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Abstract: Estimation of the failure probability for corroded oil and gas pipelines using the appro-
priate reliability analysis method is a task with high importance. The accurate prediction of failure
probability can contribute to the better integrity management of corroded pipelines. In this paper,
the reliability analysis of corroded pipelines is investigated using different simulation and meta-
model methods. This includes five simulation approaches, i.e., Monte Carlo Simulation (MCS),
Directional Simulation (DS), Line Sampling (LS), Subset Simulation (SS), and Importance Sampling
(IS), and two meta-models based on MCS as Kriging-MCS and Artificial Neural Network based
on MCS (ANN-MCS). To implement the proposed approaches, three limit state functions (LSFs)
using probabilistic burst pressure models are established. These LSFs are designed for describing the
collapse failure mode for pipelines constructed of low, mid, and high strength steels and are subjected
to corrosion degradation. Illustrative examples that comprise three candidate pipelines made of
X52, X65, and X100 steel grade are employed. The performance and efficiency of the proposed
techniques for the estimation of the failure probability are compared from different aspects, which
can be a useful implementation to indicate the complexity of handling the uncertainties provided by
corroded pipelines.

Keywords: corroded oil and gas pipelines; corrosion defects; Monte Carlo Simulation; reliability
analysis; failure probability; meta-models

1. Introduction

Today’s world is dependent on energy, and one of the ways to supply energy is
through fuel, especially fossil fuels [1,2]. Because of the increasing development of various
industries, the necessity to transport these resources is becoming increasingly vital [3]. The
transportation of oil, gas, and petrochemicals by land, sea, and air has shown that these
methods of transportation, in addition to their obstacles and problems and the existence
of many financial and human risks, are not economically affordable [4,5]. Transporting
fossil fuel-based substances and products via pipelines is the most suitable solution as
these structures are one of the safest and most cost-effective transportation ways in this
industry [6]. However, pipelines are subjected to the surrounding environmental conditions
that can cause irreversible consequences such as partial or full destruction if any severe
degradations occur [7,8]. Despite the development advances in pipeline technology and

Sustainability 2022, 14, 5830. https://doi.org/10.3390/su14105830 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14105830
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-5854-775X
https://orcid.org/0000-0001-8378-2500
https://orcid.org/0000-0001-8622-1952
https://doi.org/10.3390/su14105830
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14105830?type=check_update&version=1


Sustainability 2022, 14, 5830 2 of 21

the oil and gas industry, failure events are still witnessed [9]. Therefore, the evaluation of
the pipeline safety levels is of fundamental importance.

Corrosion is among the main causes of steel pipeline failures [10], which is recognized
as the most important electrochemical mechanism for imposing a cost of defect that can
significantly reduce the long-term integrity of pipelines [11–13]. Thus, reliability-based
corrosion assessment of oil and gas pipelines has become a trend in research by the sci-
entific community and pipeline owners to handle the relevant uncertainties, such as the
inherent unpredictability of corrosion growth and the measurement errors from the in-
line inspection tools [14,15]. Generally, reliability refers to the effective use of policies,
resources, and regulations to assess and control the existing uncertainties such as in cor-
roded pipelines [16]. Such an efficient approach is highly suggested to decrease the danger
of structural collapse, which can result in fatalities, economic losses, or environmental
contamination, while also allowing the designer to accomplish a cost-safety trade-off, given
the current uncertainties [17]. Furthermore, local failure of pipelines can have dispropor-
tional consequences. Local loss of performance can be the root cause of loss of the entire
linear component, failure (partial or complete) of the infrastructure network, and supply
disruption. The performance reliability of the element can then be used as the core indicator
for the assessment of the entire system’s performance in terms of redundancy [18,19] or
robustness [20]. Respectively, the focus of maintenance strategies and exercises for the
entire network from a life-cycle perspective should also be diverted to localized reliability
assessments of individual components or sections thereof [21].

There have been several structural reliability approaches established to date, which
may be split into two categories: analytical and simulation-based methods [22,23]. Analyt-
ical methods include the well-known first and second-order reliability methods (FORM
and SORM), in which these approaches use the linear and quadratic approximations of the
performance function to obtain the most probable point (MPP). FORM is widely considered
to estimate the failure probability for different complex structural problems in engineering,
including corroded pipelines [24,25]. Using the FORM method, it is necessary to convert
the convex limit state functions to a line and then calculate the integral of the failure region.
As a result, numerous areas in the safe region may be overlooked in this situation and
incorporated into the calculation as a failure region, in which the failure probability will
be over-estimated [26]. Furthermore, a considerable portion of the failure zone is deemed
the safe region for functions with concave curvature, which means that the failure proba-
bility will be under-estimated. Thus, FORM may produce unstable results for non-linear
problems, such as the reliability of corroded pipeline.

Simulation-based approaches, on the other hand, use random samples according to the
distribution of the basic random variables to compute the system response for each variable
in order to estimate the failure probability. In pipeline corrosion studies, the Monte Carlo
Simulation (MCS) method, which is considered the most efficient methodology for assessing
system reliability, has been utilized extensively [27–30]. The Monte Carlo approach (MCS)
is based on producing a very large number of samples to cover all conceivable regions.
As a result, this technique will have a high computational cost, particularly if the failure
probability is low or the number of corrosion defects is enormous, as in oil and gas pipelines.
To overcome the drawbacks of the MCS method, other simulation-based techniques are
developed, which include importance sampling (IS) [31], line sampling (LS) [32], subset
simulation (SS) [33], and directional simulation (DS) [34] methods.

Various research studies, based on different structural reliability methodologies have
been undertaken so far to assess the reliability analysis of corroding pipelines. For the
analytical-based methods, we cite the works of Keshtegar and Miri [35], who proposed a
novel algorithm with a new sensitivity vector for reliability analysis of corroded pipelines.
The new sensitivity vector was used to calculate the conjugate gradient vector of the limit
state function based on the HL-RF method. Later, Mohamed EL Amine et al. [36] developed
a new reliability method based on an improved FORM using the conjugate map theory
and applied it to estimate the reliability index of six examples of corroded pipelines. Re-
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cently, Keshtegar et al. [37] conducted a comparative reliability analysis study of corroded
pipelines based on different FORM-based methods, in which the results indicated that the
original FORM method may be an unsuitable technique for handling the complexity pro-
vided by the uncertainties of corroded pipeline problems. For simulation-based methods,
the Monte Carlo Simulation (MCS) is extensively utilized for solving corroded pipeline
problems. Leira et al. [38] assessed the reliability analysis of corroded pipelines using an
enhanced Monte Carlo Simulation method and implemented it in systems with indepen-
dent and correlated corrosion defects. Gong and Zhou [31] used the importance sampling
(IS) technique to investigate the time-dependent reliability of corroded pipelines in which
two failure modes, small leak and burst, are considered. Novák et al. [39] demonstrated
a software package for structural degradation which encompasses a series of simulation
techniques, including hierarchical sampling for the establishment and the extension of
the sample size, without compromising the desired correlation structure. Mohamed El
Amine et al. [40] proposed a new framework for the structural reliability of APL X60 gas
pipeline subjected to corrosion degradation by using a novel hybrid method that combines
the MCS and machine learning model called M5 Tree model. Abyani and Bahaari [41]
compared the efficiency of two simulation-based methods, including the Monte Carlo and
Latin Hypercube Sampling (LHS), to conduct the reliability analysis of corroded pipelines
by considering three failure modes as corrosion perforation, local burst, and rupture.

Despite the extensive advances in maintaining the safety levels of oil and gas pipelines,
the structural reliability analysis is still a challenge due to the complex features provided
by the uncertainties surrounding these structures. This study contributes to the structural
reliability analysis of oil pipelines subjected to corrosion defects using different simulation
and meta-model approaches. As previously stated, MCS is the most basic method for
estimating the failure probability. The MCS, on the other hand, has a rather large computa-
tional time cost. As a result, for the failure probability estimation, an accurate approach
with less computing time and more precision is required. For this objective, the accuracy
and performance of four sampling-based approaches, including MCS, SS, LS, IS, and DS,
as well as two meta-modeling-based methods, kriging and artificial neural network, are
evaluated for the reliability analysis of corroded pipeline. The following is how the rest
of the paper is organized: Section 2 describes the structural formulation of the pipeline
system reliability using the limit state function concept based on the collapse failure mode;
Section 3 details the proposed approaches for assessing the structural reliability analysis. In
Section 4, illustrative examples are reported to appraise the effectiveness of the simulation
and meta-modeling-based techniques. The acquired results are depicted and discussed in
Section 5, while the conclusions and recommendations are presented in Section 6.

2. Limit State Functions of Corroded Pipelines Based on the Steel Grade

Pipelines under active corrosion defects tend to burst at an unknown stage of their
residual life. Thus, accurate prediction of the failure probabilities is an important task [42,43].
Usually, the state of a corroded pipeline is modelled using a limit state function that de-
scribes the probable failure mode [44,45]. The burst failure mode due to corrosion is the
most common, whereas the limit state function of a pipeline segment gi( ) at the ith active
corrosion defect can be formulated using Equation (1) as follows:

gi(X) = PBurst, i(X)− PO(X) (1)

where X denotes a vector of input random variables, and PBurst, i and PO are the burst
and operating pressures at the ith defect, respectively. Several models have been devel-
oped to model the burst pressure of corroded pipelines over the years. Keshtegar and
Mohamed [46] reviewed 35 empirical models for the burst pressure in terms of the de-
velopment basis, equation forms, advantages, and limitations. Furthermore, the authors
compare the effectiveness of the assessed burst pressure models to a large-scale experi-
mental test database, in which conclusions revealed that all the empirical models have a
tendency to miss-estimate the real values for outside ranges of their development. Rafael
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Amaya-Gómez et al. [47] conducted a similar study in which several burst pressure models
were examined using various criteria and the same conclusions were reached. Recently,
Mohamed El Amine et al. [36] have overcome this drawback by developing new proba-
bilistic models based on the pipelines grade as low (e.g., X46 and X52), mid (e.g., X60 and
X65), and high (e.g., X80 and X100) strength steel pipelines, whereas Equations (2)–(4) give
their formulas, in the same respect.
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These probabilistic models consist of three terms as the model errors that are rep-
resented by ξLow, ξMid, ξHigh for the low, medium, and high-grade pipelines, respec-
tively. The burst pressure of intact pipes based on the average shear stress yield criterion[(
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]
, in which n is the strain hardening exponent while Dm = D− t is the

average diameter, D and t are the diameter and wall-thickness of the pipeline, respectively.
The last term is the remaining strength factors which include the defect geometries as the
depth (d) and length (L). λ = L

2
√

Rt
and τ0 = 1− d

t are dimensionless factors, where R
refers to the radius of the pipeline. Thus, depending on the pipeline steel grade, three limit
state functions are extracted and employed for the burst failure mode, which are provided
by Equations (5)–(7) as follows [36,48]:
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Unlike other limit state functions, the aforementioned ones are complex and contain
several variables with different distributions and varied ranges. As a result, it is quite
difficult to trust the reliability analysis results based on a single technique. Thus, the next
section will detail numerous simulation and meta-model methodologies that will be used
to evaluate and compare the reliability of corroded pipelines.

3. Approaches for Structural Reliability Analysis
3.1. Simulation Techniques Based on Monte Carlo Method

Generally, simulation methods estimate the failure probability by generating samples
based on the random variable’s PDFs of the problem and then calculating the system
response for each produced sample. Monte Carlo Simulation (MCS) is an accurate yet ex-
pensive method in terms of the necessary time for computation. Other simulation methods,
including Importance Sampling (IS) [49], Subset Simulation (SS) [50], Directional Simula-
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tion (DS) [51], and Line Sampling (LS) [52], have been suggested by various researchers to
compensate and overcome this weakness.

3.1.1. Monte Carlo Simulation (MCS)

The Monte Carlo Simulation (MCS) technique is the most reliable and widely used
method for predicting the failure probability of complicated structural problems [53]. The
design space is separated into two sections as safe and failure in this technique, based on
the values of the performance function g(X). The failure zone is defined as points with
g(X) < 0, while the safe zone is defined as points with g(X)> 0; the limit state function
is defined as the border between these two zones, g(X) = 0. The ratio of the number of
samples in the failure zone to the total samples is used to determine the failure probability
as follows:

Pf ≡
∫

. . .
∫

I[g(x) < 0] fX(x)dx ≈ 1
N

n

∑
i = 1

I[g(xi) < 0] ≈
n f

N
(8)

where N denotes the total number of samples and n f denotes the number of samples in the
failure zone. I presents an indicator function of failure, which counts 1, I = 1 for samples in
the failure zone and 0, I = 0 for sample in the safe zone.

3.1.2. Importance Sampling (IS)

In the important sampling (IS) approach, instead of using the probability density
function with random variables, an alternate function hV(x) is employed [49,54]. Thus, the
production of samples occurs based on this new function and around the most important
point. Therefore, the failure probability using IS is calculated as follows [31]:

p f =
1
N

N

∑
i = 1

{
I[(g(Vi) < 0)]

fX(Vi)

hV(Vi)

}
(9)

where Vi is a random variable with the PDF of hV .
The new PDF must meet two essential characteristics when using the IS approach.

The first produces more samples in the failure region than the Monte Carlo method. The
second requirement is that the new PDF function is as close to the original as feasible.

3.1.3. Subset Simulation (SS)

The subset simulation approach, which combines the Monte Carlo Simulation (MCS)
and the Markov chain, allows a very accurate estimation of small failure probabilities [50,55].
The design space is partitioned into m subspaces in this procedure, and samples are
created for each area separately (Figure 1). The likelihood of the failure probability in each
location is then estimated. Finally, the overall failure probability is calculated by adding
the probabilities of the other failure probabilities as follows [56]:

Pf = P(Fm) = P(Fm|Fm−1).P(Fm−1) = . . . = P(F1)
m−1

∏
i = 1

P(Fi+1|Fi) (10)

3.1.4. Directional Simulation (DS)

In order to use the directional simulation (DS) approach, the issue must be defined in
the polar space using Equation (11) [57,58].
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X = RA (11)

where R ≥ 0 is radius and A is the unit direction vector. Thus, the failure probability can
be written as follows [59]:

Pf = EA

[∫ ∞

r(a)
fX(ra)

| JX |
fA(a)

drda
]

(12)

where |JX | is the Jacobin matrix determinant, which is utilized to represent the transfor-
mation of a differential variable to a new space. fA(a) represent the joint probability
distribution function of A variables. EA[] is a directional simulation operator of the vector
A. r(a) presents the radius length in the simulation direction of A = a (Figure 2). More
details regarding this approach are available in Ref [57].
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3.1.5. Line Sampling (LS)

The primary concept behind the line sampling (LS) strategy is to search for the failure
domain in high-dimensional problems using lines rather than random samples [60–62].
The variables are transferred to the standard normal space as shown in Figure 3, and
then the samples are generated linearly in the importance direction. In standard normal
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space, the importance direction connects the origin to the point with the highest risk of
failure. It should be emphasized that the line sampling method’s accuracy and efficiency
are dependent on the detection of importance directions.
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3.2. Meta-Models Based on Monte Carlo Simulation

Since the LSF response is computed for all generated samples using simulation meth-
ods such as MCS, it is necessary to recall the LSF frequently and generate more samples
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if the failure probability is low, increasing the computational time cost [63,64]. As a re-
sult, employing meta-models-based techniques to assess the reliability of problems with
time-consuming LSFs is an excellent alternative. These approaches use a set of starting
samples as the experimental design to estimate the performance function response in other
design spaces, greatly reducing computing time [65]. Some of these approaches, such as the
Polynomial Response Surface Method (PRSM) [66], Artificial Neural Network (ANN) [67],
and Kriging interpolation models [68], have shown high accuracy for assessing engineering
system reliability. In this study, kriging and Artificial Neural Network (ANN) are utilized
to assess the SRA of corroded pipes. The following are the major steps to take while using
MCS with Meta-Models:

1. Using the PDFs of the variables to generate a sequence of random numbers.
2. Recalling the LSF based on the generated series of random numbers.
3. Generating MCS samples and predicting new values of the LSF.

Using the Meta-Models, the failure probability can be estimated as follows:

P̂f =
∫

x
πĝ≤0(X) fX(x)dX, (13)

πĝ≤0(X) =

{
1 ĝ(x) ≤ 0
0 ĝ(x) > 0

(14)

where πĝ≤0(X) is the index function obtained using the surrogate function ĝ. This is antici-
pated using ANN and Kriging, both of which are briefly discussed in the subsections below.

3.2.1. Kriging for Modeling the Performance Function Response

Kriging is a geo-statistical interpolation approach, in which the surrounding known
points are used to determine an unknown point [69]. Weight calculations, also known as
the best linear unbiased estimator, are the foundation of this approach. The mathematical
formulation of the performance function (i.e., LSF) can be expressed as follows [68,70,71]:

g(X) = f T(X)β + z(X) (15)

where f T(X)β is a linear regression model, in which f (X) = [ f1(X), f2(X), . . . , fn(X)] is
basis function vector and β = [β1, β2, . . . , βn] is regression coefficients vector. z(X) is a
stationary Gaussian process with a mean of 0 and covariance function expressed as follows:

cov
(
z(xi), z

(
xj
))

= σ2
z R
(
xi, xj

)
(16)

In which, σ2
z denotes the random variance process, R represent the correlation function

between xi and xj parameters within the design space. As a matching model, the isotropic
Gaussian function is utilized as follows [72]:

R
(
xi, xj

)
=

n

∏
i = 1

exp(−θ1
(
xi,1 − xj,1

))2 (17)

where n refers to the number of the problem variables, θ1 is a correlation parameter in the
first dimension, xi,1 is the first element of xi point. The optimal location is determined via
maximum likelihood estimation.

3.2.2. Artificial Neural Network for Modeling the Performance Function Response

ANN is a type of artificial intelligence models that is based on the biological neural
system and analyzes data similarly to the brain [67,73]. An ANN is made up of a large
number of processing components known as neurons that are organized into layers. Fur-
thermore, these layers are separated into three parts: input layers, which are responsible for
data distribution, hidden layers, which are responsible for processing, and output layers,



Sustainability 2022, 14, 5830 9 of 21

which are responsible for extracting results for each network input. Figure 5 depicts the
overall form of an ANN.
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Each neuron contains several inputs, with a single output for all of them. The relation-
ship between inputs and output is represented as follows [74]:

yp = f (
T

∑
j = 1

W j
pxj + ap), (j = 1, 2, . . . , T) (18)

where W j
p is the weight on the connection for the jth input, ap is the bias for the hidden layer

neurons, T is the number of inputs, f () is the activation function. The activation function
is usually chosen from a list of S-shaped functions like sigmoid, hyperbolic tangent, or
similar functions [75]. If the transposition matrix of inputs and outputs is considered to be
as XT = [x1, x2, . . . , xn] and YT = [y1, y2, . . . , yn], for an ANN with a hidden layer and m
neurons, the output is expressed as follows:

yj = f (
m

∑
i = 1

whoi
j ϕj (X) + cj), (j = 1, 2, . . . , L) (19)

where whoi
j is the weight of ith neuron in the hidden layer to jth neuron in the output layer,

cj is a constant, ϕj (X) is the output of ith neuron in the hidden layer, which is expressed as:

ϕj (X) = f (
n

∑
k = 1

wihk
i xk (X) + bi), (i = 1, 2, . . . , m) (20)

where wihk
i is the weight of kth input variable in the input layer to ith neuron in the hidden

layer, bi is a constant.

4. Illustrative Examples

This section describes three candidate case studies used for the investigation of the
performance and efficiency of the above-reported approaches for the accurate estimation
of the failure probability for corroded pipelines. Three grade pipelines with low (i.e.,
X52), mid (i.e., X65), and high (i.e., X100) steel strength were chosen for this purpose,
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where the statistical properties of the basic random variables and their distributions are
detailed in Table 1. As mentioned in Table 1, the burst failure mode of corroded pipeline
includes eight random variables with four different distributions as Normal (i.e., D, t, σy,
d, L and P0), Lognormal (i.e., σu and ξHigh), Gumbel (i.e., ξLow), and Freschet (i.e., ξMed).
The candidate pipelines have different ranges of design (i.e., D and t) and material (i.e.,
σy and σu) parameters, although the material characteristic distributions may alter as the
pipeline ages (i.e., elapsing time) [76]. The mean of these parameters was taken as the
nominal values of the real-cases pipelines (X52, X65, and X100), while a low coefficient
of variation (COV) value was given to consider the uncertainties of the manufacturing
or human measuring error, whereas the attributed distributions are based on the works
of [36,48]. In this work, the corrosion defect depth is suggested to be varied in a range of
15% t to 75% t to account for the degree of severity of the defects at different growth stages.
The mean value of corrosion defect length is set to be 200 mm with a normal distribution
as suggested by [36,77]. The operating pressure varies between 5 to 25 MPa, where its
fluctuations are modelled by a normal distribution and a COV of 0.1 as referred in [44]. The
model error distributions and values were adopted based on the works of Mohamed El
Amine et al. [36].

Table 1. Descriptive statistical properties of the candidate pipelines’ random variables.

Category High Mid Low

Grade X100 X65 X52

Random
Variables Description Mean Mean Mean CoV Distribution

D Outer diameter of the pipe, mm 1320 762 914.4 0.03 Normal
t Wall thickness of the pipe, mm 22.9 17.5 20.6 0.06 Normal

σy Yield stress, MPa 740 467 358 0.07 Normal
σu Ultimate tensile strength, MPa 813 576 455 0.08 Lognormal
d Depth of corroded defect, mm 3.44–17.18 2.6–13.13 3.1–15.45 0.1 Normal
L Length of corroded defect, mm 200 200 200 0.05 Normal
P0 Operating pressure, MPa 5–25 5–25 5–25 0.1 Normal

ξHigh 0.079 Lognormal
ξMed Model error 1.025 1.026 0.993 0.088 Frechet
ξLow 0.021 Gumbel

5. Results and Discussion

This part analyzes and discusses the reliability study performed on the three pipelines
(i.e., X52, X65 and X100) presented in Section 4 using the aforementioned simulation and
meta-model methodologies. The outcomes are presented in terms of the reliability index
(β), failure probability (Pf), and the number of call-functions (g-call). It is worth noting that
the reliability index (β) and failure probability (Pf) have an inverse relationship based on
the standardized normal distribution, as shown in Equation (21).

Pf = Φ(−β) (21)

5.1. Monte Carlo Simulation Accuracy

The Monte Carlo Simulation (MCS) is chosen as the reference technique against which
all other methods’ performance will be assessed. This is due to the accuracy of this ap-
proach for calculating the failure probability (Pf) when the number of simulations supplied
is adequate to cover all conceivable areas based on the LSFs. However, this will incur signif-
icant computational expenses. As a result, determining the optimal number of simulations
for completing the reliability analysis is critical. In general, the coefficient of variation (CoV)
is utilized as an indicator for illustrating the stability of the MCS performance. For simple
LSFs, a value of less than 5% is necessary for stable and reliable results using the MCS;
consequently, in our study, because the LSFs are highly nonlinear, the required value of
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CoV is set to be less than 0.0005, and Equation (22) represents the procedure for estimating
the CoV for the MCS as follows:

CoVMCS
Pf

=

√
1− Pf

MCS

(N − 1)Pf
MCS (22)

Figure 6a shows how the failure probability varies with the number of simulations
for the three selected pipelines (i.e., X52, X65, and X100), while Figure 6b shows the
corresponding CoV values. During the analysis, the following mean values of defect
geometries and operating pressure were considered: d/t = 0.45; L = 200 mm; and P0 = 10 MPa.
As it can be observed, all of the reliability analysis results in terms of failure probability
are more stable and produce the same outcomes when no fewer than 106 simulations
are used. According to Figure 6b, the values of CoV naturally decrease as the number of
simulations increases. Using the 0.0005 threshold condition, the least number of simulations
necessary to obtain correct MCS results using the aforementioned basic random variables
(i.e., d/t = 0.45; L = 200 mm; and P0 = 10 MPa) is 106. The achieved failure probabilities using
106 simulations are PX52

f = 0.003; PX65
f = 0.006 and PX100

f = 0.001, with corresponding

CoV values of CoVX52 = 0.00033; CoVX65 = 0.00015 and CoVX100 = 0.00078, respectively.
Another observation is that the X65 pipeline provides a higher probability of failure than
the X52 pipeline. This is due to the selected basic random variables in Table 1, where the
X52 presents a pipeline with a relatively large wall-thickness and diameter (D = 914.4 mm,
t = 20.6 mm) compared to the X65 pipeline (D = 762 mm, t = 17.5 mm). Overall, 106

simulations were chosen to perform the reliability analysis findings, utilizing MCS.
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Figure 6. The effect of simulation number on the reliability outcomes, (a) failure probability versus
simulation number (N); (b) CoV versus simulation number (N).

5.2. Performance Evaluation of the Simulation Method

The reliability analysis results for the three corroded pipelines are performed utilizing
the four simulation-based methodologies (IS, SS, DS, and LS) and compared to the MCS.
Table 2 summarizes the findings of the reliability analysis in terms of failure probability and
the needed number of g-call functions, while Figure 7 depicts the fluctuation of the reliability
index versus the operating pressure for the X52, X65, and X100 pipelines, respectively.
When compared to the required simulation number utilizing the MCS, it is clear that all
of the other simulation-based techniques require fewer g-calls, but their performance is
reflected in a different manner. To begin, Figure 7 shows that the probability of failures
(Pf) decreases as the operating pressure (P0) increases, which is acceptable given the effect
of this parameter on the strength condition of corroded pipelines. However, based on the
table and figure findings, this is not the case for Pf values produced using the DS and LS
techniques for the X52 and X65 pipelines, where results are chaotic and inaccurate. The DS
technique was unable to solve the problem for the X100, which may be attributed to the
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approach’s failure to identify the direction vector since the given LSF of the high strength
pipeline is complicated and extremely nonlinear. IS only needed 15,000 simulations to
achieve Pf values, however the results are less accurate. SS technique appears to produce
the most reliable and accurate results among the other simulation approaches by attaining
good Pf values with minimal g-call, which varies between 57,000 and 6000 for low to high
Pf values. According to the results of SS, when it comes to low failure probability instances,
such as P0 = 5 MPa for the three examples, the needed number of simulations utilizing
MCS must greatly rise to at least 1012, resulting in a high computational burden.

Table 2. Comparative reliability analysis results using simulation methods at various operating
pressures and a mean of corrosion defect geometries of d/t = 0.45 and L = 200 mm.

Reliability Analysis Results

MCS IS SS DS LS

Pipeline
Grade P0 Pf g-Call Pf g-Call Pf g-Call Pf g-Call Pf g-Call

X52

5 0 10-6 0 15,000 1.20 ×
10−12 57,000 1.50 ×

10−10 55,700 7.80 ×
10−8 33,000

10 0.003045 10-6 0.003533 15,000 0.003258 15,000 0.00342 29,929 0.003025 6000
15 0.2571 10-6 0.257 15,000 0.2463 6000 0.8515 17,143 0.2585 4800
20 0.7947 10-6 0.7927 15,000 0.78467 6000 0.013855 19,176 0.203 4800
25 0.97 10-6 0.97167 15,000 0.972 6000 0.13089 27,311 0.025 4800

X65

5 0 10-6 0 15,000 6.34 ×
10−7 30,000 4.18 ×

10−7 38,039 1.20 ×
10−6 7200

10 0.0065 10-6 0.0064 15,000 0.005954 15,000 0.0048 30,935 0.0065 6000
15 0.1173 10-6 0.1161 15,000 0.121 9000 - - 0.1179 6091
20 0.3953 10-6 0.3944 15,000 0.41 6000 0.0634 12,816 0.394 4800
25 0.671 10-6 0.669 15,000 0.673 6000 0.0028 11,219 0.32788 4800

X100

5 0 10-6 0 15,000 2.90 ×
10−8 36,000 - - 4.90 ×

10−8 12,006

10 0.00122 10-6 0.001333 15,000 0.001241 18,000 - - 0.001347 10,914
15 0.0489 10-6 0.048 15,000 0.05 9000 - - 0.0495 10,550
20 0.245 10-6 0.252 15,000 0.241 6000 - - 0.24645 9078
25 0.521 10-6 0.52 15,000 0.511 7618 - - 0.478 7618

The failure probability and reliability index are also explored in relation to varied
corrosion depth-to-wall-thickness (d/t) ratios. The reliability analysis findings are presented
in Table 3 in terms of failure probability and g-call, and are displayed in terms of the
reliability index, as illustrated in Figure 8. It can be seen that the Pf values decrease as the
corrosion depth increases. This comment has previously been shown via various studies,
in which findings indicated that the corrosion depth is the key factor reducing pipeline
strength as it directly reduces the thickness of the pipe-walls. Unlike findings obtained by
varying the operating pressure, simulation-based techniques produced more accurate Pf
values for varying the corrosion defect depths. This can be attributed to the comparatively
high achieved Pf values by varying d/t to varying the operating pressure. As a result, all
methods use fewer g-call functions. As an example, for d/t = 0.15, the Pf values for the X52,
X65, and X100 pipelines are 1.83 × 10−4, 9.96 × 10−4, and 1.77 × 10−4, respectively, but
for P0 = 5 MPa, the MCS was unable to reliably establish the Pf values due to a lack of
simulations. Regardless of the efficiency of the simulation approaches, DS techniques fail
to produce any findings for the X100 pipeline for the same reasons stated previously. On
the other hand, the LS approach produced the fewest g-calls, followed by the SS strategy,
which produced correct results.
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Figure 7. Variation of the reliability index values corresponding to various operating pressures using
simulation-based approaches.

Table 3. Comparative reliability analysis results using simulation methods at various corrosion depth
to wall-thickness ratios and a mean of operating pressure P0 = 10 and corrosion length L = 200 mm.

Reliability Analysis Results

MCS IS SS DS LS

Pipeline
Grade d/t Pf g-Call Pf g-Call Pf g-Call Pf g-Call Pf g-Call

X52

0.15 1.83 ×
10−4 106 0.0002 15,000 1.33 ×

10−4 21000 1.40 ×
10−4 44,400 1.90 ×

10−4 6000

0.3 0.00076 106 0.00067 15,000 0.00078 18,000 0.00057 41,848 0.00079 6000
0.45 0.003045 106 0.003533 15,000 0.003258 15,000 0.00342 29,929 0.003025 6000
0.6 0.0105 106 0.0113 15,000 0.0105 12,000 0.0082 23,160 0.0107 5950
0.75 0.033 106 0.032 15,000 0.0325 12,000 0.0251 20,430 0.03348 4800

X65

0.15 9.96 ×
10−4 106 0.001 15,000 1.14 ×

10−3 18,000 1.30 ×
10−3 36,100 9.80 ×

10−4 7190

0.3 0.00216 106 0.0022 15,000 0.0021 15,000 0.0024 31,525 0.00224 6002
0.45 0.0065 106 0.0064 15,000 0.005954 15,000 0.0048 30,935 0.0065 6000
0.6 0.021 106 0.021 15,000 0.0215 12,000 0.0143 26,696 0.021 6000
0.75 0.073 106 0.074 15,000 0.074 9000 0.046 23,207 0.073 6000

X100

0.15 1.77 ×
10−4 106 0.000133 15,000 1.36 ×

10−4 21000 - - 1.91 ×
10−4 11,900

0.3 0.000418 106 0.00013 15,000 0.00046 18,000 - - 0.00044 12,006
0.45 0.00122 106 0.001333 15,000 0.001241 18,000 - - 0.001347 10,914
0.6 0.0049 106 0.0047 15,000 0.0045 15,000 - - 0.005 10,914
0.75 0.02 106 0.02 15,000 0.0207 12,000 - - 0.0208 9458
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5.3. Performance Evaluation of the Meta-Models

The reliability analysis findings employing the meta-models and their performance
are listed in Tables 4 and 5 in terms of operating pressure and corrosion-to-wall-thickness
ratios, respectively, as in the preceding section. Furthermore, the reliability index values
are shown in Figures 9 and 10 in the same respect for the X52, X65, and X100 pipelines.
It is worth noting that the kriging-MCS and ANN-MCS algorithms were only assigned
600 g-call functions in order to show their level of accuracy. In terms of the operating
pressure, it is discovered that both procedures may obtain acceptable results for P0 over
10 MPa for the three pipelines, indicating that these techniques are highly efficient when
compared to the needed g-call using simulation-based methods. It has been observed that
the meta-models cannot reach correct solutions when the failure probability is low, as in
the case of P0 = 5 MPa. This disadvantage can be mitigated by further adjusting the meta-
models’ governing parameters. Overall, the findings of the reliability analysis obtained
using meta-models and presented in Figure 9 are similar to those obtained using MCS. The
same statements are made in the case of corrosion depth variation, where findings show
that the performance of both meta-models is adequate, with greater accuracy utilizing the
ANN-MCS technique.
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Table 4. Comparative reliability analysis results using meta-models at various operating pressures
and a mean of corrosion defect geometries of d/t = 0.45 and L = 200 mm.

Reliability Analysis Results

MCS Kriging-MCS ANN-MCS

Pipeline
Grade P0 Pf g-Call Pf g-Call Pf g-Call

X52

5 0 106 0 600 0 600
10 0.003045 106 0.0029 600 0.0029 600
15 0.2571 106 0.2565 600 0.2624 600
20 0.7947 106 0.7942 600 0.8038 600
25 0.97 106 0.9753 600 0.9735 600

X65

5 0 106 0 600 0 600
10 0.0065 106 0.0054 600 0.0062 600
15 0.1173 106 0.12 600 0.12 600
20 0.3953 106 0.39 600 0.386 600
25 0.671 106 0.6613 300 0.6632 600

X100

5 0 106 0 600 0 600
10 0.00122 106 0.0011 600 0.0012 600
15 0.0489 106 0.0535 600 0.0514 600
20 0.245 106 0.246 600 0.244 600
25 0.521 106 0.5195 300 0.535 600

Table 5. Comparative reliability analysis results using meta-models at various corrosion depth to
wall-thickness ratios and a mean of operating pressure P0 = 10 and corrosion length L = 200 mm.

Reliability Analysis Results

MCS Kriging-MCS ANN-MCS

Pipeline
Grade d/t Pf g-Call Pf g-Call Pf g-Call

X52

0.15 1.83 × 10−4 106 1.00 × 10−4 600 1.00 × 10−4 600
0.3 0.00076 106 0.0009 600 0.0008 600

0.45 0.003045 106 0.0029 600 0.0029 600
0.6 0.0105 106 0.0099 600 0.0098 600

0.75 0.033 106 0.0316 600 0.034 600

X65

0.15 9.96 × 10−4 106 0 600 6.00 × 10−4 600
0.3 0.00216 106 0.0002 600 0.0023 600

0.45 0.0065 106 0.0054 600 0.0062 600
0.6 0.021 106 0.0152 600 0.0184 600

0.75 0.073 106 0.0755 600 0.071 600

X100

0.15 1.77 × 10−4 106 0 600 2.00 × 10−4 600
0.3 0.000418 106 0 600 0.0006 600

0.45 0.00122 106 0.0011 600 0.0012 600
0.6 0.0049 106 0.0016 600 0.005 600

0.75 0.02 106 0.0202 600 0.0215 600
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5.4. Relative Error in Comparison to Monte Carlo Simulation

The last part explores and discusses the relative error percentage of the failure proba-
bility provided by the best simulation and meta-models approaches when compared to
the reference approach (i.e., MCS). This cover IS and SS as simulation methods, as well as
Kriging-MCS and ANN-MCS as meta-models. Figure 11a,b illustrate the computed relative
error percentage plotted in terms of operating pressures and corrosion to wall thickness
ratios. The lower the yielded relative error (%), the more accurate the approach’s failure
probability outcomes. According to the acquired results, in terms of simulation-based tech-
niques, the SS method produces results with lower relative error (%) than the IS method,
and it is also more accurate in estimating lower failure probability than the IS method. As
a result, it is possible to infer that, among simulation-based methods, SS may be a viable
option for tackling corroded pipeline problems with lower computing costs. ANN-MCS, on
the other hand, provides the least relative error compared to all other techniques, indicating
its ability to obtain correct results at the lowest computational cost compared to all other
approaches. In terms of operating pressures and d/t ratios, ANN-MCS generated a relative
error (%) that varies between [0.27–0.8] and [0.36–1.3] for the X52 pipeline, [0.67–2.9] and
[0.68–2.9] for the X65 pipeline, and [0–3.7] and [0.38–2.9] for the X100 pipeline. It is possible
to infer that employing meta-models is an optimal choice for assessing the safety levels of
corroded pipes with low computing effort.
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Sustainability 2022, 14, 5830 18 of 21

6. Conclusions

We investigated several simulation and meta-model-based methodologies for the
reliability evaluation of corroded pipelines with the collapse failure mode. The suggested
approaches investigate the problem from the standpoint of steel strength, with distinct limit
state functions given dependent on the pipeline steel grade. This comprises probabilistic
burst pressure models for pipelines constructed of low, medium, and high strength steel
grade. As a result, sophisticated limit-state functions are presented for calculating the failure
probability. The efficiency and accuracy of five simulation methods, including Monte
Carlo Simulation (MCS), importance sampling (IS), subset simulation (SS), directional
simulation (DS), and line sampling (LS), as well as two meta-models, including kriging and
artificial neural network (ANN)-based MCS, for solving the corroded pipeline problem are
then investigated.

The suggested techniques’ performance is demonstrated by three corroded pipelines
representing low (i.e., X52), medium (i.e., X65), and high (i.e., X100) strength grade steel. To
demonstrate the performance of the techniques, crucial factors in the limit-state function,
such as corrosion defect depths and the operating pressure, were adjusted from the safest
to the most dangerous scenarios. Furthermore, the likelihood of failures due to the collapse
failure is evaluated using MCS with various simulation numbers to assess its accuracy
based on coefficient of variation criterion. A comparison based on the failure probability,
reliability index, g-call, and relative error outcomes has been given. The following are the
study’s principal findings:

• Although the MCS is an accurate technique for assessing the failure probability of
corroded pipelines, the simulation offered is quite huge when compared to all other
simulation and meta-model approaches.

• The risk of collapse failure of the three pipelines is shown to be more sensitive to
changes in operating pressure. Obtaining the failure probability for specific operating
pressures was discovered to be more challenging than adjusting the corrosion defect
depths. This is because the operating pressure is the most critical factor in the limit-
state functions that describes the load, and therefore any alterations will result in
noticeable observations in the probability of failure findings.

• When compared to MCS, subset simulation was shown to be the most accurate
simulation-based technique.

• The results showed that meta-models, particularly the ANN-MCS technique, pro-
duce very accurate results that match the MCS solutions almost completely. For the
three corroded pipes, ANN-MCS has the lowest g-call (600) and the lowest relative
error (percentage). Based on the overall results, ANN-MCS is regarded as the best
performing technique for accurate reliability analysis of corroded pipes.

The suggested study is expected to be more challenging if nonlinear corrosion growth
or finite element analysis-based reliability analysis is taken into account, since the simula-
tion techniques would be combined with such analysis, resulting an increased complexity
and processing costs. Future research should study similar circumstances, utilizing en-
hanced meta-models based on optimal regulating factors using meta-heuristic algorithms.
Furthermore, these studies can be transferred to the system-level analyses to evaluate
the operational performance of the network, moreover with considerations of redundant
components and robustness-oriented design.

Author Contributions: For Conceptualization, methodology, formal analysis, and writing—original
draft preparation, M.E.A.B.S.; funding acquisition, validation, writing—review and editing, P.S.;
software, validation, writing—original draft preparation, J.J.-A.; writing—original draft preparation,
S.O.; visualization, writing—review and editing, X.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding. The publication costs are covered by an
Institutional Open Access Program (IOAP).



Sustainability 2022, 14, 5830 19 of 21

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Idris, N.N.; Mustaffa, Z.; Ben Seghier, M.E.A.; Trung, N.-T. Burst capacity and development of interaction rules for pipelines

considering radial interacting corrosion defects. Eng. Fail. Anal. 2021, 121, 105124.
2. El-Abbasy, M.S.; Senouci, A.; Zayed, T.; Mirahadi, F.; Parvizsedghy, L. Artificial neural network models for predicting condition

of offshore oil and gas pipelines. Autom. Constr. 2014, 45, 50–65. [CrossRef]
3. Khan, F.; Yarveisy, R.; Abbassi, R. Risk-based pipeline integrity management: A road map for the resilient pipelines. J. Pipeline Sci.

Eng. 2021, 1, 74–87.
4. Bakar, M.A.A.; Mustaffa, Z.; Idris, N.N.; Seghier, M.E.A. Ben Experimental program on the burst capacity of reinforced

thermoplastic pipe (RTP) under impact of quasi-static lateral load. Eng. Fail. Anal. 2021, 128, 105626.
5. Bridge, G.; Özkaynak, B.; Turhan, E. Energy infrastructure and the fate of the nation: Introduction to special issue. Energy Res. Soc.

Sci. 2018, 41, 1–11.
6. Hopkins, P.; Hopkins, P.; Hopkins, P.; Group, P. The Structural Integrity Of Oil And Gas Transmission Pipelines. Elsevier Publ.

2002, 1, 1–62.
7. Ben Seghier, M.E.A.; Carvalho, H.; Keshtegar, B.; Correia, J.A.F.O.; Berto, F. Novel hybridized adaptive neuro-fuzzy inference

system models based particle swarm optimization and genetic algorithms for accurate prediction of stress intensity factor. Fatigue
Fract. Eng. Mater. Struct. 2020, 43, 2653–2667.

8. Shahriar, A.; Sadiq, R.; Tesfamariam, S. Risk analysis for oil & gas pipelines: A sustainability assessment approach using fuzzy
based bow-tie analysis. J. Loss Prev. Process Ind. 2012, 25, 505–523.

9. Hong, H.P.; Zhou, W.; Zhang, S.; Ye, W. Optimal condition-based maintenance decisions for systems with dependent stochastic
degradation of components. Reliab. Eng. Syst. Saf. 2014, 121, 276–288. [CrossRef]

10. Lam, C. Statistical Analyses of Historical Pipeline Incident Data with Application to the Risk Assessment of Onshore Natural Gas
Transmission Pipelines. Master’s Thesis, The University of Western Ontario, London, ON, Canada, 2015.

11. Ben Seghier, M.E.A.; Höche, D.; Zheludkevich, M. Prediction of the internal corrosion rate for oil and gas pipeline: Implementation
of ensemble learning techniques. J. Nat. Gas Sci. Eng. 2022, 99, 104425.

12. El, M.; Ben, A.; Keshtegar, B.; Fah, K.; Zayed, T.; Abbassi, R.; Thoi, N. Prediction of maximum pitting corrosion depth in oil and
gas pipelines. Eng. Fail. Anal. 2020, 112, 104505. [CrossRef]

13. Ben Seghier, M.E.A.; Keshtegar, B.; Taleb-Berrouane, M.; Abbassi, R.; Trung, N.-T. Advanced intelligence frameworks for
predicting maximum pitting corrosion depth in oil and gas pipelines. Process Saf. Environ. Prot. 2021, 147, 818–833.

14. Yu, W.; Song, S.; Li, Y.; Min, Y.; Huang, W.; Wen, K.; Gong, J. Gas supply reliability assessment of natural gas transmission pipeline
systems. Energy 2018, 162, 853–870.

15. Witek, M.; Batura, A.; Orynyak, I.; Borodii, M. An integrated risk assessment of onshore gas transmission pipelines based on
defect population. Eng. Struct. 2018, 173, 150–165.

16. Zhu, X.-K. A comparative study of burst failure models for assessing remaining strength of corroded pipelines. J. Pipeline Sci. Eng.
2021, 1, 36–50.

17. Adumene, S.; Khan, F.; Adedigba, S.; Zendehboudi, S.; Shiri, H. Offshore pipeline integrity assessment considering material and
parametric uncertainty. J. Pipeline Sci. Eng. 2021, 1, 265–276.

18. Spyridis, P.; Strauss, A. Robustness assessment of redundant structural systems based on design provisions and probabilistic
damage analyses. Buildings 2020, 10, 213.

19. Su, H.; Zio, E.; Zhang, J.; Li, X. A systematic framework of vulnerability analysis of a natural gas pipeline network. Reliab. Eng.
Syst. Saf. 2018, 175, 79–91.

20. Ghosn, M.; Dueñas-Osorio, L.; Frangopol, D.M.; McAllister, T.P.; Bocchini, P.; Manuel, L.; Ellingwood, B.R.; Arangio, S.; Bontempi,
F.; Shah, M. Performance indicators for structural systems and infrastructure networks. J. Struct. Eng. 2016, 142, F4016003.

21. Gong, C.; Frangopol, D.M. An efficient time-dependent reliability method. Struct. Saf. 2019, 81, 101864.
22. Bagheri, M.; Zhu, S.-P.; Ben Mohamed El Amine, B.S.; Keshtegar, B. Hybrid intelligent method for fuzzy reliability analysis of

corroded X100 steel pipelines. Eng. Comput. 2020, 37, 2559–2573. [CrossRef]
23. Zhu, S.-P.; Keshtegar, B.; Ben Seghier, M.E.A.; Zio, E.; Taylan, O. Hybrid and enhanced PSO: Novel first order reliability

method-based hybrid intelligent approaches. Comput. Methods Appl. Mech. Eng. 2022, 393, 114730.
24. Gong, C.; Zhou, W. First-order reliability method-based system reliability analyses of corroding pipelines considering multiple

defects and failure modes. Struct. Infrastruct. Eng. 2017, 2479, 1451–1461. [CrossRef]
25. Lee, O.S.; Kim, D.H. The reliability estimation of pipeline using FORM, SORM and Monte Carlo simulation with FAD. J. Mech.

Sci. Technol. 2006, 20, 2124–2135. [CrossRef]

http://doi.org/10.1016/j.autcon.2014.05.003
http://doi.org/10.1016/j.ress.2013.09.004
http://doi.org/10.1016/j.engfailanal.2020.104505
http://doi.org/10.1007/s00366-020-00969-1
http://doi.org/10.1080/15732479.2017.1285330
http://doi.org/10.1007/BF02916329


Sustainability 2022, 14, 5830 20 of 21

26. Keshtegar, B.; Zhu, S. Three-term conjugate approach for structural reliability analysis. Appl. Math. Model. 2019, 76, 428–442.
[CrossRef]

27. Ben Seghier, M.E.A.; Bettayeb, M.; Correia, J.; De Jesus, A.; Calçada, R. Structural reliability of corroded pipeline using the
so-called Separable Monte Carlo method. J. Strain Anal. Eng. Des. 2018, 53, 730–737.

28. Valor, A.; Caleyo, F.; Hallen, J.M.; Velázquez, J.C. Reliability assessment of buried pipelines based on different corrosion rate
models. Corros. Sci. 2013, 66, 78–87. [CrossRef]

29. Caleyo, F.; Gonzlez, J.L.; Hallen, J.M. A study on the reliability assessment methodology for pipelines with active corrosion
defects. Int. J. Press. Vessel. Pip. 2002, 79, 77–86. [CrossRef]

30. Larin, O.; Barkanov, E.; Vodka, O. Prediction of reliability of the corroded pipeline considering the randomness of corrosion
damage and its stochastic growth. Eng. Fail. Anal. 2016, 66, 60–71. [CrossRef]

31. Gong, C.; Zhou, W. Importance sampling-based system reliability analysis of corroding pipelines considering multiple failure
modes. Reliab. Eng. Syst. Saf. 2018, 169, 199–208.

32. de Angelis, M.; Patelli, E.; Beer, M. Advanced Line Sampling for efficient robust reliability analysis. Struct. Saf. 2015, 52, 170–182.
[CrossRef]

33. Chakraborty, S.; Tesfamariam, S. Subset simulation based approach for space-time-dependent system reliability analysis of
corroding pipelines. Struct. Saf. 2021, 90, 102073.

34. Shayanfar, M.A.; Barkhordari, M.A.; Barkhori, M.; Barkhori, M. An adaptive directional importance sampling method for
structural reliability analysis. Struct. Saf. 2018, 70, 14–20. [CrossRef]

35. Keshtegar, B.; Miri, M. Reliability analysis of corroded pipes using conjugate HL-RF algorithm based on average shear stress
yield criterion. Eng. Fail. Anal. 2014, 46, 104–117. [CrossRef]

36. El Amine Ben Seghier, M.; Keshtegar, B.; Elahmoune, B. Reliability analysis of low, mid and high-grade strength corroded pipes
based on plastic flow theory using adaptive nonlinear conjugate map. Eng. Fail. Anal. 2018, 90, 245–261. [CrossRef]

37. Keshtegar, B.; Ben Seghier, M.E.A.; Zhu, S.-P.; Abbassi, R.; Trung, N.-T. Reliability analysis of corroded pipelines: Novel adaptive
conjugate first order reliability method. J. Loss Prev. Process Ind. 2019, 62, 103986.

38. Leira, B.J.; Næss, A.; Brandrud Næss, O.E. Reliability analysis of corroding pipelines by enhanced Monte Carlo simulation. Int. J.
Press. Vessel. Pip. 2016, 144, 11–17. [CrossRef]
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