring process, and ultimately
reach the optimal solution to the problem. In the article, the PI-5 controller conversion
function in the supercapacitor con-troller is as follows: it controls the power of memory
and injection functions and it is also the main controller of the supercapacitor.

KP(s) = KPP

(
1 +

1
τiP

)
(14)

In this equation, KPP and τiP are the coefficient and the integrator of the controller.
In order to find the objective function of the imperialist algorithm, the goal is to opti-

mize the amount of supercapacitor capacity, so that the power fluctuations are compensated
in the desired amount. Therefore, we also considered a value for the amount of active
power fluctuations as the percentage of power fluctuations defined as follows:

∆P =
PDGs − Pre f

Pre f
× 100 (15)

This factor expresses the amount of fluctuation compensation in terms of percentages
and limits it between a positive and negative 10%. In this relation, Pre f is derived from the
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abovementioned relation. By executing this algorithm, the optimal supercapacitor values
are obtained. Therefore, the target functions are defined as follows:

F = 1
2 CSCV2

SC0
Kmin < KPP < Kmax
Tmin < Tip < Tmax

1 < Cm < 4F

(16)

In which F is stored energy, K is control coefficients, and T is time constants.
After performing the simulations in the MATLAB/SIMULINK software environment,

the PI-5 controller coefficients associated with the supercapacitor energy storage as well as
the optimal supercapacitor value are obtained. For the algorithm outlined in this study, the
number of countries is 1000, the number of empires is 100, and the number of replicates
is 1000.

Finally, after simulating the control system and then simulating the optimization of
the supercapacitor, the optimal PI-5 controller coefficients were and, and the optimum
value obtained for the supercapacitor was 1.72 F.

4. Simulation Results

The simulation of the proposed system, as shown in Figure 12, was conducted using
MATLAB/Simulink software.
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Figure 12. Wind-turbine-power system, photovoltaic system, and grid power (in the presence of a
load of 3 KW).

Due to variations in wind speed, the wind turbine output fluctuates. In this simulation,
the production power of a photovoltaic system is assumed to be constant. As shown in
Figure 13, the wind-turbine output power fluctuates with variations in the wind speed,
based on the relationships expressed in Section 2.1, which indicate the dependence of
wind-turbine output on wind speed.

The power of the wind-turbine system, the photovoltaic system, and the power of the
grid are shown in Figure 13, and the power production of the battery and supercapacitor
energy-storage systems in Figure 14.

Additionally, the reference power of the control system, the calculation of the demand
for battery power, the level of energy management of the battery, and the demand for
super-capacities, along with the power of the energy-storage system of the battery and the
supercapacitor, are displayed.
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Figure 14. Comparison of the power of the battery-energy-storage system and its reference power.

As shown in Figures 15 and 16, to track reference powers for battery-storage sys-
tems and the supercapacitor, the verifier of the control system’s desirable performance
is suggested.

Finally, the active and reactive power of the network before and after the reduction in
power fluctuations is shown in Figure 17. As we can observe in this figure, the proposed
control system based on the combined energy-storage system of the battery and super-
capacitor was able to dramatically reduce the power fluctuations from the viewpoint of
the network.
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5. Conclusions

In the microgrid, when we have power fluctuations, we also have frequency fluctu-
ations that must be eliminated. Additionally, uncertainty of power in renewable sources
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can cause many problems. To deal with these problems, we need compensation meth-
ods to reduce power fluctuations and stabilize the system frequency. A storage device
is used to control the amplitude of power fluctuations. Storage capacity is determined
using an optimization problem that reduces power fluctuations using the proposed con-
trol operator. In this regard, using the electronic power element, such as energy storage,
and also controlling it, is one of the best available methods. In this paper, by examining
different control methods, a control method was proposed. By using this control method
on the battery–superconducting combined energy-storage system, in addition to reactive-
power compensation, the output power fluctuations of distributed generation systems can
be reduced.

The simulation was conducted in the MATLAB/SIMULINK software environment
and the results indicate the effectiveness of the proposed control strategy.

Additionally, the presence of distributed generation sources and energy storage, con-
trollable loads, and power electronics created challenges in terms of power quality, reliabil-
ity, and transient states that should be further explored in future work.
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