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Abstract: Excessive carbon emissions seriously threaten the sustainable development of society and
the environment and have attracted the attention of the international community. The Yellow River
Basin is an important ecological barrier and economic development zone in China. Studying the
influencing factors of carbon emissions in the Yellow River Basin is of great significance to help China
achieve carbon peaking. In this study, quadratic assignment procedure regression analysis was used
to analyze the factors influencing carbon emissions in the Yellow River Basin from the perspective
of regional differences. Accurate carbon emission prediction models can guide the formulation of
emission reduction policies. We propose a machine learning prediction model, namely, the long short-
term memory network optimized by the sparrow search algorithm, and apply it to carbon emission
prediction in the Yellow River Basin. The results show an increasing trend in carbon emissions in the
Yellow River Basin, with significant inter-provincial differences. The carbon emission intensity of
the Yellow River Basin decreased from 5.187 t/10,000 RMB in 2000 to 1.672 t/10,000 RMB in 2019,
showing a gradually decreasing trend. The carbon emissions of Qinghai are less than one-tenth of
those in Shandong, the highest carbon emitter. The main factor contributing to carbon emissions
in the Yellow River Basin from 2000 to 2010 was GDP per capita; after 2010, the main factor was
population. Compared to the single long short-term memory network, the mean absolute percentage
error of the proposed model is reduced by 44.38%.

Keywords: carbon emissions; influencing factors; machine learning; QAP model

1. Introduction

Global warming is an issue that has gained worldwide attention. Many signs, such as
enhanced radiation, rising sea levels, and decreasing snow cover, indicate an increasing
trend of global warming [1]. Global warming not only affects the balance of the ecosystem,
but also brings irreversible damage to the development of human society and the econ-
omy [2]. Controlling greenhouse gas emissions and suppressing the greenhouse effect are
both a prerequisite for the sustainable development of human society and a guarantee of
the continuous improvement of human productivity [3].

The Yellow River Basin is an important region for China’s economic development,
and the area and resident population of the Yellow River Basin provinces account for
44.21% and 57.72% of China’s northern provinces, respectively. The Yellow River Basin
has experienced rapid economic development in recent years, and its economic strength
has increased significantly, playing an important supporting role in China’s economic
development. The Yellow River Basin is the main source of supply of energy such as oil and
coal in China, and coal production accounts for about 70% of the coal production of China.
The development of energy resources supports the construction of energy-intensive heavy

Sustainability 2022, 14, 6153. https://doi.org/10.3390/su14106153 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14106153
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-9152-5157
https://doi.org/10.3390/su14106153
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14106153?type=check_update&version=2


Sustainability 2022, 14, 6153 2 of 17

industries, and the proportion of resource extraction and its processing industries in the
Yellow River Basin is as high as 36.34%. In 2019, the ecological protection and high-quality
development of the Yellow River Basin became a major regional strategy in China, which
clearly emphasized the need for the simultaneous promotion of ecological protection and
high-quality development. Energy conservation and emission reduction is an important
part of achieving high-quality development, and carbon emission reduction is not only
consistent with the goal of ecological protection, but also closely related to improving
the quality of economic and social development. Therefore, scientific measurement of
the spatial and temporal differences and influencing factors of carbon emissions in the
Yellow River Basin is of great significance to achieving ecological protection and quality
development in the Yellow River Basin.

Existing studies have mainly used structural decomposition analysis and index de-
composition analysis in the analysis of carbon emission impact factors. By sorting out
the relationship between production inputs and economic outputs, structural decompo-
sition analysis decomposes the relevant factors that lead to change in the research object
and identifies the contribution of each influencing factor in the change in the dependent
variable. De Vries and Ferrarini [4] applied structural decomposition analysis to examine
the driving force of increased carbon emissions in developed and emerging economies,
and their findings suggest that rising levels of domestic consumption make a significant
contribution to carbon emissions in both developed and emerging economies. Even in
countries that are closely involved in global trade, such as China, domestic consumption
accounts for a significant portion of the increase in carbon emissions. Jiang et al. [5] decom-
posed global carbon emissions into domestic input structure, international input structure,
carbon emission intensity, consumption pattern, consumption, and population, based on
structural decomposition analysis, and the results showed that domestic input structure
has been the main driver for reducing global carbon emissions in recent years. Changes
in international input structure are the main factor in the increase in carbon emissions in
Japan and Germany. Some studies have used decomposition analysis to study specific
sector carbon emissions. Lian et al. [6] analysed the driving factors of the transport sector
in China and found that total output and energy intensity were the main influences on the
transport sector in China, with energy intensity showing a facilitative or inhibitory effect
on the increase of carbon emissions in the transport sector over time. Index decomposition
analysis more easily handles the data compared to structural decomposition analysis, and
is also widely used in analyzing the factors influencing carbon emissions. Rosita et al. [7]
explored the main drivers of CO2 change in manufacturing in Indonesia using the loga-
rithmic mean Divisia index (LMDI) and the results of the study showed that industrial
economic activity and industrial energy intensity have the greatest impact in Indonesia.
In another study, Zhang et al. [8] investigated the factors influencing carbon emissions in
29 Chinese provinces from 1995 to 2012 based on LMDI, and the results obtained showed
that the decrease in the proportion of energy consumption in the secondary and tertiary
sectors was an important reason for the decrease in carbon intensity. When using decompo-
sition methods for analysis, it is assumed that the factors influencing carbon emissions are
independent of each other; however, a large number of studies have shown that the factors
influencing carbon emissions are not completely independent [9]. Unlike general statistical
methods, quadratic assignment procedure (QAP) is based on matrix permutation, which
does not require the assumption of complete independence of variables, and is more robust;
therefore, QAP is used in this study to analyze the factors influencing carbon emissions in
the Yellow River Basin.

Prediction of carbon emissions based on influencing factors is also a hot research topic
in the field of carbon emissions. The establishment of carbon emission prediction models
can provide technical support for decision makers to formulate emission reduction plans
and help reduce carbon emissions from source. Ge et al. [10] developed a prediction model
for industrial carbon emissions in Tianjin based on industrial carbon emission data from
2003–2012 using the logistic model and the STIRPAT model, and compared the results.
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Perez-Suarez and Lopez-Menendez [11] predicted carbon emissions for several countries
using the extended environmental Kuznets curve and environmental logistic curve, and the
percentage error of their proposed model fluctuated between 2.5 and 6.8 percent. Carbon
emission data are nonlinear and traditional linear regression methods encounter difficulties
in achieving high accuracy. Recently, much of the energy and environmental literature
started to use machine learning methods [12]. Machine learning outperforms traditional
statistical methods in many problems and has high prediction accuracy and robustness [13].
Javanmard et al. [14] employed 12 favorite machine learning algorithms used by recent
studies for prediction in the building, energy, and water domains. Chai et al. [15] used
a genetic algorithm (GA) combined with neural networks to establish a carbon emission
prediction model for Xinjiang after analyzing the influencing factors of carbon emissions in
Xinjiang. Jena et al. [16] used artificial neural networks to model the carbon emissions of
17 major global carbon emitting countries, which used GDP, urbanization rate, and trade
openness as inputs to the model, and the average accuracy of carbon emission prediction for
17 countries was 96%. Javanmard and Ghaderi [17] proposed a machine learning combined
with mathematical programming approach to predict CO2, N2O, CH4, and fluorinated
gases in Iran, which exhibited high accuracy.

Scant existing literature has studied carbon emissions in the Yellow River Basin.
Yuan et al. [18] used social network analysis to identify important industries in the carbon
footprint of the Yellow River Basin and the results showed that petroleum, coking, nuclear
fuel, and chemical product manufacturing were the highest emitting sectors. Zhang and
Xu [19] conducted a study from the perspective of carbon emission efficiency and found
that the carbon emission efficiency of the Yellow River Basin provinces showed a fluctuating
upward trend.

Carbon emissions have caused great damage to the environment and seriously af-
fected the survival and development of human beings. Therefore, from the perspective
of environmental protection and sustainable development, studying carbon emissions is
beneficial to the country in effectively controlling carbon emissions, reducing environ-
mental pollution, and maintaining economic development while reducing greenhouse
gas emissions. Predicting carbon emissions can provide technical support for sustainable
development paths and provide a scientific basis for formulating emission reduction plans.
The Yellow River Basin is an important region in China, and the high quality of the Yellow
River Basin has resulted in it being selected as part of a major strategy in China’s regional
development. Analyzing the drivers of carbon emissions in the Yellow River Basin and
establishing an accurate carbon emission prediction model is important for policy makers
to formulate emission reduction policies, and Yellow River Basin carbon emission reduction
will also help China’s carbon peaking and carbon neutrality.

As an important region in the development of China, there are few studies on the
factors influencing carbon emissions and prediction models in the Yellow River Basin,
which is detrimental to the implementation of emission reduction measures in the Yellow
River Basin. Our study will fill the gap in carbon emission research in the Yellow River
Basin. The main contributions and innovations of this study include the following concepts.
We account for carbon emissions in the Yellow River Basin and analyze the spatial and
temporal variation of carbon emissions in the Yellow River Basin. QAP analysis is used
to analyze the influencing factors in the Yellow River Basin at different time periods. In
the methodology, we propose a hybrid machine learning algorithm and apply it to the
prediction of carbon emissions in the Yellow River Basin. The proposed model is able to
predict carbon emissions in the Yellow River Basin with a small error rate, which verifies
the accuracy of the model.

2. Methodology

Global climate change, especially carbon dioxide emissions, has become a common
environmental concern for all countries around the world. The Yellow River Basin is rich
in coal and oil resources, and as China’s energy supply base, the contradiction between
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economic and ecological protection in the Yellow River Basin is extremely prominent. China
has set ecological protection and high-quality development of the Yellow River Basin as a
major regional strategy, and energy saving and emission reduction is an important part of
achieving ecological protection and high-quality development. The scientific measurement
of carbon emissions and analysis of the influencing factors are important bases for the
development of carbon emission reduction plans. The carbon emission prediction model is
an emerging hot issue in recent years, and an accurate carbon emission prediction model
can provide support for the study of low-carbon development.

The main objective of this study is to reveal the main factors affecting carbon emissions
in the Yellow River Basin and to develop an accurate carbon emission prediction model to
guide the development of energy saving and emission reduction measures. The research
framework of this paper includes the following steps. 1. Collect data on energy consump-
tion and factors influencing carbon emissions 2. Account for carbon emissions in the Yellow
River Basin and analyze the spatial and temporal variation in carbon emissions 3. Use
the QAP method to study the factors influencing the difference of carbon emissions in
different periods 4. Build a machine learning prediction model and compare the accuracy of
different machine learning prediction models. Figure 1 shows the methodology framework
of this study.
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2.1. Carbon Emissions Accounting

Carbon dioxide is the most important greenhouse gas and its main source is the
combustion of fossil fuels. Therefore, this paper estimates carbon dioxide emissions by
energy consumption. The energy data of the Yellow River Basin provinces are obtained
from the China Energy Statistical Yearbook. The estimation method of carbon emission
is recommended by the IPCC and widely used by many scholars. The formula of the
calculation method is as follows.

CE = ∑ Egi · NCVi · CCi ·O · 44/12 (1)

CE is the total carbon emission. Egi is the consumption of fossil fuel i. NCVi and CCi
are the net caloric value and carbon content of fuel i. The CEADS database is based on
an extensive survey and provides a carbon emission factor more in line with the national
conditions of China [20]. In order to accurately measure carbon emissions in the Yellow
River Basin, the carbon emission factors in this paper are taken from CEADS [21]. O is the
oxidation efficiency and it is assumed to be 1.

2.2. Quadratic Assignment Procedure

QAP analysis has a wide application in analyzing the influencing factors. He et al. [22]
studied the influencing factors of carbon emissions in China’s power sector using QAP
analysis. Yang and Liu [23] explored the influence of industrial structure and foreign
investment level on regional low carbon innovation based on QAP analysis. Duan et al. [24]
used the QAP model to test the effects of geographical location, economic disparities, and
regional free trade agreements on food trade. QAP regression analysis is based on the
principle of multiple regression analysis using the dependent and independent variable
matrices, followed by simultaneous random permutation of the elements of the dependent
and independent variable matrices. The calculation was repeated several times to obtain
the regression coefficient results and the coefficient of determination.

Regional carbon emissions are influenced by many factors, such as population and
GDP [25]. According to the literature, GDP per capita and energy intensity promote the
growth of carbon emissions [26]. The level of urbanization can also influence regional
carbon emissions, and the effect of urbanization on carbon emissions varies at different
levels of urbanization [27]. Based on the industrial transformation of developing coun-
tries, Yang et al. [28] reported that the industrial structure showed a promotion and then
suppression in carbon emissions. Based on the above analysis, we selected population,
GDP, industrial structure, urbanization rate, and energy intensity as the factors influenc-
ing carbon emissions in the Yellow River Basin and were able to establish the following
QAP model.

CED = f (P, G, I, U, E) (2)

where CED represents the regional carbon emission difference matrix, P is the regional
population difference matrix, G is the regional GDP difference matrix, I is the regional
industrial structure (tertiary industry proportion) difference matrix, and U and E are the
regional urbanization rate and energy intensity difference matrices, respectively.

2.3. Long Short-Term Memory Network

The long short-term memory (LSTM) model is an improved recurrent neural network
(RNN) model for the gradient disappearance or explosion problem caused by error trans-
mission in traditional RNN. The LSTM model controls the information transmission by
way of introducing input gates, forgetting gates, and output gates, effectively avoiding the
gradient disappearance and gradient explosion problems and achieving effective process-
ing of long time series information, which is widely used in the processing of problems
related to time series data [29]. Figure 2 illustrates the structure of the hidden layer neuron
of the LSTM. At a given moment, the input to a neuron in the LSTM consists mainly
of the sequence input Xt, the previous moment state ht−1 of the hidden layer, and the
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previous moment state ct−1 of the memory unit. Firstly, the useless information is filtered
out through the forgetting gate:

ft = σ(W f · [ht−1, xt] + b f ) (3)

where ft, Wf, and bf are the calculated results, weight matrix, and bias term of the forgetting
gate, respectively. σ denotes the sigmoid activation function.
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The Input gate update status is as follows:

it = σ(Wi · [ht−1, xt] + bi) (4)

∼
Ct = tanh(Wc · [ht−1, xt] + bc] (5)

Ct = ft ◦ ct−1 + it ◦
∼
Ct (6)

where it, Wi, and bi are the calculated results, weight matrix, and bias term of the input

gate, respectively.
∼
C is the intermediate cell state, and Wc and bc are the corresponding

weight matrices and bias terms, respectively. tanh is the activation function and ◦ denotes
the dot product.

Finally, the output is determined by the output gate:

Ot = σ(Wo · [ht−1, xt] + bo] (7)

Ht = Ot · tanh(Ct) (8)

Ot, Wo, and bo are the computed results, weight matrix, and bias term of the output
gate, respectively.

2.4. Sparrow Search Algorithm

The sparrow search algorithm (SSA) is a new swarm optimization algorithm proposed
by Xue and Shen [30]. The inspiration for the SSA comes from the foraging behavior and
anti-predation behavior of sparrows. The sparrow population can be generally divided into
discoverers and joiners, and there are n sparrows in a population. Putting the population
into a d-dimensional search space, the position of the i sparrow is Xi = [xi1, xi2, . . . , xid] and
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the fitness of the i sparrow is Fi = f ([xi1, xi2, . . . , xid]). The fitness of all n sparrows can be
expressed as:

Fx =


f ([x11, x12, . . ., x1d])
f ([x21, x22, . . ., x2d])

. . .
f ([xn1, xn2, . . ., xnd])

 (9)

The discoverers determine the direction and area of the entire population, and its
position is updated as described by the following equation.

xt+1
ij =

{
xt

ij · exp
(
− i

α·itermax

)
R2 < ST

xt
ij + QL R2 ≥ ST

(10)

where t denotes the number of current iterations, itermax denotes the maximum number
of iterations, α is a random number within 0–1, R2 ∈ [0, 1] and ST ∈ [0.5, 1] denote the
warning value and safety value, respectively, with the position update strategy determined
according to the relationship between them, Q is a random number obeying the standard
normal distribution, and L is a 1 × d-dimensional all-1 matrix. In the alert state, the
discoverers signal the population to move to the safe area. In the safe state, the discoverers
expand the search area. The remaining sparrows are joiners and receive food through the
discoverers, whose position is updated as described by the following equation.

xt+1
ij =

 Q · exp
(

xt
worst−xt

ij
i2

)
i > n/2

xt+1
p +

∣∣∣xt
ij − xt+1

p

∣∣∣ · A+L otherwise
(11)

Xworst is the worst position and xp is the optimal position of the discoverers. A+ = AT(AAT)−1,
A is a 1× d-dimensional matrix with elements of 1 or−1. When the i joiner has a low fitness
value, it will go to other locations to forage. In the rest of the cases, the joiners forage
around the optimal position. There are also 10–20% of vigilantes in the population, whose
positions are updated as described in the following equation.

xt+1
ij =


xt

best + β ·
∣∣∣xt

ij − xt
best

∣∣∣ fi > fg

xt
ij + K ·

( ∣∣∣xt
ij−xt

worst

∣∣∣
( fi− fw)+ε

)
fi = fg

(12)

xt
best is the current global best position, β is the step control parameter, which is a

random number obeying standard normal distribution, K is a random number in the range
of −1 to 1, fi is the current adaptation of sparrows, fg is the global best adaptation, fw is the
global worst adaptation, and ε is a very small number to ensure that the denominator is
not 0. fi > fg signifies that the sparrow is at the edge and has a high probability of being
attacked. fi = fg, indicates that the sparrow in the middle of the population is aware of the
danger and needs to move closer to other sparrows to reduce the risk of being predated.

2.5. SSA-LSTM

Figure 3 shows the process framework of the SSA-LSTM carbon emission prediction
model, which consists of three main parts: a pre-processing module, an optimization
module and a prediction module, and is described in detail as follows.

Step 1: Normalize the data to a range of 0–1. Due to the different scale of carbon
emission impact factor data, in order to reduce the computing time, the data need to be
normalized. The normalization formula is shown in Equation (13). Data normalization can
also eliminate well the influence of magnitude on the prediction results.

Y′ =
Y−Ymin

Ymax −Ymin
(13)
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Y
′

is the normalized data and Y is the original data. Ymin and Ymax are the minimum
and maximum values of the original data, respectively.

Step 2: Set the parameters of SSA, such as the number of populations and the maximum
number of iterations of populations. Set the parameter search range of the LSTM model.

Step 3: Calculate the initial fitness value and update the position of the sparrow in
SSA.

Step 4: Determine whether the iteration condition (reach the maximum number of
iterations of SSA) is satisfied, and if the iteration condition is satisfied, output the optimal
parameters of the LSTM model.

Step 5: Substitute the output optimal parameters into the LSTM model, train the
model, and calculate the model prediction error.
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3. Results and Discussion
3.1. Spatial and Temporal Evolution Characteristics of Carbon Emissions in the Yellow River Basin

Considering that Sichuan province belongs to the Yangtze River Economic Zone, the
study area of this paper is determined as eight provinces in the Yellow River Basin, except
Sichuan province, namely, Gansu, Henan, Inner Mongolia, Ningxia, Qinghai, Shaanxi,
Shandong, and Shanxi. The carbon emissions of all provinces in the Yellow River Basin
from 2000 to 2019 were summed to obtain the total carbon emissions in the basin, as
shown in Figure 4. Carbon emissions in the Yellow River Basin show a continuous increase
from 2000 to 2019. The period 2000–2010 was one of rapid growth, with total carbon
emissions increasing from 768.91 million tons to 2443.85 million tons. This period was
during an important stage of China’s rapid economic development, and the landing of
heavy industrialization projects led to a rapid increase in carbon emissions. After 2010, the
growth rate gradually became slower, and the total carbon emissions in the Yellow River
Basin was 3336.99 million tons in 2019. The province with the highest carbon emissions
is Shandong province, which is a large population province. The energy structure of
Shandong province is dominated by coal, and the proportion of natural gas is much lower
than the national average. The rough economic growth pattern also leads to Shandong
having the highest carbon emissions [31]. Inner Mongolia and Shanxi also emit a large
amount of CO2. Shanxi province has been the industrial base of China, and heavy industry
is the pillar industry of Shanxi; therefore, Shanxi province has been at the forefront of
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carbon emissions with a large increase. Inner Mongolia is rich in coal resources, resulting
in a local economy heavily dependent on energy and a single industrial structure. The
province with the lowest carbon emissions is Qinghai, whose carbon emissions in 2019
were less than one-tenth of Shandong’s carbon emissions. At the level of the entire basin,
carbon emissions are highest in the middle reaches of the basin, followed by the lower
reaches, and the smallest in the upper reaches.
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The carbon emission intensity of the Yellow River Basin can be obtained by quotienting
the carbon emissions with GDP, as shown in Figure 5. The carbon emission intensity of the
Yellow River Basin decreases from 5.187 t/10,000 RMB in 2000 to 1.672 t/10,000 RMB in 2019,
showing a gradually decreasing trend. The highest point of carbon emission intensity in the
Yellow River Basin was 5.529 t/10,000 RMB in 2001, and the carbon emission intensity in the
Yellow River Basin was maintained at a high level until 2005, which reflects the low quality
of economic development at that stage and the neglect of environmental management at
the same time of economic development. After 2006, the carbon emission intensity of the
Yellow River Basin has been steadily decreasing. The carbon emission intensity of Ningxia
is the largest among the eight provinces. Although the carbon emission of Ningxia is small,
its low GDP leads to its high carbon emission intensity. While developing its economy,
Ningxia should focus on the quality of economic development, adjust the structure and
mode of economic development, change the disordered economic development mode of
high input and high consumption, and increase the proportion of low-carbon economy.
Next is Inner Mongolia, which has a similar economic development approach to Ningxia.
At the level of the whole basin, the carbon emission intensity gradually becomes smaller
from upstream to downstream. Upstream provinces should actively learn from advanced
technologies and change their economic development methods to promote sustainable
economic and social development.
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3.2. QAP Analysis Results

The huge differences in regional carbon emissions in the Yellow River Basin lead
to inevitable conflicts of interest in designating and assigning emission reduction tasks.
Analyzing the main factors of regional differences in carbon emissions in the Yellow River
Basin is of great significance for the basin to coordinate emission reduction tasks and
help achieve carbon peaks. According to previous studies, regional carbon emissions are
mainly influenced by population, GDP per capita, industrial structure, urbanization, and
energy intensity. Therefore, we chose these factors as the influencing factors of carbon
emissions in the Yellow River Basin. Figure 6 shows the differences between provinces
in the Yellow River Basin in 2019 in terms of population, GDP per capita, industrial
structure, urbanization, and energy intensity, with the bluer the color, the greater the
difference between the two provinces. The redder the color, the smaller the difference
between the two provinces. It can be seen that the factors influencing carbon emissions
differ significantly between different provinces in the basin. The difference between the
population of Shandong and Henan provinces and that of Ningxia and Qinghai is obvious,
which is consistent with the difference in carbon emissions. The difference in GDP per
capita between Shandong and Gansu is the largest. There is a huge difference in industrial
structure between Shaanxi and Gansu. The largest difference in urbanization rate is between
Gansu and Inner Mongolia. There is also a great difference in energy intensity between
Shaanxi and Ningxia, but the difference in carbon emissions between them is not significant.
In Section 3.1, there is a huge difference in carbon emissions between Shandong and
Qinghai, and the carbon emissions of Qinghai are less than 1/10 of the carbon emissions of
Shandong. In the diagram of the difference in influencing factors, we can clearly see the
difference between Qinghai and Shandong in population, GDP, and energy intensity; the
difference between the two in GDP and energy intensity may be important factors of the
difference in carbon emissions.
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After analyzing the differences in carbon emission impacts among different provinces
in the basin, we explored the effects of population, energy intensity, GDP per capita,
urbanization rate, and industrial structure on regional differences in carbon emissions in
the Yellow River basin, based on the established QAP analytical model.

Tables 1 and 2 show the results of the QAP regression analysis for the Yellow River
Basin from 2000–2009 and 2010–2019. The regression analysis shows the influence level of
different factors on the regional differences in carbon emission. From the results of QAP
analysis, it can be seen that the factors affecting the regional differences in carbon emissions
in different periods are different, and the factors affecting carbon emissions from 2000–2009
were GDP per capita, population, and industrial structure. The impact of GDP per capita
on carbon emission is the largest in that period, and the regression coefficient of GDP per
capita difference is positive, indicating that the difference in GDP per capita exacerbates
the regional differences in carbon emission, and the carbon emission in Yellow River
Basin is influenced by economic development in that period. The regression coefficient of
population differences is also positive, indicating that uneven distribution of population
aggravates the regional differences in carbon emission. The regression coefficients of
energy intensity differences and urbanization differences do not pass the significance test,
indicating that the carbon emission regions in the Yellow River Basin are less influenced by
them at this stage. The regression coefficient of industrial structure difference is negative,
implying that the industrial structure difference has a negative impact on the carbon
emission differences in the Yellow River Basin. The factors affecting carbon emissions in
2010–2019 were population, GDP per capita, industrial structure, and urbanization. The
regression coefficients of energy intensity differences do not pass the significance test,
indicating that they have a small impact on influencing carbon emissions in the Yellow
River Basin region. Unlike the results of the analysis from 2000–2009, the factor that has
the greatest impact on carbon emissions in the 2010–2019 period was population, which
has a significant positive effect on regional differences in carbon emission. The continuous
increase in population leads to the need to consume a large amount of resources, which
leads to the deterioration of the environment. From the perspective of reducing carbon
emissions, densely populated regions should strictly control their populations, actively
promote low-carbon lifestyles, strengthen carbon emission management, and strive to
reduce carbon emissions per capita. GDP per capita is no longer the dominant factor
influencing carbon emissions in the period, but its regression coefficient on carbon emissions
gradually increases, indicating that its influence on carbon emission differences gradually
increases and is positive. Economic growth has been considered to be an important factor in
the continued growth of carbon emissions [32]. Considering the important impact of GDP
on carbon emissions, low-carbon technologies should be actively adopted when developing
the economy, which can promote sustainable economic and environmental development.
Urbanization started to have an impact on carbon emission differences after 2010 and
is as positive as population and GDP per capita. The process of urbanization inevitably
increases carbon emissions, and urban expansion should learn from previous experiences,
actively adopt low-carbon construction technologies for new urban areas, strengthen
carbon emission management, and make efforts to reduce the impact of urbanization on
carbon emissions.

Table 1. Regression analysis results from 2000 to 2009 in the Yellow River Basin.

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

P 0.314 * 0.497 ** 0.463 ** 0.179 0.238 0.395 * 0.376 * 0.546 *** 0.500 ** 0.360
E 0.013 −0.089 −0.144 −0.118 0.017 0.109 0.085 0.083 0.088 0.127
G 0.370 ** 0.355 ** 0.339 ** 0.328 ** 0.420 *** 0.425 *** 0.409 *** 0.347 ** 0.388 ** 0.215
U −0.009 0.133 0.150 0.091 0.053 −0.003 0.015 0.032 0.011 0.116
I −0.314 * −0.182 −0.193 −0.491 * −0.408 ** −0.286 * −0.291 * −0.194 * −0.212 −0.447 **

Notes: *, **, and *** indicate significance levels at 0.1, 0.05, and 0.001, respectively.
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Table 2. Regression analysis results from 2010 to 2019 in the Yellow River Basin.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

P 0.628 *** 0.687 *** 0.565 *** 0.473 ** 0.541 *** 0.427 ** 0.422 ** 0.495 *** 0.395 ** 0.302 **
E 0.071 0.143 0.261 * 0.007 −0.040 −0.177 −0.262 * −0.187 −0.065 −0.076
G 0.041 0.117 0.139 0.270 ** 0.166 0.292 ** 0.363 ** 0.239 ** 0.288 ** 0.379 **
U 0.219 * 0.224 * 0.209 * 0.221 0.205 0.291 ** 0.309 ** 0.295 * 0.382 ** 0.444 **
I −0.243 * −0.125 −0.438 * −0.108 −0.124 0.004 0.180 0.144 0.273 ** 0.248 **

Notes: *, **, and *** indicate significance levels at 0.1, 0.05, and 0.001, respectively.

3.3. SSA-LSTM Forecasting Results

We chose population, GDP per capita, industrial structure, energy intensity, and
urbanization rate as the input variables of the proposed model, and carbon emissions are
the output variables of the model. Due to the small amount of data on carbon emissions in
the Yellow River Basin, we chose the samples from 2000–2016 as the training set and the
samples from 2015–2019 as the test set. The SSA was used to find the optimal parameters
of the LSTM, and the parameter search range is shown in Table 3. To obtain the best results
from the model, the range of values of the model parameters was based on previous studies
and our iterative experiments [33,34].

Table 3. Parameter optimization range of LSTM.

Parameter Range

Learning rate (1 × 10−3, 1 × 10−2)
Number of iterations (50, 200)
Number of neurons (1, 200)

The sample data were substituted into the proposed SSA-LSTM model. The model
prediction results are shown in Figure 7. The SSA-LSTM predicted results and the actual
carbon emission curve basically overlap, and the percentage error between the model
prediction results and the actual value in 2018 is only 0.4%. The maximum percentage
error is only 1% in the whole test sample. The prediction accuracy of the LSTM model is
unsatisfactory, with the maximum percentage error being 3%. The SSA-LSTM model is
better than the LSTM, and it proves that SSA has a significant effect on the improvement
of the LSTM model. The long short-term memory network optimized by particle swarm
optimization (PSO-LSTM) and a back propagation neural network (BPNN), as compared
to the SSA-LSTM models, can also predict the trend in carbon emissions, but the deviation
from the actual value is relatively large, and they cannot make accurate predictions of
carbon emissions in the Yellow River basin. In order to analyze the prediction accuracy
of the four models intuitively, from the perspective of quantification, we chose the mean
absolute error (MAE), root mean squared error (RMSE), and mean absolute percentage
error (MAPE) as the evaluation index of the models.

MAE =
1
N

N

∑
i=1

∣∣Ep − Ea
∣∣ (14)

RMSE =

√√√√ 1
N

N

∑
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(
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Ep is the predicted value of carbon emission and Ea is the actual value of carbon emission.
Table 4 demonstrates the evaluation metrics of several models. It can be seen that

the SSA-LSTM model has the best results for both metrics, followed by the PSO-LSTM.
Compared to the LSTM model, the MAE, RMSE, and MAPE of the SSA-LSTM model are
reduced by 45.80%, 43.68%, and 44.38%, respectively, which indicate that the SSA can
improve the carbon emission prediction accuracy of the model well. The BPNN and LSTM
models have the worst results.

Table 4. Prediction model evaluation index results.

SSA-LSTM PSO-LSTM LSTM BPNN

MAE 30.90 49.29 57.01 126.77
RMSE 36.67 59.04 65.11 112.64
MAPE 0.0099 0.0155 0.0178 0.0370

3.4. Discussion

An important topic of carbon emission research is the accounting and prediction
of carbon emissions, which is directly related to the formulation of emission reduction
measures and implementation of the measures. Many studies have been conducted in
the past to account for China’s overall carbon emissions, and the factors influencing
China’s carbon emissions have been well analyzed. Many studies also exist for China’s
high carbon emission industries, and these studies have advanced the field of carbon
emission research in China and provided guidance for the development of China’s emission
reduction policies [35]. Some scholars have studied carbon emissions in specific Chinese
provinces, but few studies have been conducted for a specific region of China.

The Yellow River Basin is of great importance for China’s economic development and
ecological security. The study of carbon emissions in the Yellow River Basin is important
for the precise formulation of emission reduction measures in the region. Previous studies
on influencing factors have focused on decomposition analysis, which provides a good
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opportunity for us to analyze the influencing factors of carbon emissions in the Yellow River
Basin from the perspective of differences. The results of the analysis of carbon emission
influencing factors using QAP show that the main factors affecting carbon emissions in the
Yellow River Basin are not invariable, and the influence of population and GDP per capita
on carbon emissions should be fully considered when formulating policies. The feasibility
of machine learning prediction has been well proven in many research areas [36–38], and
we applied machine learning algorithms to build a carbon emission prediction model for
the Yellow River basin. In building the model, we used a new, recently proposed swarm
optimization algorithm, SSA, which is different from the already widely used algorithms,
such as PSO and GA. This is a new attempt to use SSA on carbon emission prediction
models, and the prediction results of the model show that SSA can significantly improve the
prediction accuracy of the models. In recent years, China has made many efforts to achieve
carbon peaking, and the Yellow River Basin, as an important region, should take active
measures to reduce carbon emissions. An accurate carbon emission model is necessary to
guide the policy making.

4. Conclusions and Policy Recommendations
4.1. Conclusions

This study accounts for the carbon emissions in the Yellow River Basin from 2000 to
2019. QAP analysis was used to analyze the effects of population, GDP per capita, industrial
structure, urbanization rate, and energy intensity on carbon emissions in the Yellow River
Basin from the perspective of differences. In this paper, we proposed a machine learning
prediction model, namely, the long short-term memory network optimized by the sparrow
search algorithm. We applied the proposed model to the prediction of carbon emissions in
the Yellow River Basin. The results of the study can provide guidance for the development
of emission reduction measures in the Yellow River Basin.

Carbon emissions in the Yellow River Basin showed a continuous increasing trend
from 2000 to 2019, and the total carbon emissions increased from 768.91 million tons to
3336.99 million tons, with significant inter-provincial differences. The carbon emissions of
Qinghai are less than one-tenth that of Shandong, the highest carbon emitter. The carbon
emission intensity of the Yellow River Basin decreased from 5.187 t/10,000 RMB in 2000 to
1.672 t/10,000 RMB in 2019, showing a gradually decreasing trend. Qinghai has the highest
carbon emission intensity at 4.577 t/10,000 RMB; although its carbon emissions are small,
its low GDP leads to its very high carbon emission intensity.

The results of the QAP regression analysis show that the influence level of factors
on carbon emissions in the Yellow River Basin is different in different periods, and the
dominant factor of the carbon emission difference in the Yellow River Basin from 2000 to
2010 was GDP per capita. After 2010, the dominant factor affecting carbon emissions in the
Yellow River Basin was population.

The SSA-LSTM model can accurately predict carbon emissions in the Yellow River
basin, and the MAPE of the proposed model is only 0.0099. Compared with the single LSTM
model, the MAE, MSE and MAPE of the SSA-LSTM model were reduced by 45.80%, 43.68%
and 44.38%, respectively, indicating that SSA can significantly improve the prediction
accuracy of the LSTM model. The MAPE of the PSO-LSTM and BPNN models are 0.0155
and 0.0370, respectively, which validate the advantages of the proposed models.

4.2. Policy Implications

Considering the inter-provincial differences in carbon emissions in the Yellow River
Basin, it is important to pay attention to not only high carbon emission areas such as
Shandong, Inner Mongolia and Shaanxi, but also high carbon emission intensity areas such
as Ningxia and Inner Mongolia in formulating emission reduction policies. The factors
affecting the carbon emission differences in the Yellow River Basin are mainly population
and GDP per capita. When planning carbon emission reduction tasks, inter-provincial
differences should be fully considered and reasonable carbon emission reduction tasks
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should be assigned according to the basic conditions of each province. For example,
Shandong is not only a region with large carbon emissions, but also a province with a large
population. The carbon emission potential of Shandong can be fully explored according to
the influence of population on the province.

Inter-regional synergy should be paid attention to in the Yellow River basin and
the direction, goals, and programs for overall carbon reduction in the basin should be
formulated. The division of labor and cooperation among different provinces should be
actively guided to improve the efficient use of resources by building regional industrial
chains and supply chains to build a new pattern of high-quality ecological and economic
development. Provinces with high carbon emission intensity (such as Ningxia and Qinghai)
should actively learn from the technologies of developed regions in the Yellow River basin
(such as Shaanxi) to promote the development of a low-carbon economy. The basin as
a whole should also learn from the experience of low-carbon development outside the
basin to establish and improve carbon emission reduction mechanisms. For example, it
can strengthen cooperation with the Yangtze River Economic Zone, formulate relevant
preferential policies, and promote cooperation with access to low-carbon technologies.
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LMDI logarithmic mean divisia index PSO particle swarm optimization
QAP quadratic assignment procedure BPNN back propagation neural network
GA genetic algorithm MAE mean absolute error
LSTM long short-term memory RMSE root mean squared error
RNN recurrent neural network MAPE mean absolute percentage error
SSA sparrow search algorithm

References
1. Williams, R.G.; Roussenov, V.; Goodwin, P.; Resplandy, L.; Bopp, L. Sensitivity of Global Warming to Carbon Emissions: Effects of

Heat and Carbon Uptake in a Suite of Earth System Models. J. Clim. 2017, 30, 9343–9363. [CrossRef]
2. Wang, X.; Zhang, Y. Carbon Footprint of the Agricultural Sector in Qinghai Province, China. Appl. Sci. 2019, 9, 2047. [CrossRef]
3. Sun, H.; Park, Y. CO2 Emission Calculation Method during Construction Process for Developing BIM-Based Performance

Evaluation System. Appl. Sci. 2020, 10, 5587. [CrossRef]
4. de Vries, G.J.; Ferrarini, B. What Accounts for the Growth of Carbon Dioxide Emissions in Advanced and Emerging Economies?

The Role of Consumption, Technology and Global Supply Chain Participation. Ecol. Econ. 2017, 132, 213–223. [CrossRef]
5. Jiang, M.H.; An, H.Z.; Gao, X.Y.; Jia, N.A.; Liu, S.Y.; Zheng, H.L. Structural decomposition analysis of global carbon emissions:

The contributions of domestic and international input changes. J. Environ. Manag. 2021, 294, 112942. [CrossRef]
6. Lian, L.; Lin, J.; Yao, R.; Tian, W. The CO2 emission changes in China’s transportation sector during 1992–2015: A structural

decomposition analysis. Environ. Sci. Pollut. Res. 2020, 27, 9085–9098. [CrossRef]
7. Rosita, T.; Estuningsih, R.D.; Ningsih, D.P.; Zaekhan; Nachrowi, N.D. Exploring the mitigation poten-tial for carbon dioxide

emissions in Indonesia’s manufacturing industry: An analysis of firm characteristics. Carbon Manag. 2022, 13, 17–41. [CrossRef]
8. Zhang, W.; Li, K.; Zhou, D.Q.; Zhang, W.R.; Gao, H. Decomposition of intensity of energy-related CO2 emission in Chinese

provinces using the LMDI method. Energy Policy 2016, 92, 369–381. [CrossRef]
9. Jiang, X.-T.; Wang, Q.; Li, R.R. Investigating factors affecting carbon emission in China and the USA: A perspective of stratified

heterogeneity. J. Clean. Prod. 2018, 199, 85–92. [CrossRef]

http://doi.org/10.1175/JCLI-D-16-0468.1
http://doi.org/10.3390/app9102047
http://doi.org/10.3390/app10165587
http://doi.org/10.1016/j.ecolecon.2016.11.001
http://doi.org/10.1016/j.jenvman.2021.112942
http://doi.org/10.1007/s11356-019-07094-7
http://doi.org/10.1080/17583004.2022.2042394
http://doi.org/10.1016/j.enpol.2016.02.026
http://doi.org/10.1016/j.jclepro.2018.07.160


Sustainability 2022, 14, 6153 17 of 17

10. Ge, X.; Wang, Y.; Zhu, H.; Ding, Z. Analysis and forecast of the Tianjin industrial carbon dioxide emissions resulted from energy
consumption. Int. J. Sustain. Energy 2017, 36, 637–653. [CrossRef]

11. Perez-Suarez, R.; Lopez-Menendez, A.J. Growing green? Forecasting CO2 emissions with Environmental Kuznets Curves and
Logistic Growth Models. Environ. Sci. Policy 2015, 54, 428–437. [CrossRef]

12. Magazzino, C.; Mele, M.; Schneider, N. A machine learning approach on the relationship among solar and wind energy production,
coal consumption, GDP, and CO2 emissions. Renew. Energy 2021, 167, 99–115. [CrossRef]

13. Deng, C.; Hu, H.X.; Zhang, T.L.; Chen, J.L. Rock slope stability analysis and charts based on hybrid online sequential extreme
learning machine model. Earth Sci. Inform. 2020, 13, 729–746. [CrossRef]

14. Javanmard, M.E.; Ghaderi, S.; Hoseinzadeh, M. Data mining with 12 machine learning algorithms for predict costs and carbon
dioxide emission in integrated energy-water optimization model in buildings. Energy Convers. Manag. 2021, 238, 114153. [CrossRef]

15. Chai, Z.Y.; Yan, Y.B.; Simayi, Z.; Yang, S.T.; Abulimiti, M.; Wang, Y.Q. Carbon emissions index decom-position and carbon
emissions prediction in Xinjiang from the perspective of population-related factors, based on the combination of STIRPAT model
and neural network. Environ. Sci. Pollut. Res. 2022, 29, 31781–31796.

16. Jena, P.R.; Managi, S.; Majhi, B. Forecasting the CO2 Emissions at the Global Level: A Multilayer Artificial Neural Network. Model.
Energ. 2021, 14, 6336. [CrossRef]

17. Javanmard, M.E.; Ghaderi, S. A Hybrid Model with Applying Machine Learning Algorithms and Optimization Model to Forecast
Greenhouse Gas Emissions with Energy Market Data. Sustain. Cities Soc. 2022, 82, 103886. [CrossRef]

18. Yuan, X.; Sheng, X.; Chen, L.; Tang, Y.; Li, Y.; Jia, Y.; Qu, D.; Wang, Q.; Ma, Q.; Zuo, J. Carbon footprint and embodied carbon
transfer at the provincial level of the Yellow River Basin. Sci. Total Environ. 2022, 803, 149993. [CrossRef]

19. Zhang, Y.; Xu, X.Y. Carbon emission efficiency measurement and influencing factor analysis of nine provinces in the Yellow River
basin: Based on SBM-DDF model and Tobit-CCD model. Environ. Sci. Pollut. Res. 2022, 29, 33263–33280. [CrossRef]

20. Liu, Z.; Guan, D.B.; Wei, W.; Davis, S.J.; Ciais, P.; Bai, J.; Peng, S.S.; Zhang, Q.; Hubacek, K.; Marland, G.; et al. Reduced carbon
emission estimates from fossil fuel combustion and cement production in China. Nature 2015, 524, 335–338. [CrossRef]

21. Shan, Y.L.; Guan, D.B.; Zheng, H.R.; Ou, J.M.; Li, Y.; Meng, J.; Mi, Z.F.; Liu, Z.; Zhang, Q. Data Descriptor: China CO2 emission
accounts 1997–2015. Sci. Data 2018, 5, 170201. [CrossRef]

22. He, Y.-Y.; Wei, Z.-X.; Liu, G.-Q.; Zhou, P. Spatial network analysis of carbon emissions from the electricity sector in China. J. Clean.
Prod. 2020, 262, 121193. [CrossRef]

23. Yang, C.; Liu, S. Spatial correlation analysis of low-carbon innovation: A case study of manufacturing patents in China. J. Clean.
Prod. 2020, 273, 122893. [CrossRef]

24. Duan, J.; Nie, C.; Wang, Y.; Yan, D.; Xiong, W. Research on Global Grain Trade Network Pattern and Its Driving Factors.
Sustainability 2022, 14, 245. [CrossRef]

25. Zhang, C.; Tan, Z. The relationships between population factors and China’s carbon emissions: Does population aging matter?
Renew. Sustain. Energy Rev. 2016, 65, 1018–1025. [CrossRef]

26. Wu, L.; Jia, X.; Gao, L.; Zhou, Y. Effects of population flow on regional carbon emissions: Evidence from China. Environ. Sci.
Pollut. Res. 2021, 28, 62628–62639. [CrossRef]

27. Wang, F.; Gao, M.; Liu, J.; Qin, Y.; Wang, G.; Fan, W.; Ji, L. An empirical study on the impact path of ur-banization to carbon
emissions in the China Yangtze River delta urban agglomeration. Appl. Sci. 2019, 9, 1116. [CrossRef]

28. Yang, Y.; Wei, X.; Wei, J.; Gao, X. Industrial Structure Upgrading, Green Total Factor Productivity and Carbon Emissions.
Sustainability 2022, 14, 1009. [CrossRef]

29. Pai, P.F.; Wang, W.C. Using machine learning models and actual transaction data for predicting real estate prices. Appl. Sci. 2020,
10, 5832. [CrossRef]

30. Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020, 8,
22–34. [CrossRef]

31. Zhang, H.; Sun, X.; Wang, W. Study on the spatial and temporal differentiation and influencing factors of carbon emissions in
Shandong province. Nat. Hazards 2017, 87, 973–988. [CrossRef]

32. Zhang, Y.L.; Zhang, Q.Y.; Pan, B.B. Impact of affluence and fossil energy on China carbon emissions using STIRPAT model.
Environ. Sci. Pollut. Res. 2019, 26, 18814–18824. [CrossRef] [PubMed]

33. Qian, L.; Zheng, Y.; Li, L.; Ma, Y.; Zhou, C.; Zhang, D. A New Method of Inland Water Ship Trajectory Prediction Based on Long
Short-Term Memory Network Optimized by Genetic Algorithm. Appl. Sci. 2022, 12, 4073. [CrossRef]

34. Saidani, I.; Ouni, A.; Mkaouer, M.W. Improving the prediction of continuous integration build failures using deep learning.
Autom. Softw. Eng. 2022, 29, 21. [CrossRef]

35. Liu, D. Convergence of energy carbon emission efficiency: Evidence from manufacturing subsectors in China. Environ. Sci. Pollut.
Res. 2022, 29, 31133–31147. [CrossRef]

36. Liang, Z.; Nie, Z.; An, A.; Gong, J.; Wang, X. A particle shape extraction and evaluation method using a deep convolutional
neural network and digital image processing. Powder Technol. 2019, 353, 156–170. [CrossRef]

37. Yang, D.; Wang, X.; Zhang, H.; Yin, Z.-Y.; Su, D.; Xu, J. A Mask R-CNN based particle identification for quantitative shape
evaluation of granular materials. Powder Technol. 2021, 392, 296–305. [CrossRef]

38. Liu, G.; Chen, L.; Qian, Z.; Zhang, Y.; Ren, H. Rutting prediction models for asphalt pavements with different base types based on
RIOHTrack full-scale track. Constr. Build. Mater. 2021, 305, 124793. [CrossRef]

http://doi.org/10.1080/14786451.2015.1077841
http://doi.org/10.1016/j.envsci.2015.07.015
http://doi.org/10.1016/j.renene.2020.11.050
http://doi.org/10.1007/s12145-020-00458-5
http://doi.org/10.1016/j.enconman.2021.114153
http://doi.org/10.3390/en14196336
http://doi.org/10.1016/j.scs.2022.103886
http://doi.org/10.1016/j.scitotenv.2021.149993
http://doi.org/10.1007/s11356-022-18566-8
http://doi.org/10.1038/nature14677
http://doi.org/10.1038/sdata.2017.201
http://doi.org/10.1016/j.jclepro.2020.121193
http://doi.org/10.1016/j.jclepro.2020.122893
http://doi.org/10.3390/su14010245
http://doi.org/10.1016/j.rser.2016.06.083
http://doi.org/10.1007/s11356-021-15131-7
http://doi.org/10.3390/app9061116
http://doi.org/10.3390/su14021009
http://doi.org/10.3390/app10175832
http://doi.org/10.1080/21642583.2019.1708830
http://doi.org/10.1007/s11069-017-2805-7
http://doi.org/10.1007/s11356-019-04950-4
http://www.ncbi.nlm.nih.gov/pubmed/31065981
http://doi.org/10.3390/app12084073
http://doi.org/10.1007/s10515-021-00319-5
http://doi.org/10.1007/s11356-022-18503-9
http://doi.org/10.1016/j.powtec.2019.05.025
http://doi.org/10.1016/j.powtec.2021.07.005
http://doi.org/10.1016/j.conbuildmat.2021.124793

	Introduction 
	Methodology 
	Carbon Emissions Accounting 
	Quadratic Assignment Procedure 
	Long Short-Term Memory Network 
	Sparrow Search Algorithm 
	SSA-LSTM 

	Results and Discussion 
	Spatial and Temporal Evolution Characteristics of Carbon Emissions in the Yellow River Basin 
	QAP Analysis Results 
	SSA-LSTM Forecasting Results 
	Discussion 

	Conclusions and Policy Recommendations 
	Conclusions 
	Policy Implications 

	References

