
Citation: Qiu, X.; Chang, X.; Chen, J.;

Fan, B. Research on the Analytical

Redundancy Method for the Control

System of Variable Cycle Engine.

Sustainability 2022, 14, 5905. https://

doi.org/10.3390/su14105905

Academic Editor: Raffaele Carli

Received: 28 March 2022

Accepted: 30 April 2022

Published: 13 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Research on the Analytical Redundancy Method for the Control
System of Variable Cycle Engine
Xiaojie Qiu *, Xiaodong Chang , Jie Chen and Baiqing Fan

AECC Aero Engine Control System Institute, Wuxi 214063, China; cxd18762406179@163.com (X.C.);
chenjie_lure@sina.com (J.C.); baiqingfan@buaa.edu.cn (B.F.)
* Correspondence: qzhang6008@126.com

Abstract: The safety and reliability of the measuring elements of an aero-engine are important
preconditions of the stable operation of the engine control system. The number of control parameters
of a variable cycle engine increases by 20%–40% compared to traditional engines. Therefore, it is
important to conduct study on the analytical redundancy, design fault diagnosis and isolation of the
sensors, as well as the signal reconstruction system, so as to increase the ratability and fault-tolerant
capability of the variable cycle engine control system. The analytical redundancy method relies on
the accuracy of the mathematical model of the engine. During the service cycle of the engine, it
is inevitable that the engine performance will deteriorate, resulting in a mismatch with the model.
In this paper, the adaptive model of the variable cycle engine is built with a Kalman filter. Based
on this, the strategy of analytical redundancy logic is built and the dynamic adaptive calculation
of the threshold is introduced. Simulation results reflect that this method can effectively increase
the reliability of sensor fault diagnosis and the accuracy of the analytical redundancy when there is
performance degradation of the variable cycle engine.

Keywords: variable cycle engine; control system; sensor; signal reconstruction; analytical redundancy

1. Introduction

With the development of modern flight techniques, traditional turbojet/turbofan
engines cannot meet the requirements of various flight tasks due to their relatively fixed
operation modes, and the variable cycle engine (VCE), with unique advantages, becomes
the first choice of power plant. The variable cycle engine is a kind of gas turbine engine
that is able to change the thermo-dynamic cycle through adjusting the shapes, sizes and
positions of engine components [1]. The control of the VCE is mainly based on Full
Authority Digital Electronic Control (FADEC) [2], and the proper functioning of sensors is
an important precondition of the safe and stable operating of the control system, especially
for the VCE, considering the amount of control parameters is increased by 40% compared
to traditional engines. Engine sensors are prone to faults under adverse environments
such as high temperature and high pressure, and currently hardware redundancy and
analytical redundancy are the two main approaches to improve the fault tolerance of the
engine control system [3–5].

The main problems introduced by hardware redundancy include a complex structure,
it is large in size and cost-expensive, and a decreased payload of the plane due to the extra
weight on the engine [6,7]. Using analytical redundancy to partially replace hardware
redundancy improves the capacity of the fault tolerance of the engine control system, while
the cost and weight of hardware redundancy is reduced [8]. In analytical redundancy
approaches the analytical signal is applied to replace the faulty sensor signal. Therefore, it
is important to design fault diagnosis and isolation of sensors, as well as a signal recon-
struction system, so as to increase the reliability and reduce the cost and weight of the
variable cycle engine control system.
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Among analytical redundancy approaches, some have been introduced to deal with
engine estimations or diagnostics, which can be classified into two types: model-based
methods (such as observers and filters) and data-based methods (such as fuzzy logic, neural
networks and genetic algorithms) [9]. Compared to data-based approaches, model-based
approaches utilize all model information available, and offer better estimation accuracy [10].
A well-developed model-based strategy for the in-flight sensor FDI of aircraft engines was
initially investigated by Merrill et al. [11], who utilized a bank of Kalman filters (KF) to
detect and isolate sensor faults. Then the work was extended by Kobayashi et al. [12] to
augment the FDI system with detecting actuator and component faults by applying more
Kalman filters. The main concept of their work is that each Kalman filter is designed to be
related to one specific fault, and then residuals from each Kalman filter are compared to a
set threshold to determine whether there is a fault in the corresponding channel. There has
been much work conducted for regular engines, but research toward the VCE can barely
be found.

The analytical redundancy method relies on the accuracy of the mathematical model of
the engine, so model accuracy is critical to the diagnosis and reconstruction of engine sensor
faults [13,14]. During the service cycle of an engine, it is inevitable that engine performance
degrades over time, resulting in mismatches with the nominal engine model. To address
the degradation problem, Brotherton presented an approach that fused a physical model,
called the self-tuning on-board real-time model (STORM), with an empirical neural net
model to provide a unique hybrid model (eSTORM) based on a Kalman filter, aiming to
compensate for modeling errors and provide engine diagnostics [15]. Volponi developed
eSTORM, by providing a self-tuning technique to the engine model as the engine evolved
over the course of its life, to ensure accurate performance tracking [16]. Simon [17] and
Armstrong et al. [18] described the enhanced sensor FDI scheme by updating the health
baseline model used for sensor diagnosis periodically. The architecture contains a real-time
adaptive performance model (RTAPM) to estimate health condition, and the performance
baseline model (PBM) is updated by health estimation results off-board to detect faults.
The shortcoming is that the Kalman filters need to be redesigned once the PBM is updated.
Thus, the updating period is decided by weighting the pros and cons of the diagnostic
accuracy and the operating costs. To address this problem, Kobayashi et al. [19] improved
the on-line sensor diagnostics by using a Hybrid Kalman Filter (HKF), which lends itself
to the health baseline update. In most published researches a Linear Kalman Filter (LKF)
is adopted, causing the problem of linearizing error and gain scheduling, and the issue
is not considered that engine performance degradation would reduce the accuracy of
sensor reconstruction.

In this context, and taking into account what was explained above, this work deals
with the VCE and presents an adaptive model of the variable cycle engine based on an
Extended Kalman Filter (EKF) considering performance degradation. In addition, the
dynamic adaptive calculation of the threshold is introduced and the strategy of analytical
redundancy logic of the VCE is designed.

In the following sections of this paper, a brief description of the considered aircraft
engine and its model are given first. Next, the principle of designing an EKF is introduced
to estimate the health parameters, and the overall architecture of analytical redundancy of
the VCE sensors is depicted. Then, the performance of the proposed scheme is evaluated in
a nonlinear simulation environment. Finally, conclusions are presented.

2. Adaptive Dynamic Model of VCE

A VCE includes traditional components of an inlet, fan, compressor, burner, high-
pressure turbine, low-pressure turbine and nozzle, and extra components including a Mode
Selector Valve (MSV), Core Drive Fan Stage (CDFS), and front and rear Variable Area
Bypass Injector (VABI). The VCE is able to switch between different bypass ratios to meet
various performance requirements, and the basic structure of a dual bypass VCE is shown
in Figure 1 [20].



Sustainability 2022, 14, 5905 3 of 11

Figure 1. The basic structure of a dual bypass VCE.

In this paper, the nonlinear mathematical model of the VCE is established by a compo-
nent analytical approach, and the nonlinear system can be expressed as

xk+1 = f (xk, uk) + ωk
yk = g(xk, uk) + νk

(1)

where k is the time step, and xk = [NL, NH]T represents the system state at time of k. uk =
[Wf A8] represents the system input including the main fuel and nozzle area. yk = [NL, NH,
T21, P21, T15, P15, T3, P3, T5, P5] is the sensor output, and the elements separately represent
low shaft speed, high shaft speed, the total temperature and total pressure of the exit of
the fan, the front mix chamber, the compressor and the low-pressure turbine, respectively.
wk and vk are system noise and measurement noise, respectively, which are irrelevant and
satisfy wk ~ N(0, Q2), vk ~ N(0, R2) [21], where

Q =


0.0152

0.0152

. . .
0.0152


10×10

and

R =


0.0152

0.0152

. . .
0.0152


10×10

are noise covariance matrices [22]. f(·) and g(·) represent state transition equation and
measurement equation, respectively.

The condition of the engine gas-path health performance (abrupt fault or performance
degradation) can be presented by component performance parameters. Therefore, health
parameter h is introduced to quantify the extent of abrupt faults or performance degrada-
tions [17]. In detail, h is chosen to be efficiency coefficient SEi and flow capacity coefficient
SWi, which are defined as

SEi =
ηi
η∗i

, SWi =
Wi
W∗i

(2)

where ηi, wi are the actual efficient and flow capacity of components, and η∗i , w∗i are the nominal
values. The subscript i (i = 1, 2, 3, 4, 5) represents the component number. Constrained by the
position and amount of sensors in practical application, some health parameters of components
have to be abandoned [23,24]. Since there is no direct measurement of the exit of the high-pressure
turbine and CDFS in the involved engine plant, the health parameters of low pressure efficiency
and CDFS efficiency are not considered. Finally, h = [SE1 SW1 SW2 SE3 SW3 SE4 SW4]T, and h is
augmented into the state vector, x = [NL, NH, hT]T.
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An Extended Kalman Filter (EKF) essentially uses the first-order approximation of a
nonlinear system to convert a nonlinear filtering issue into an approximate linear filtering
issue; then the problem can be solved by a Linear Kalman Filter (LKF) [25]. Taylor series
expansion is adopted at a certain state point of the engine nonlinear model. By ignoring the
high-order term, the Jacobian matrix can be obtained, and the corresponding Kalman matrix
is calculated through an LKF. By using a nonlinear model, linearization error that existed
in the LKF can be avoided in the EKF during the priori estimation and priori measurement
calculation, and the precision can be assured by the first-order of Taylor series expansion.
An EKF possesses the advantages of having higher precision compared with an LKF, and
simpler implementation compared with an Unscented Kalman Filter (UKF).

The calculation process of the EKF mainly includes a time update and measurement
update:

(1) The time update is about calculating the prior state estimation and the prior state
covariance matrix

x̂k|k−1 = f (xk−1, uk−1) (3)

Pk|k−1 = AkPk−1Ak
T + Q (4)

(2) The measurement update is about calculating the KF gain matrix, and updating
the prior state and its covariance matrix; then a posteriori estimate and the related
covariance matrix can be obtained

Kk = Pk|k−1Ck
T(CkPk|k−1Ck

T + R)
−1

(5)

x̂k = x̂k|k−1 + Kk

[
yk − g(x̂k|k−1, uk)

]
(6)

Pk = (I−KkCk)Pk|k−1 (7)

where Pk is the covariance of xk, and Kk is the KF gain, Ak, Ck are Jacobian matrices
calculated by

Ak =
∂ f (xk−1, uk−1)

∂xk−1
, Ck =

∂g(xk|k−1, uk)

∂xk
(8)

The health parameters are employed in the VCE model to correct the characters of the
corresponding rotating components after they are estimated by the filter, so that the real
engine output can be tracked by the model output accurately.

3. Analytical Redundancy of VCE Sensors

The engine gas-path health parameters are estimated by the EKF; then engine sensor
diagnosis and signal reconstruction can be realized by using the model, fault indication
parameter and threshold. The basic principle is shown below in Figure 2. The chief task of
an engine control system is to provide the proper amount of fuel to meet the demanded
thrust. Thus, the closed-loop control of a VCE basically contains the command, sensors,
engine plant (including actuators) and controller. The signal of PLA is the command from
the pilot, which links the certain control scheme setting to the demanded engine inputs.
Then, by receiving the command and the sensors’ feedback, the EEC (Engine Electronic
Controller) calculates the closed-loop output currents, which control the actuators on the
engine so they are in the desired position. To implement analytical redundancy, the EKF
depicted above is adopted here to form the adaptive dynamic model of the VCE. The EKF,
acting as an FDI part, detects and isolates the faulty sensor; then a virtual sensor signal
solved by the EKF is utilized to replace the damaged one. The redundancy logic module is
used to judge whether the reconstructed signal should be applied according to the extent
of the damage and malfunction.
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Figure 2. The principle of VCE analytical redundancy.

In order to improve the reliability of the data stream as well as the stability of state
estimation, a parameter caching procedure is adopted, which means a 10-dimension buffer
is established during the operational process. The values of state x in the last 10 steps are
stored and an average value is calculated

Xbu f f er = [xk−9, · · ·, xk−3, xk−2, xk−1, · · ·, xk] (9)

xk,bu f f er = sum(Xbu f f er)/10 (10)

Updating the model using state estimation results when no fault or only a pressure
sensor fault happens

ŷM = g(xk, uk) (11)

and in the case when there a speed sensor fault or temperature sensor fault happens

ŷM = g(xk,bu f er, uk) (12)

Replacing the jth element of ŷM with the real output value, where ŷM is the estimation
matrix of the jth sensor

ŷj
M(j) = y(j) j = 1, 2, . . . , n (13)

The computational formula of the covariance corresponding to the jth sensor is

WSSRj
M = (y− ŷj

M)
T

∑−1
(y− ŷj

M) (14)

in which ∑ is a constant, standing for the standard deviation of measurement noise.
By comparing WSSR with threshold λ, the case that all WSSRs are below λ means no

fault happens. In another case, if the jth sensor fault occurs, the WSSR related to the jth
sensor will be below λ, while other WSSRs will exceed λ.

For a speed sensor fault or temperature sensor fault, using xk,bu f f er in the engine
dynamic model to reconstruct the faulty sensor

yre = g(xk,bu f f er, uk) (15)

For a pressure sensor fault, using current state xk in the engine dynamic model to
reconstruct the faulty sensor

yre = g(xk, uk) (16)

Replacing the jth faulty sensor signal with the jth element of the reconstructed signal yre

yk,j = yre,j (17)
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The logical strategy of sensor fault diagnosis and reconstruction is shown in Figure 3.

Figure 3. Sensor fault diagnosis and reconstruction.

The threshold plays a critical role in sensor fault diagnosis. Generally, one or several
fixed values would be chosen according to experience, but the range of WSSR varies a lot
in different sensor fault scenarios due to different engine states. Meanwhile, influenced
by noises, the threshold may be exceeded in particular states so that misdiagnosis occurs.
Thus, an adaptive threshold is considered here. By introducing high rotor speed N̂H (which
is a reflection of the engine states to some extent) in adaptive threshold computing, the
threshold is related with the engine state. Moreover, the uncertainties in self measure-
ment and estimation are considered. Combined with the sensor fault diagnosis method
mentioned before, the computing of the adaptive threshold γ is shown as

λ = γN̂H

k

∑
i=k−s

min(WSSRi)/s (18)

where k represents the current time, s is the sliding buffer length and γ is the amplifica-
tion coefficient.

4. Simulation

Sensor faults that happened after engine gas-path degrading are simulated, separately
in a single bypass mode and dual bypass mode of the VCE. The proposed sensor fault diag-
nosis and reconstruction approaches are implemented to verify the effectiveness of sensor
fault diagnosis and the accuracy of reconstruction after engine performance degradation.
In simulations, amplification coefficient γ and sliding buffer length s are chosen as: γ = 2.3,
s = 2.

Tests are conducted via a nonlinear component-level model (CLM), which is a simula-
tion platform representing a twin-spool high-bypass VCE. The modeling method of the
developed CLM was described in [10,26], and its fidelity has been proved against testing
data extracted from real engines. The component-level model consists of a set of individual
components, each of which requires a number of inputs and generates one or more vari-
ables. The steady state simulation of the CLM is based on the mass flow balance and power
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balance equations, while the transient simulation, identified by the steady state calculation,
follows the mass flow balance and rotor dynamics equations. The nonlinear expressions,
both in steady state and transient dynamics, are solved via the Newton–Raphson approach.
The iterative solution of nonlinear equations in each step stops once the iteration number
reaches 10 or the iteration error is less than 0.01. The CLM is written using C language and
packaged with a dynamic link library (DLL) for use in the MATLAB environment [27]. The
health parameters are modeled and a health degrading injection is available in the CLM.
Sensor dynamics are assumed to be with high enough bandwidth that they can be ignored
in the dynamics equations.

The simulation environment is set to be at the reference flight condition and at a
nominal cruise power setting. White Gaussian measurement noise and process noise are
introduced to the experiments with standard deviations (percentage of the nominal value)
σnoise,m = 0.0015 and σnoise,p = 0.0015, respectively, determined by practical experience and
previously published data [10].

4.1. Single Bypass Mode

At ground testing point, the Mode Selector Valve of the VCE is closed, and the front
and rear VABI are turned down to keep the engine in single bypass mode.

At 1.25 s a 2% degradation of compressor flow capacity is simulated, while at 2.5 s
a −3% abrupt fault is injected in P15 sensor. Partial outputs of the adaptive model, the
WSSR with and without the adaptive approach, and the reconstruction results are shown
in Figure 4.
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As shown in Figure 4a, the black line reflects the real engine output, and the colored
line shows the adaptive model output. It can be seen that the real engine output is
well tracked by the adaptive model with engine performance degradation. In Figure 4b
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the WSSR (the olive green line) changes abruptly at 1.25 s caused by the degradation
injection, and the threshold value also changes by applying the adaptive threshold, so
that WSSR is restored to the normal level so that sensor fault misdiagnosis is avoided,
while in the scenario of Figure 4c, where the adaptive model is not applied, WSSR vibrates
and misdiagnosis occurs occasionally due to the differences between the model and the
degraded engine. In Figure 4d, the reconstruction signal without the adaptive model
deviates from the real signal evidently, with an average error of 0.4%, and the reconstruction
signal is restored to the default value in case of misdiagnosis. In contrast, the reconstruction
signal with the adaptive model performs much better than the former, with an average error
of 0.1%, which means the reconstruction signal reflects the real signal value more precisely.

At 1.25 s a 2% degradation of fan efficiency is simulated, while at 3.75 s a −3% abrupt
fault is injected in T15 sensor. From 2.5 s to 10 s a dynamic engine deceleration is simulated.
The dynamic simulation results are shown in Figure 5.

Figure 5. T15 fault at ground point during deceleration in single bypass mode.

From the ground dynamic deceleration in the single bypass mode shown in Figure 5a,
it can be seen that the adaptive model can successfully track the real engine output both
in the degraded performance case and engine dynamic case. By comparing Figure 5b
with Figure 5c, it is obvious that WSSR goes abnormally large in Figure 5c, with sizable
vibrations during the entire simulation, which works greatly to the disadvantage of sensor
fault diagnosis. In contrast, Figure 5b shows the desired value of WSSR even with the
interruption of degradations. Figure 5d shows that the reconstruction signal with the
adaptive model performs better in precision compared to the signal without the adaptive
model, which illustrates the effectiveness and accuracy of the applied redundancy strategy
in engine dynamic operations under the single bypass mode.
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4.2. Dual Bypass Mode

At ground testing point, the Mode Selector Valve of the VCE is open, and the front
and rear VABI are turned up to keep the engine in dual bypass mode.

At 1.25 s a 1% degradation of high-pressure turbine efficiency is simulated, while at 2.5 s a
−3% abrupt fault is injected in T21 sensor. The performance estimation, partial outputs of the
adaptive model, the WSSR and the reconstruction results are shown in Figure 6.

Figure 6. T21 fault at ground point in dual bypass mode.

As shown in Figure 6a, the VCE operates in a lower state under the dual bypass mode
compared to the single bypass mode. The real engine output is well tracked by the adaptive
model with high-pressure turbine efficiency degradation. As shown in Figure 6b,c, WSSR
computed by the adaptive model is steadier and presents a higher degree of discrimination
between a faulty sensor and a nominal one, compared to the WSSR without an adaptive
calculation, which shows an advantage in sensor fault diagnosis. In Figure 6d, where the
adaptive approach is not applied, although the reconstruction signal replicates the real
signal, the T21 real signal barely changes after performance degradation. By applying the
adaptive model, the reconstruction signal can not only track the real signal, but also reflect
the real chattering.

At 1.25 s a 2% degradation of compressor efficiency is simulated, while at 3.75 s a −3%
abrupt fault is injected in NH sensor. From 2.5 s to 10 s a dynamic engine acceleration is
simulated. The dynamic simulation results are shown in Figure 7.

From the ground dynamic acceleration in the dual bypass mode in Figure 7, it shows
again the advantages of the applied redundancy strategy based on the adaptive model.
The fault in NH sensor is detected and located, while variations in WSSR are steady, and
the variations in the ability to distinguish between nominal and faulty cases are large, so
that the sensor fault can be easily located, as shown in Figure 7b. In contrast, in Figure 7c,



Sustainability 2022, 14, 5905 10 of 11

a large fluctuation occurs in WSSR causing sensor misdiagnosis, which is more obvious
in Figure 7d. Meanwhile, there is a steady state error in the reconstruction signal without
the adaptive model, which presents a much lower precision than the one applying the
adaptive model. Results verify the effectiveness of the applied redundancy strategy under
dual bypass mode.
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5. Conclusions

In this paper an adaptive dynamic model and related analytical redundancy of the
VCE have been established based on the EKF, and sensor faults can be diagnosed and
reconstructed via an adaptive threshold calculation. Considering the components’ perfor-
mance degradations under different engine operation modes, the analytical redundancy of
sensors in the engine control system have been simulated and verified. Results showed that
in scenarios of steady and dynamic process, the proposed diagnosis and reconstruction
method based on the adaptive model performs better in reliability and precision than the
one without the adaptive model. By implementing an adaptive threshold, the misdiagnosis
caused by performance degradation can be effectively avoided, and the accuracy and
reliability of sensor analytical redundancy are significantly improved. One challenge of
implementing this approach in practical use is the unstable chattering during switching
the physical signal to a reconstructed signal in feedback control. Thus, future work can be
carried out focusing on the switching behavior and stability of the control system when
analytical redundancy functions.
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