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Abstract: Reference evapotranspiration (ETo) plays an important role in agriculture applications such
as irrigation scheduling, crop simulation, water budgeting, and reservoir operations. Therefore, the
accurate estimation of ETo is essential for optimal utilization of available water resources on regional
and global scales. The present study was conducted to estimate the monthly ETo at Nagina (Uttar
Pradesh State) and Pantnagar (Uttarakhand State) stations by employing the three ML (machine
learning) techniques including the SVM (support vector machine), M5P (M5P model tree), and
RF (random forest) against the three empirical models (i.e., Valiantzas-1: V-1, Valiantzas-2: V-2,
Valiantzas-3: V-3). Three different input combinations (i.e., C-1, C-2, C-3) were formulated by using
8-year (2009–2016) climatic data of wind speed (u), solar radiation (Rs), relative humidity (RH), and
mean air temperature (T) recorded at both stations. The predictive efficacy of ML and the empirical
models was evaluated based on five statistical indicators i.e., CC (correlation coefficient), WI (Willmott
index), EC (efficiency coefficient), RMSE (root mean square error), and MAE (mean absolute error)
presented through a heatmap along with graphical interpretation (Taylor diagram, time-series, and
scatter plots). The results showed that the SVM-1 model corresponding to the C-1 input combination
outperformed the other ML and empirical models at both stations. Moreover, the SVM-1 model
had the lowest MAE (0.076, 0.047 mm/month) and RMSE (0.110, 0.063 mm/month), and highest
EC (0.995, 0.999), CC (0.998, 0.999), and WI (0.999, 1.000) values during validation period at Nagina
and Pantnagar stations, respectively, and closely followed by the M5P model. Consequently, the ML
model (i.e., SVM) was found to be more robust, and reliable in monthly ETo estimation and can be
used as a promising alternative to empirical models at both study locations.

Keywords: evapotranspiration; machine learning models; empirical models; statistical indicators

1. Introduction

For optimal utilization of scarce water resources, an accurate estimation of crop evapo-
transpiration (ETc) is crucial for running large irrigation systems by enhancing the water
application efficiency [1,2]. Moreover, the ETc plays an important role in acquiring knowl-
edge about the appropriate management of water resources, irrigation scheduling, crop
water use, crop production, and water conservation [2]. Usually, ETc is estimated by com-
puting the reference evapotranspiration (ETo) and then multiplying ETo with Kc (crop
coefficient) [3,4]. Therefore, the ETo is the key factor to improve irrigation and water use
efficiencies [5]. Accordingly, the Penman–Monteith (PM) model was introduced by the
FAO (Food and Agriculture Organization) and is considered a benchmark model for ETo
computation [6]. The FAO-56 PM model requires numerous climatic parameters to estimate
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ETo, which are often incomplete or unavailable, especially in developing countries [7,8].
Hence, the best possible alternatives are necessary to implement, requiring less climatic
data for ETo estimation [9].

In the last decade, the aforesaid issues have been tackled by the ML models to estimate
ETo with limited climatic variables on different time scales [10–13]. Some of the ML
models such as SVM, RF, M5P, ELM (extreme learning machine), ANN (artificial neural
network), ANFIS (adaptive neuro-fuzzy inference system), XGBoost (extreme gradient
boosting), MARS (multivariate adaptive regression splines), and GEP (gene expression
programming) received the massive application in ETo estimation [14–19]. The results
of these studies report the better performance of ML models in comparison to empirical
models. Apart from that, the ML models have become popular in modelling watershed
hydrology [20,21]. Furthermore, Ashrafzadeh et al. [22] employed the SVM, GMDH
(group method of data handling), and SARIMA (seasonal autoregressive integrated moving
average) techniques to estimate the monthly ETo in the Guilan Plain of Northern Iran.
They noted the better feasibility of the SVM, GMDH, and SARIMA models in the study
region. Chen et al. [10] applied six ML models including DNN (deep neural network), TCN
(temporal convolution neural network), LSTM (long short-term memory), SVM, and RF, and
seven empirical models, i.e., Hargreaves, modified Hargreaves, Ritchie, Priestley-Taylor,
Makkink, Romanenko, and Schendel, to estimate the daily ETo on the Northeast Plain of
China. The results of the investigation demonstrate that the ML models performed superior
to the empirical models. Mehdizadeh et al. [23] coupled ANFIS with SFLA (shuffled frog
leaping algorithm) and IWO (invasive weed optimization) algorithms for estimation of
daily ETo at the Tabriz and Shiraz stations of Iran. The performances of the ANFIS-SFLA
and ANFIS-IWO models were compared with the Priestley–Taylor, Hargreaves–Samani,
Romanenko, and Valiantzas models, and noted that the ANFIS-IWO model provides
better estimates than the other models. Adnan et al. [24] estimated monthly ETo at the
Dhaka and Mymensing stations of south-central Bangladesh using the ANFIS-MFO (moth
flame optimization), ANFIS-WCA (water cycle algorithm), and ANFIS-WCOMFO models.
Results of the evaluations reveal that the hybrid ANFIS-WCOMFO model performed
superior to the other models.

In a related context recently, several nature-inspired algorithms have been embedded
with ML models to optimize their performance in ETo estimation [25]. Alizamir et al. [1]
estimated monthly ETo at two sites (Antalya and Isparta) placed in Turkey by employ-
ing the hybrid of the ANFIS-PSO (particle swarm optimization) and ANFIS-GA (genetic
algorithm) against the classical CART (classification and regression tree), ANN, and AN-
FIS models. They reported that the hybrid ANFIS-PSO and ANFIS-GA models produce
better estimates than other models at both stations. Maroufpoor et al. [26] applied the
hybrid ANN-GWO (grey wolf optimizer) for estimating the monthly ETo in five different
climates (i.e., arid, semi-arid, hyper-arid, humid, and sub-humid) of Iran. The efficacy
of ANN-GWO was compared against the ANN and LSSVR (least square support vector
regression) models, and found that the hybrid ANN-GWO model was more efficient than
other models in all climates. Rezaabad et al. [27] predicted the daily ETo in the Kerman
province of Iran by coupling the ANFIS with the IWO (weed optimization algorithm),
ICA (imperialist competitive algorithm), TLBO (teaching-learning-based optimization),
and BBO (biogeography-based optimization) algorithms. They found that the ANFIS-ICA
model with EC = 0.98, RMSE = 0.50 mm/day and CC = 0.99 was superior to other models.
Chia et al. [28] optimized the ELM with three nature-inspired algorithms, namely PSO,
MFO (moth–flame optimization), and WOA (whale optimization algorithm) for estimat-
ing daily ETo at the Sibu, Miri, and Sandakan sites (Malaysia). Results showed that the
ELM-WOA models outperformed the other models at all locations with RMSE of 0.0011 to
0.1927 mm/day, MAE of 0.0007 to 0.1443 mm/day, and R2 (determination coefficient) of
0.9486 to 1.0000. However, these studies also support the better viability of the ML models
enhanced with numerous nature-inspired algorithms.
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From the above-mentioned literature, it was noted that several studies have been
conducted on ETo estimation on different time scales in different climates. However,
according to our knowledge, so far, the support vector machine (SVM), M5P model tree
(M5P), random forest (RF), and empirical models (i.e., Valiantzas-1, Valiantzas-2, Valiantzas-
3) were not used for monthly ETo estimation at the Nagina and Pantnagar stations. Thus,
this study was optimized with the specific objectives as (i) to formulate the three ML
models, i.e., SVM, M5P, and RF, for monthly ETo estimation at both locations, and (ii) to
compare the efficacy of three ML models against the empirical models based on statistical
and graphical investigations. Moreover, the SVM model has better generalization ability
than other ML models [29]. It is also highly robust to outliers [30]. Therefore, it is expected
that the SVM can provide a better estimation of ETo, which is highly complex and contains
a large number of outliers. ETo is one of the complex and vital hydrological variables,
so this way of simulation will improve the estimation accuracy of ETo and will help in
maintaining the agricultural water resources management operation for controlling the
increasing water stress in agriculture caused by global ecological fluctuations.

2. Materials and Methods
2.1. Study Site and Data Information

Figure 1 demonstrates the location map of the Nagina and Pantnagar stations posi-
tioned in Uttar Pradesh and Uttarakhand States of India. The monthly climatic data of
mean air temperature (T, ◦C), relative humidity (RH, %), wind speed (u, m/s), and solar
radiation (Rs, MJ/m2/month) of Nagina and Pantnagar from 2009 to 2016 (8-year) were
collected from the Rice Research Station of Bijnor district in Uttar Pradesh State (India), and
the CRC (Crop Research Centre, Pantnagar, India) of the G.B. Pant University of Agriculture
and Technology, Uttarakhand State. The 8-year monthly climatic data of both sites was
portioned into two phases: (i) a calibration phase that includes 60% data from 2009–2013,
and (ii) a validation phase that contains 40% data from 2014–2016 for evaluation of machine
learning against empirical models. Likewise, Table 1 summarizes the information about
the geographical coordinates and descriptive statistics, i.e., minimum, maximum, mean,
standard deviation, skewness, and kurtosis, of both stations from 2009 to 2016. It was
noted from Table 1 that the maximum ETo variation was of 6.76 mm/month at Nagina and
7.68 mm/month at Pantnagar.

2.2. Empirical Models

Valiantzas [31,32] proposed three versions of empirical models, namely (i) Valiantzas-1
(V-1) with a complete set of climatic data i.e., T, RH, u, and Rs, (ii) Valiantzas-2 (V-2) without
wind speed data i.e., T, RH, and Rs, and (iii) Valiantzas-3 (V-3) without relative humidity
and wind speed data, i.e., T, and Rs for computation of reference evapotranspiration (ETo).
The mathematical expression of V-1 to V-3 is given in Table 2.

2.3. Penman-Monteith Model

The present study utilized the Penman–Monteith (PM) model given by the Food and
Agricultural Organization, with No. 56 designated as FAO-56 PM to compute the monthly
ETo values at both study sites and written as [6]:

ETo =
0.408∆(Rn − G) + γ 900

T+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(1)

where ETo = reference evapotranspiration in mm/month, ∆ = slope of saturation vapor
pressure in kPa/◦C, Rn = net radiation in MJ/m2/month, G = soil heat flux density in
MJ/m2/month, γ = psychrometric constant in kPa/◦C, and es and ea = saturation and
actual vapor pressures in kPa. The computed time-series values of monthly ETo by the
FAO-56 PM model were considered as reference data to appraise the performance of the
empirical models (i.e., V-1 to V-3) and ML models (i.e., SVM, M5P, and RF).
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Figure 1. Location map of study sites.

Table 1. Statistical and geographical information of study sites.
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Table 2. Formulas of empirical models used at study sites.

Model Equation Reference

V-1 ETo = 0.0393Rs
√

T + 9.5− 0.19R0.6
s ϕ0.15 + 0.048(T + 20)

(
1− RH

100

)
u0.7

2
[31,32]

V-2 ETo = 0.0393Rs
√

T + 9.5− 0.19R0.6
s ϕ0.15 + 0.078(T + 20)

(
1− RH

100

)
[31,32]

V-3 ETo = 0.0393Rs
√

T + 9.5− 0.19R0.6
s ϕ0.15 + 0.0061(T + 20)(1.12T − Tmin − 2)0.7 [31,32]

Note: T = mean air temperature (◦C), u2 = wind speed at 2 m height above ground (m/s), ϕ = latitude of site (rad),
and Tmin = minimum temperature (◦C).

2.4. Support Vector Machine

Over time, for optimizing the nonlinear problems, the ML models, including the
support vector machine (SVM), have been utilized in numerous fields such as for predicting
the penetration rate of tunnel-boring machines [33], solar radiation prediction [34], stream-
flow forecasting [35], landslide hazard modelling [36–38], seawater level simulation [39],
forecasting electric load [40], and infiltration simulation [41,42]. The SVM approach was
recommended by Vapnik [43] and derived from statistical learning theory to solve classi-
fication and regression problems [44]. Figure 2 displays the typical assembly of the SVM
model. The SVM technique applied the SRM (structural risk minimization) principle [45].
The SVM model utilized a nonlinear mapping function (φ(x)) to project the calibration
(or training) data points into a high-dimensional feature space, and the following linear
regression function is obtained in the feature space [45]:

z = f (x) = w·φ(x) + b (2)

where z = output of SVM, x = input of SVM (x1, x2, . . . , xl), f (x) = loss function, w = weight
vector of high-dimensional feature space, and b = constant. Following the principle of SRM,
accepting the ε-insensitive loss function, the minimal w is updated for resolving the convex
optimization problem as follows [29,45]:

minimize = 1
2‖w‖

2 + C
l

∑
i=1

(
ξi + ξ∗i

)
subject to :


yi − (w·φ(x) + b) ≤ ε + ξi
(w·φ(x) + b)− yi ≤ ε + ξ∗i

ξi, ξ∗i ≥ 0, i = 1, 2, . . . , l

(3)

where C = penalty factor, ξi, and ξ∗i = slack variables, and ε = tube size insensitive con-
stant (Equation (3)). Next, the Lagrangian multiplier is used to resolve the dual convex
optimization problem in Equation (3), and the following solution is obtained:

L
(
w, b, ξi, ξ∗i , ai, a∗i , ηi, η∗i

)
= 1

2‖w‖
2 + C

l
∑

i=1

(
ξi + ξ∗i

)
−

l
∑

i=1
ai(ξi + ε− yi + w·φ(xi) + b)

−
l

∑
i=1

a∗i
(
ξ∗i + ε + yi − w·φ(xi)− b

)
−

l
∑

i=1

(
ηiξi + η∗i ξ∗i

)
(4)

where ai, a∗i , ηi, and η∗i = Lagrangian multipliers, which satisfy the non-negative constraints.
The Lagrangian function (L) minimizes w, b, ξi, ξ∗i and maximizes ai, a∗i , ηi, and η∗i accord-
ing to the Karush–Kuhn–Tucker condition, and finally the regression function of SVM can
be obtained as:

f (x) =
l

∑
i=1

(ai − a∗i ) k
(
xi, xj

)
+ b (5)
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where k
(

xi, xj
)

= kernel function (KF), i.e., k
(

xi, xj
)
= (φ(xi)·φ

(
xj
)
. The choice of an

appropriate kernel function improves the performance of the SVM model. A variety of KF
are available but the most reliable and efficient is the RBF (radial basis function) [37,46].
The RBF is expressed as [40]:

K
(
xi, xj

)
= exp

(
−γ‖xi − xj‖2

)
, γ > 0 (6)

where xi and xj = input space vectors, and γ = kernel parameter. The C and γ are the two
most significant factors, which influence the accuracy of the SVM model. In the present
study, both factors were optimized through the hit-and-trail procedure (C = 2, and γ = 0.1)
for predicting monthly ETo at two study sites. Further exhaustive background about the
SVM can be gained from Vapnik [43], and Smola and Schölkopf [47].

Figure 2. The architecture of the SVM model.

2.5. M5P Tree

The M5P tree is a data-mining technique, projected by Quinlan [48]. The association
among output (dependent)-input (independent) variables is established based on a binary
decision tree having a linear regression function at the leaf (terminal nodes). The divide-
and-conquer approach is applied to produce the tree-based models [49]. Figure 3 displays
the well-organized topology of the M5P tree model. The construction of a decision tree
involves two stages: step-1: splitting the data into subgroups to create the decision tree by
utilizing the principle of the standard deviation (std) and reducing the model training error
at node [50], and step-2: pruning of the overfitted tree (sample) and swapping the subtrees
with linear regression functions [49]. Finally, the SDR (standard deviation reduction) is
computed as [49,50]:

SDR = std(M)−∑
∣∣Mj

∣∣
|M| std

(
Mj
)

(7)

where M defines a group of samples that grasps the nodes and Mi signifies the subgroup
of samples that have the jth consequence of the latent set. In recent times, researchers
have explored the successful application of the M5P model in the simulation of several
hydrological processes like drought forecasting [50], infiltration simulation [51], river dis-
charge forecasting [52,53], reference evapotranspiration estimation [49,54], stage-discharge
forecasting [55], and groundwater level prediction [56]. For comprehensive information
about the M5P tree, readers refer to Quinlan [48].
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Figure 3. Structure of the M5P model.

2.6. Random Forest

The random forest (RF) algorithm was designed by Breiman [57] for solving high-
dimension classification and regression problems. Recently, the RF model received popu-
larity in diverse fields of sciences such as, for instance, infiltration rate prediction [51], land
use/land cover classification [58], and soil temperature estimation [59]. Figure 4 illustrates
the hierarchical network of the RF classifier. The construction of the RF model comprises
two steps: (i) an ensemble of decision trees (or classifiers) used to build the “RF” through
supervised learning, and (ii) making predictions of each decision tree formed in the first
step. The RF algorithm is comparatively insensitive to features of the training set and can
achieve high prediction accuracy [57]. In the present study, the RF model was built by
using a trial-and-error process in WEKA 3.9 software for the prediction of monthly ETo at
both study locations.

Figure 4. Typical structure of the RF model.
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2.7. Model Formulation and Statistical Indicators

Different combinations of four climatic variables, namely T, RH, u, and Rs, were
used for the estimation of monthly ETo at two locations in the present research. Three
combinations of four inputs were formulated based on Valiantzas’ [31,32] concept and
presented in Table 3. All inputs are used for C-1, three inputs for C-2, and two inputs for
C-3. All three input combinations were used to train and test the ML models.

Table 3. Different input combinations for the formulation of ML models at study sites.

Combination Inputs Output ML Models

C-1 T, RH, u, Rs ETo SVM, M5P, RF
C-2 T, RH, Rs ETo SVM, M5P, RF
C-3 T, Rs ETo SVM, M5P, RF

Afterward, five statistical indicators, i.e., MAE (mean absolute error), RMSE (root-
mean-square error), EC (efficiency coefficient), CC (correlation coefficient), and WI (Will-
mott index), were utilized to evaluate the predictive efficacy of the empirical (i.e., V-1 to
V-3) and ML (i.e., SVM, M5P, RF) models used in the present study. Also, the graphical
inspection includes temporal variation graphs, scatter plots, and Taylor diagrams that were
used to make a clear interpretation of results yielded by the empirical and ML models.
Table 4 shows the formulas of MAE, RMSE, EC, CC, and WI along with their range.

Table 4. Formulas of different performance indicators.

Equation Range Reference

MAE =
∑N

i=1|ETest,i
o −ETobs,i

o |
N

(0 < MAE < ∞) [60,61]

RMSE =

√
∑N

i=1 (ETobs,i
o −ETest,i

o )
2

N
(0 < RMSE < ∞) [62,63]

EC = 1−
[

∑N
i=1 (ETobs,i

o −ETest,i
o )

2

∑N
i=1 (ETobs,i

o −ETobs
o )

2

]
(−∞ < EC < 1) [64,65]

CC =
∑N

i=1

(
ETobs,i

o −ETobs
o

)
(ETest,i

o −ETest
o )√

∑N
i=1 (ETobs,i

o −ETobs
o )

2
∑N

i=1 (ETest,i
o −ETest

o )
2

(−1 < CC < 1) [65,66]

WI = 1−
[

∑N
i=1 (ETest,i

o −ETobs,i
o )

2

∑N
i=1 (

∣∣∣ETest,i
o −ETobs

o

∣∣∣+∣∣∣ETobs,i
o −ETobs

o

∣∣∣)2

]
(0 < WI ≤ 1) [67,68]

Note: ETpre,i
o , and ETobs,i

o = estimated and observed monthly reference evapotranspiration values at an ith time
step, N = number of observations. ETobs

o , and ETpre
o = mean of observed and predicted monthly reference

evapotranspiration.

3. Results and Discussion
3.1. Model Evaluation Based on Statistical Indicators

The potential of the ML models, i.e., SVM, M5P, and RF, was investigated against the
empirical models (i.e., V-1, V-2, and V-3) at the Nagina and Pantnagar stations based on
statistical indicators. These models were trained with 60% data (2009–2013) and tested with
40% data (2014–2016) for both locations. The values of the statistical indicators (i.e., MAE,
RMSE, EC, CC, and WI) of the empirical and ML models during the validation phase on
the Nagina and Pantnagar stations are presented through a heatmap (see Figures 5 and 6),
respectively. For Nagina, from Figure 5 for input combination C-1 corresponding to SVM-1,
M5P-1, RF-1, and V-1 models, the values of MAE ranges from 0.076 to 0.210 mm/month,
RMSE from 0.110 to 0.269 mm/month, EC from 0.995 to 0.970, CC from 0.998 to 0.986, and
WI from 0.999 to 0.993 during the validation phase. For C-2 combination equivalent to
SVM-2, M5P-2, RF-2, and V-2 models the MAE = 0.106 to 0.392 mm/month, RMSE = 0.201
to 0.504 mm/month, EC = 0.983 to 0.895, CC = 0.993 to 0.975, and WI = 0.996 to 0.975, and
for C-3 combination matching to SVM-3, M5P-3, RF-3, and V-3 models the MAE = 0.111
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to 0.434 mm/month, RMSE = 0.148 to 0.500 mm/month, EC = 0.991 to 0.897, CC = 0.996
to 0.988, and WI = 0.998 to 0.972 in the validation phase. It was noted from Figure 5 that
the performance of kernel-based models, i.e., SVM-1, SVM-2, and SVM-3, was found to
be more optimal than other models. Overall, on Nagina, the best estimation was achieved
by the SVM-1 model followed by the M5P-1 model. In addition, the performance of the
empirical models, i.e., V-1, V-2, and V-3, was found to be poor in comparison to the ML
models at the Nagina site. The ranking of the models from best to worst is assigned as
SVM-1, 2, 3 > M5P-1, 2, 3 > RF-1, 2, 3 > V-1, 2, 3, which are equivalent to C-1, 2, and 3
input combinations.

Similarly, Figure 6 illustrates the statistical indicators of the SVM, M5P, RF, and
Valiantzas models in monthly ETo estimation on Pantnagar during the validation pe-
riod. Here also the SVM-1, SVM-2, and SVM-3 had the lowest values of MAE (0.047, 0.141,
0.168 mm/month) and RMSE (0.063, 0.180, 0.226 mm/month), and the highest values of
EC (0.999, 0.988, 0.981), CC (0.999, 0.995, 0.991), and WI (1.000, 0.997, 0.995), followed by
the M5P, RF, and Valiantzas models corresponding to input combinations C-1, C-2, and
C-3. The SVM model corresponding to C-1 produces better estimates than other models. In
addition, the worst estimates were produced by the Valiantzas models. The models ranked
from best to worst as SVM-1 > M5P-1 > V-1 > RF-1 for C-1 (i.e., T, RH, u, Rs); SVM-2 >
M5P-2 > RF-2 > V-2 for C-2 (i.e., T, RH, Rs), and SVM-3 > M5P-3 > RF-3 > V-3 for C-3 (i.e., T,
Rs). From this analysis, it is renowned that the SVM model with C-1 input combination
including T, RH, u, and Rs climatic variables performed in a superior manner at both
study stations.

Figure 5. Heatmap of statistical indicators values produced by ML and empirical models correspond-
ing to C-1 to C-3 input combinations in the validation phase at the Nagina station.
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Figure 6. Heatmap of statistical indicators values produced by ML and empirical models correspond-
ing to C-1 to C-3 input combinations in the validation phase at the Pantnagar station.

3.2. Performance Evaluation Using Graphical Inspection

The graphical inspection was another goodness-of-fit criterion for evaluating the
relative performance of the ML and empirical models during the validation phases at
both stations. Figures 7a–c and 8a–c illustrates the temporal variation and scatter plots
of observed versus estimated monthly ETo values by the SVM, M5P, RF, and Valiantzas
models equivalent to C-1, C-2, and C-3 input combinations at the Nagina and Pantnagar
sites, respectively, during the validation phase. In these figures, the outputs of the four
models were fitted with a 1:1 line (best-fit line) with relative error bands of ±10%, and
the coefficient of determination (R2) between the observed and model outputs was also
presented on the plots. If the data are concentrated or close to the 1:1 line (black line) within
±10% relative error bands, this indicates better performance of a model. These figures
clearly show the higher performance of the SVM model compared to other models during
the validation phase on both stations. In addition, the R2 value was found highest in the
SVM-1 model (0.995) for Nagina (Figure 7a), and 0.999 for Pantnagar (Figure 8a) in the
validation stage, compared to other ML and empirical models. Overall, the SVM model
can be considered optimal in estimating monthly ETo in terms of the results presented in
Figures 7a–c and 8a–c.
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Figure 7. Comparison of observed (FAO-56 PM) against estimated ETo values by the ML and
Valiantzas models corresponding to (a) C-1, (b) C-2, and (c) C-3 input combinations during the
validation stage at Nagina station.



Sustainability 2022, 14, 5771 12 of 19

Figure 8. Comparison of observed (FAO-56 PM) against predicted ETo values by the ML and
Valiantzas models corresponding to (a) C-1, (b) C-2, and (c) C-3 input combinations during the
validation stage at Pantnagar station.

The performance of the ML and empirical models was also evaluated using the
Taylor diagram [66]. The obtained result during the validation period is presented in
Figures 9a–c and 10a–c for Nagina and Pantnagar, respectively. The red circle on the x-axis
of the Taylor diagram represents the observed monthly ETo. A model is considered better
if it is near the observed point. Taylor’s diagram compares three statistics (i.e., RMSE,
Std, and CC) together in a graphical way and, therefore, provides a reliable assessment of
the relative performance of different models. The Taylor diagram of the models during
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validation showed a much better performance of SVM compared to other models at the
Nagina (Figure 9a–c) and Pantnagar (Figure 10a–c) stations. In addition, the SVM-predicted
monthly ETo was found better-correlated with the observed monthly ETo with less RMSE
compared to other models on both stations during the validation phase. Likewise, the Std
of SVM-predicted ETo was found much closer to observed ETo in comparison to other
models on both stations during the validation. Therefore, SVM can be ranked as the best
model in terms of the results presented in the Taylor diagram followed by the M5P, RF, and
Valiantzas models at both study sites.

Figure 9. Taylor’s diagram of ML and empirical models corresponding to (a) C-1, (b) C-2, and (c) C-3
input combinations during the validation stage at Nagina station.
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Figure 10. Taylor’s diagram of ML and empirical models corresponding to (a) C-1, (b) C-2, and
(c) C-3 input combinations during the validation stage at Pantnagar station.

3.3. Discussion

Evapotranspiration is a complex hydrological process that depends on the integrated
effect of several climatic variables [69]. It also governs the soil moisture, surface runoff,
plant growth, and groundwater recharge for optimizing the available water resources [70].
Furthermore, it determines the processes responsible for land–atmosphere interaction or for-
mation of the geographical environment, and weather and climate change through ground
heat and moisture balance, and water balance and surface heat balance studies [70–72].
Similarly, Seong et al. [73] projected the implications of different potential evapotranspira-
tion (PET) methods on streamflow under climate change in the Susquehanna River basin of
the northeastern United States. They found that the streamflow projections are sensitive
to the selection of the PET methods. So, the formulation of a reliable and robust model of
ETo estimation is necessary for maintaining water resources and agricultural operations
on farmland under a changing climate. The ML models can handle this issue very well.
In this study, three ML models such as SVM, M5P, and RF were developed for monthly
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ETo estimation on two sites (Nagina and Pantnagar) and their outcomes were compared
with empirical models. The appraisal of results shows the better feasibility of the SVM over
other models at both sites. Similarly, Kaya et al. [74] estimated daily ETo in the Kosice City
area of Slovakia by employing three ML models, i.e., MLP (multilayer perceptron), SVR
(support vector regression), and MLR (multi-linear regression). The daily data of wind
speed, relative humidity, air temperature, and solar radiation were supplied as input to
these models. The performance of the ML models was evaluated against the empirical
models (Hargreaves–Samani, Ritchie, & Turc), and it was found that the ML-based mod-
els provide better results than the empirical models. Kisi et al. [75] hybridized the M5
model tree with a radial basis function (RM5Tree) for estimating daily ETo at three stations
(Antalya, Adana, and Isparta) in Turkey using the daily record of wind speed, relative
humidity, air temperature, and solar radiation. The estimates of the RM5Tree model were
compared with M5Tree, MLP, RSM (response surface method), and RBFNN (radial basis
function neural network). Overall, they found the RM5Tree model provides more optimal
results than the other models.

Furthermore, the findings of this research were equated to other studies conducted on ETo
estimation by exploiting the ML techniques, for instance [1,9,22,76,77]. Tikhamarine et al. [11]
optimized the SVR model with the WOA, MVO (multi-verse optimizer), and ALO (ant-lion opti-
mizer) algorithms to predict the monthly ETo at the Algiers and Tlemcen weather stations located
in north Algeria. They found better performance of the SVR-WOA model with WI = 0.9987,
0.9997, CC = 0.9975, 0.9995, EC = 0.9949, 0.9989, RMSE = 0.0808, 0.0617 mm/month, and MAE
= 0.0658, 0.0489 for the Algiers and Tlemcen sites, respectively. Gonzalez del Cerro et al. [78]
compared the predictive performance of the ANFIS against the radiation and temperature-based
empirical models for estimating the daily ETo in Tamil Nadu and the Coimbatore provinces of
India. Results reveal that the ANFIS-based model (MAE = 0.0008 mm/day, WI = 0.9999, and
CC = 0.9999) with all climatic data, i.e., mean air temperature, relative humidity, wind speed,
and solar radiation produce better estimates than the empirical models. Ahmadi et al. [79]
estimated monthly ETo on six stations located in Iran by exploiting three ML models, namely
the SVR, GEP (gene expression programming), SVR-IWD (intelligent water drops) against the
Priestley–Taylor, and H-S Hargreaves–Samani models. A comparison of results shows that the
SVR-IWD model outperformed the other models at all stations.

To this end, the aforementioned studies also recommend the effectiveness of ma-
chine learning models over the empirical models in predicting monthly ETo at both
study locations.

4. Conclusions

The effectiveness of three machine learning models, such as the support vector machine
(SVM), M5P tree (M5P), and random forest (RF), was investigated in predicting monthly
ETo on the Nagina and Pantnagar stations from 2009 to 2016 in the present study. From
the available 8-year climatic data (2009–2016) at both stations, a total of three combinations
of different inputs were established to calibrate (train) and validate (test) the ML models
over the empirical models (i.e., Valiantzas-1, Valiantzas-2, Valiantzas-3) based on statistical
indicators and graphical inspection. The results of the evaluation demonstrate that the
SVM models with the full set of climatic data, i.e., T, RH, u, and Rs, performed superior to
the M5P, RF, and Valiantzas models during the validation period at both locations under
this study. In addition, the predictive accuracy of the SVM-1 to SVM-3 models with respect
to RMSE improved 32.9% to 59.1%, 4.3% to 60.1%, and 23.7% to 70.4%, for M5P-1 to
M5P-3, RF-1 RF-3, and V-1 to V-3, respectively, on Nagina and 59.9% to 66.1%, 16.7% to
48.9%, and 19.6% to 47.6% for M5P-1 to M5P-3, RF-1 RF-3, and V-1 to V-3, respectively,
on Pantnagar. This percentage analysis also reveals the supremacy of the SVM model in
predicting monthly ETo at both sites under consideration. Furthermore, the performance of
the empirical models was recorded as poor at both sites in comparison to the ML models.
Overall, the findings of this research show that the ML models (i.e., SVM) had better efficacy
and will support the irrigation engineers, agriculturists, and hydrologists to formulate
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smart intelligence systems for optimal planning and management of water resources at
study sites.

Future research will evaluate ensemble machine learning models with different ratios
of training and testing datasets obtained from multi-locations of other climatic regions. In
addition, the geospatial techniques will be considered for mapping the impact of reference
evapotranspiration on a spatial scale.
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