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Abstract: Agricultural fields, grasslands, and forests are very important areas for groundwater
recharge. However, these types of land cover in the Kumamoto area, Japan, were damaged by the
Kumamoto earthquake and heavy rains in 2016. In this region, where groundwater provides almost
100% of the domestic water supply for a population of about 1 million, quantitative evaluation of
changes in groundwater recharge due to land cover changes induced by natural disasters is important
for the sustainable use of groundwater in the future. The objective of this study was to create a land
cover map and estimate the groundwater recharge in 2016. Geographic information system (GIS)
data and SPOT 6/7 satellite images were used to classify the Kumamoto area into nine categories.
The maximum likelihood classifier of supervised classification was applied in ENVI 5.6. Eventually,
the map was cleaned up with a 21 × 21 kernel filter, which is larger than the common size of 3 × 3.
The created land cover map showed good performance of the larger filter size and sufficient validity,
with overall accuracy of 91.7% and a kappa coefficient of 0.88. The estimated total groundwater
recharge amount reached 757.56 million m3. However, if areas of paddy field, grassland, and forest
had not been reduced due to the natural disasters, it is estimated that the total groundwater recharge
amount would have been 759.86 million m3, meaning a decrease of 2.30 million m3 in total. The
decrease of 2.13 million m3 in the paddy fields is temporary, because the paddy fields and irrigation
channels have been improved and the recharge amount will recover. On the other hand, since the
topsoil on the landslide scars will not recover easily in natural conditions, it is expected to take at
least 100 years for the groundwater recharge to return to its original state. The recharge amount was
estimated to decrease by 0.17 million m3 due to landslides. This amount is quite small compared
to the total recharge amount. However, since the reduced recharge amount accounts for the annual
water consumption for 1362 people, and 12.1% of the recharge decrease of 1.41 million m3 each
year to fiscal year 2024 is expected by municipalities, we conclude that efforts should be made to
compensate for the reduced amount due to the disasters.

Keywords: land cover; SPOT 6/7; groundwater recharge; natural disaster; Kumamoto; Japan

1. Introduction

Groundwater in the Kumamoto area, Japan, which has a population of about 1 million,
is an extremely important water resource for the region because it accounts for almost
100% of domestic water use. Therefore, a number of activities and studies have been
carried out from the viewpoint of both the quantity and quality of groundwater. For
example, a groundwater condition report was conducted from these two perspectives
for 3 years, starting in 1992, by the Kumamoto prefecture and Kumamoto city [1]. They
predicted decreases in the groundwater level and spring water volume due to a decreased
recharge area and increased groundwater extraction and found the existence of areas
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where pollutants could easily spread. In terms of quantity, groundwater levels have been
continuously recorded at 123 sites in the Kumamoto area, the earliest in 1976 [2]. At Ezu
Lake, which is formed by springs, the volume of spring water has been observed every
month since December 1991 [3]. In a last few decades, the groundwater recharge amount
decreased with the reduction of paddy field areas, due to the Japanese government’s rice
production adjustment policy and urbanization [4]. In response to this situation, an artificial
groundwater recharge project in paddy and plowed fields during the fallow period was
initiated in the mid-stream area of the Shirakawa River in 2004. This project has contributed
greatly to the recovery of groundwater level and spring volume in recent years [4].

In order to enhance groundwater recharge, municipalities are promoting the instal-
lation of rainwater seepage pits, for example, in houses and greenhouses, through sub-
sidies [5]. In 2012, Kumamoto became the first prefecture in Japan to introduce regula-
tions on extraction (pumping permission system) for the sustainable use of groundwater,
even though the area has not experienced any particular groundwater disasters such as
land subsidence or salinization [6]. In terms of water quality, fluorine and nitrate– and
nitrite–nitrogen concentrations that exceed Japanese drinking water standards (F: 0.8 mg/L;
NO3+NO2-N: 10 mg/L) have been reported [7]. Fluorine is generated naturally and is
considered to have been leached during the process of groundwater flow in the igneous
rock strata [7], while the geographical information system (GIS) technique using agricul-
tural census data and nitrate isotopic measurements revealed that chemical and organic
fertilizers and domestic animal wastes are mainly related to nitrate pollution [8–10].

In recent years, groundwater has suffered various impacts due to the Kumamoto
earthquake in 2016. For example, abnormal changes in groundwater levels were observed
after the earthquake, which were attributed to water transfer downward through newly
generated open cracks (called the Suizenji fault) [11] and mountain water release due to
enhanced permeability [12,13]. These factors altered not only the groundwater level but
also the groundwater flow system [14–16]. As a result, changes in groundwater chemistry
occurred, such as decreasing concentrations of common ions (Cl−, F−, Na+, K+, Ca2+) and
NO3+NO2-N in specific locations [17,18]. In terms of water quality, there is also a report
of pollution due to sewer exfiltration from sewage pipes broken by the earthquake [19].
The earthquake also caused significant damage to groundwater recharge areas. In paddy
fields, which are highly important as recharge areas, liquefaction, cracking, and sinking
occurred. In some areas, irrigation canals were damaged, making it impossible to supply
water. Under these circumstances, farmers were forced to shift their paddy crops to field
crops such as soybeans [20], or agricultural activities were interrupted. Nishihara Town and
Mashiki Village, which are located in the southeastern part of the Kumamoto area and lie on
the fault, experienced many large and small landslides in the forests and grasslands due to
the earthquake and the heavy rains three months later [21]. As the number of paddy fields
with large recharge capacity decreases, the amount of groundwater recharge will decrease.
Further, since the infiltration capacity of bare land is much lower than that of forest and
grassland, land cover changes due to landslides will also reduce groundwater recharge.

The assessment of the groundwater recharge amount in the Kumamoto area has been
conducted by an administrative organization, and two reports [1,5] have been compiled.
In recent years, in order to concretely promote the Comprehensive Conservation and
Management Plan for Groundwater in Kumamoto Area (fiscal year (FY) 2009 to FY 2024)
formulated in FY 2008 [5], the First Action Plan (FY 2009 to FY 2013), Second Action Plan
(FY 2014 to FY 2018), and Third Action Plan (FY 2019 to FY 2024) have been formulated,
and groundwater conservation measures have been promoted [22]. The impact of the
Kumamoto earthquake on groundwater recharge is reported in the Third Action Plan [22],
but it is limited to the impact on artificial recharge projects in the fallow land mentioned
earlier. Therefore, the main objective of this study is to evaluate the effect on groundwater
recharge due to landslides and decreased paddy fields for sustainable groundwater use in
the Kumamoto area.
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In order to consider the water resource management, GIS has been applied in many
studies. For example, Fauzia et al. [23] not only estimated groundwater recharge po-
tential based on GIS model, but also mapped a potential groundwater recharge zone.
Ahirwar et al. [24] developed an action plan for artificial groundwater recharge by using an
integrated approach of remote sensing and GIS and visualized a proposed artificial recharge
area. Batarseh et al. [25] created a GIS zoning map representing the spatial distribution
of the irrigation water quality index and providing a clear visualization of groundwater
quality. In these studies, the role of GIS is to provide large scale spatial data and/or make
the results into understandable maps for water resource management. In this study, the
GIS data of land cover is required to estimate groundwater recharge. However, the dam-
aged paddy fields are only arranged as statistical data, and there is no map to show their
locations. Since the water requirement rate of paddy fields varies greatly from place to
place [26], locating fields that cannot be used as paddy fields is important for a better
assessment of the change in recharge amount. Liu et al. [27] detected the landslides caused
by the 2016 Kumamoto Earthquake in Mashiki Town and Nishihara Village using two sets
of airborne Lidar data. That study focused on landslides caused by the earthquake and did
not include those caused by the heavy rainfall in 2016 after the earthquake. Although the
Geospatial Information Authority of Japan has created a distribution map of landslides,
including those after heavy rains by interpreting the aerial photographs [21], they do not
show area data, but point data. Specifically, a land cover map showing the damage caused
by natural disasters for the entire Kumamoto area in 2016 has not been created. Thus, we
need to create a land cover map representing natural disaster damage in order to estimate
groundwater recharge. The locations and areas of land covers with different groundwater
recharge capacities are important for an accurate estimation.

Satellite images are useful for land cover/use classification and change extraction, and
have been used in many studies (e.g., [28–45]) from several years ago to the present. Some
of these studies combined geographic information system (GIS) and satellite images [41].
By integrating the normalized difference vegetation index (NDVI) based on satellite images
and GIS, we have also demonstrated that the classification accuracy can be improved [46].
Although many kinds of methods for land cover classification have been used in recent
years, supervised classification based on maximum likelihood classification (MLC), which is
pixel based, classifying images based on the homogeneity of pixel spectral information [43],
has generally been used because of its ease in application, simple operation, and good
performance [44]. Therefore, this method is often used, including in the last few years
(e.g., [36,37,41,42,45]). Duan et al. [39] analyzed the characteristics of each land cover type
before classification, and effectively used the supervised classification method and others,
such as band ratio and decision tree methods, according to each characteristic. Eventually,
in order to eliminate noise from the classification results, a kernel filter was applied in some
studies [41,43]. Based on these studies, in order to create a land cover map in this study, we
used supervised classification and GIS data according to the characteristics of land cover in
the Kumamoto area for better classification. Then, the classification results were cleaned up
by using a kernel filter. While a 3 × 3 kernel filter is the most widely applied, larger sizes
are appropriate for smaller pixel sizes and/or larger land cover entities [47]. Therefore,
in order to take into account an appropriate filter size, in addition to the common size,
we examined the quantitative effect of larger filter sizes on the classification results and
applied the better filter size.

By quantifying the change of groundwater recharge amount induced by natural disas-
ters, we expect to gain basic and useful data in order to consider various artificial recharge
measures to be implemented for sustainable groundwater use. Then, our quantitative
analysis of the effects of the various kernel filter sizes will help to verify the necessity of
testing larger filter sizes to determine the validity of land cover maps.

The remainder of this paper is organized into the following sections: Related work,
Materials and methods, Results, Discussion, and Conclusions.
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2. Related Work

The Kumamoto area is located in the northern part of the Kumamoto Prefecture,
Japan (Figure 1a). It consists of 16 former municipalities, with an area of about 1041 km2.
The mean annual temperature and precipitation during 1980–2010 were 16.9 ◦C and 1986
mm, respectively [48]. Precipitation in June and July, the rainy season, accounts for ap-
proximately 40% of annual precipitation [48]. At present, due to the consolidation of
municipalities, the municipal boundaries have become as shown in Figure 1b. Quantifica-
tion of groundwater recharge in 2016 in the area, which shares a large groundwater basin,
was performed, as shown in Figure 1a. However, the target area for land cover classification
needed to be the region shown in Figure 1b. This is because in this study, the statistical
data of paddy field areas was used to determine the size of the kernel filter for smoothing
of the classification results (described later), but in 2016, that statistical data was arranged
by municipality, as shown in Figure 1b rather than Figure 1a.
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and Kyokushi Village shown in (a). Therefore, the area of (b) is wider than that of (a) due to adding 
Kikuchi City. Land cover classification was performed in the wider area of (b) in order to compare 
classification results and statistical data of paddy fields as shown in later because the statistical data 
was recorded for each of the 11 current municipalities. The groundwater recharge was calculated in 
the narrower area of (a) sharing a large groundwater basin. Namely, we used different areas to 
classify land cover and calculate the groundwater recharge. However, there is no problem because 
land covers were classified for all target areas to calculate groundwater recharge. 
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Figure 1. Kumamoto City and surrounding municipal boundaries: (a) 16 former municipalities
(Kumamoto area) and (b) 11 current municipalities. The faults in the Kumamoto area can be mainly
classified into Futagawa fault zone, Hinagu fault zone, and Kuradake fault group. These fault lines
refer to Kumahara et al. [49], Suzuki et al. [50], and Gotou et al. [51]. The difference between two
maps (a,b), is Kikuchi City on the upper right of (b). Kikuchi City consolidated Shisui Town and
Kyokushi Village shown in (a). Therefore, the area of (b) is wider than that of (a) due to adding
Kikuchi City. Land cover classification was performed in the wider area of (b) in order to compare
classification results and statistical data of paddy fields as shown in later because the statistical data
was recorded for each of the 11 current municipalities. The groundwater recharge was calculated
in the narrower area of (a) sharing a large groundwater basin. Namely, we used different areas to
classify land cover and calculate the groundwater recharge. However, there is no problem because
land covers were classified for all target areas to calculate groundwater recharge.

The descriptions of groundwater and water circulation in the Kumamoto area were
explained in the Comprehensive Conservation and Management Plan for Groundwater in
Kumamoto Area [5] as follows. Three factors contribute to the abundance of groundwater
in this area: (1) the large groundwater basin covering about 600 km2 from Aso caldera to
the lowland area of Kumamoto plain, (2) the presence of strata that are easy to infiltrate and
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store groundwater for the groundwater basin, and (3) abundant precipitation. According
to this plan [5], the water budget in the area was estimated, based on the data of the past
10 years, as follows: the Kumamoto area receives nearly 2.04 billion m3 of rain annually; of
this abundant precipitation, about 700 million m3 is returned to the atmosphere through
evapotranspiration. About 640 million m3 is recharged as groundwater in recharge areas
(forests, grasslands, paddy fields, and plowed fields), where water can easily infiltrate. The
remaining 700 million m3 is discharged into rivers such as the Shirakawa and Midorikawa
Rivers, and then into the Ariake Sea.

According to the Comprehensive Conservation and Management Plan [5], by FY 2024,
the annual groundwater recharge amount was projected to decline to 563.2 million m3.
However, the Third Action Plan [22] reported that the average estimated groundwater
recharge amount from FY 2009 to FY 2017 was 557.9 million m3, which is already less than
the estimated amount for FY 2024. With a revision of the decreasing trend, the forecast
shows that groundwater recharge will decrease to 548.0 million m3 in FY 2024 [22]. This is
a decrease of 9.9 million m3 from the average amount from FY 2009 to FY 2017. In other
words, it is 15.2 million m3 less than the previous forecast [5].

3. Materials and Methods
3.1. Satellite Image Data

This study used satellite images taken by Satellite Pour l’Observation de la Terre
(SPOT 6/7), which is characterized by high-resolution 1.5 m panchromatic images and
6 m multispectral images. SPOT 6/7 were launched on 9 September 2012 and 30 June
2014, respectively. These satellites are operated by Airbus Defence and Space in France as
fully commercial satellites. The multispectral wavelengths are as follows: 0.455–0.525 µm
for blue, 0.530–0.590 µm for green, 0.625–0.695 µm for red, and 0.760–0.890 µm for near
infrared. In this study, since we selected SPOT 6/7 satellite images with cloud cover of
less than 10% in 2015 and 2016, only four images, from 2 May 2015, and 21 March, 29 July,
and 2 November 2016, were acquired. In other words, there are very few opportunities
to obtain satellite images of the Kumamoto area with few clouds. Although that may
seem to be a low number of images to account for seasonal variability, as mentioned later,
the NDVI of the training area used for supervised classification shows different seasonal
characteristics for each land cover in used satellite images. Namely, even if the number of
satellite images is low, they adequately captured different seasonal variabilities for each
land cover type in the study area. Satellite images of 2 May 2015, and 29 July 2016, were
used to identify the landslide area. Satellite images from 2016 were used for supervised
classification. All images were corrected by using Quick Atmospheric Correction in ENVI
5.6 (Harris Geospatial Solutions, Inc., America) before classification processing.

3.2. Land Cover Map Creation

In this study, the area of 11 municipalities (Figure 1b) was classified into 9 categories:
(1) paddy field, (2) plowed field, (3) damaged paddy field, (4) grassland, (5) lawn (golf
course and park) and weeds, (6) forest (trees), (7) buildings and roads, (8) bare land, and (9)
water body.

In this study, location data of paddy fields and GIS data were used to classify the
damaged paddy fields, roads, water bodies, grasslands, and bare land induced by landslides
before the supervised classification was conducted as described below. Damaged paddy
fields are those that cannot be used due to problems such as cracks and collapse caused by
earthquake. Following the study of land cover classification for the Aso caldera, which is
adjacent to the Kumamoto area to the east [46], damaged paddy fields were identified by
using an account book of paddy fields and the Agriculture Land Information System [52].
In general, we can obtain information on the address, area, and cultivated crops of each
field from the account book and identify the location of the field from the Agriculture
Land Information System by using the address. However, since there was no information
on addresses in the 2016 account book, we applied the 2017 account book. Roads and
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water bodies were classified by using fundamental geospatial data updated on 1 October
2016 [53], with some modification. This allowed us to classify narrow farm roads and
irrigation canals distributed in paddy and plowed fields. Grasslands are subject to open
burning, grazing, and mowing, and display completely different characteristics (Figure 2).
Since it is difficult to classify grasslands precisely in this situation, we used a vegetation
map (vg67) [54] with some modification for classification. In this way, understanding the
land cover characteristics shown in Figure 2 in advance, and using manual classification in
some cases, they would be seen as important, for more accurate land cover mapping.
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Figure 2. Grasslands of different land use in Nishihara Village in satellite image of 21 March 2016.
The upper grasslands show dark brown due to the open burning that took place in March. The
open burning is a long standing traditional event conducted for the main purpose of exterminating
harmful insects, preventing the transition of grasslands to forests, and conservation of biodiversity.
On the other hand, the lower grasslands, which are not burned and used for grazing and mowing,
show a light green color. Even in grasslands, the colors in two areas are completely different.

In order to identify landslides, Furukawa et al. [55] compared the three methods of
NDVI filtering, spectral angle mapper, and support vector machine using high-spatial-
resolution images in Hokkaido, Japan. This study showed that the NDVI filtering method
was better for landslide detection. Therefore, in this study, landslide areas were identified
by using the NDVI filter. We applied the following filter for the Kumamoto earthquake as
demonstrated by Yamazaki and Liu [56]:

NDVIbefore − NDVIafter < −0.2, (1)

where NDVIbefore is the NDVI value before the earthquake, and NDVIafter is the value after
the earthquake. These NDVI values were obtained by calculation using reflectance in the
red and near-infrared bands in the satellite images of 2 May 2015 and 29 July 2016:

NDVI = (NIR − R)/(NIR + R), (2)
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where R is the reflectance of the red band and NIR is the reflectance of the near-infrared
band. Eventually, the areas extracted by the filter and around the points indicated by the
Geospatial Information Authority of Japan [21] were extracted as a landslide area.

For the other land cover classes, we applied supervised classification based on the
MLC method following classification workflow [57] in ENVI 5.6. Training areas were
created from known areas using the region of interest (ROI) tools in ENVI 5.6. In order to
improve the classification accuracy, we created a farmland mask (“Paddy field”, “Plowed
field”, and “Building” (plastic greenhouse)) with reference to Sueyoshi et al. [58] and
performed classification separately for farmland and other categories. Figure 3 shows the
seasonal changes in NDVI values in the training area for each land cover classified by
supervised classification. Although similar trends with small differences are represented
between “Building and road” and “Bare land”, the other categories captured significantly
different changes. Therefore, in this study, NDVI values were selected for training data in
addition to RGB bands.
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Figure 3. Seasonal changes in average NDVI values for each land cover type in 2016. Although
“Forest” and “Lawn and weed” showed similar seasonal changes, increased NDVI values from
21 March to 29 July varied greatly. NDVI values of “Paddy field” showed different seasonal changes
from other land cover types and “Plowed field”. NDVI value of “Bare land” is the second smallest
and showed a slight increase from 21 March to 29 July. NDVI value of “Building and road” was the
lowest and almost the same in three seasonal images. Since the two categories, “Building and road”
and “Bare land”, do not change seasonally, they are not influenced by the season of observed images.

In order to classify the farmland into “Paddy field”, “Plowed field”, and “Building”
(plastic greenhouse), the three RGB bands in November and the difference between NDVI
values on 29 July and 2 November were used as parameters for the training data. In the
mid-stream area of the Shirakawa River, some paddy fields, after harvesting rice for feed
and whole crop silage (WCS), are flooded again through the artificial groundwater recharge
project described above. As shown in Figure 3, although NDVI values decreased from
29 July to 2 November in paddy fields due to harvesting in both areas, paddy fields with
artificial recharge tend to be darker than those without artificial recharge (Figure 4). In
such fields, although the seasonal change in NDVI values is the same, misclassification of
plowed fields is triggered. Therefore, in order to reduce misclassification, classification of
farmland in the midstream area of the Shirakawa River and other areas was performed
separately, using different training data. For the remaining categories, the three bands of
RGB and NDVI in March were used as parameters for the training data. Finally, in order to
clean up the classification results, a kernel filter was applied in the last step of classification
workflow in ENVI 5.6. The square kernel’s center pixel was replaced with the majority class
value of the kernel [57]. A typical (default) filter size of 3 × 3 was applied first, then larger
filter sizes were tested. To compare the paddy fields in the classification results and the
statistical data for the 11 municipalities (Figure 1b), a filter size of 21 × 21 with a smaller
error was applied.



Sustainability 2022, 14, 545 8 of 19

Sustainability 2022, 14, 545 8 of 19 
 

 
Figure 3. Seasonal changes in average NDVI values for each land cover type in 2016. Although 
“Forest” and “Lawn and weed” showed similar seasonal changes, increased NDVI values from 21 
March to 29 July varied greatly. NDVI values of “Paddy field” showed different seasonal changes 
from other land cover types and “Plowed field”. NDVI value of “Bare land” is the second smallest 
and showed a slight increase from 21 March to 29 July. NDVI value of “Building and road” was the 
lowest and almost the same in three seasonal images. Since the two categories, “Building and road” 
and “Bare land”, do not change seasonally, they are not influenced by the season of observed im-
ages. 

 
Figure 4. Changes in paddy fields for WCS from (a,c) 29 July to (b,d) 2 November in mid-stream 
area of (a,b) Shirakawa River and (c,d) others. Red polygons are paddy fields where WCS is grown. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Mar-1 Apr-1 May-1 Jun-1 Jul-1 Aug-1 Sep-1 Oct-1 Nov-1 Dec-1

ND
VI

Paddy field

Plowed field

Lawn and weed

Forest

Building and
road

Bare land

Figure 4. Changes in paddy fields for WCS from (a,c) 29 July to (b,d) 2 November in mid-stream area
of (a,b) Shirakawa River and (c,d) others. Red polygons are paddy fields where WCS is grown.

3.3. Accuracy Assessment

Accuracy assessment is a necessary step because the estimated groundwater recharge
amount from an inaccurate map has no meaning. First, along with the test of the larger
kernel filter, the area of paddy fields was evaluated. Then, the classification accuracy was
assessed based on a confusion matrix. As quantitative classification accuracy indicators,
overall accuracy, producer’s accuracy, user’s accuracy, and kappa coefficient were com-
puted. Assessment using these criteria is a general method that is often used in studies
(e.g., [32,34–38,42–44]). In order to construct the confusion matrix, 2000 random points
were created in the study area as reference data by using the Create Random Points tool
in ArcGIS Pro 2.8.1 (Esri Inc., Sacramento, CA, USA). Ground truth data at each point
were obtained by high-resolution satellite images from SPOT 6/7, and aerial photographs
from Google, the Geospatial Information Authority of Japan [59], and the Agriculture Land
Information System [52]. Areas that could not be determined as grasslands, damaged
paddy fields, and water bodies were excluded from the counting.

3.4. Calculation Method of Groundwater Recharge

In this study, groundwater recharge was calculated for paddy fields, plowed fields,
damaged paddy fields, grassland, lawns and weeds, and forest, which are considered
recharge areas. As mentioned above, in order to determine the kernel filter size, the areas
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of 11 current municipalities (Figure 1b) were determined as target areas for land cover
classification, but groundwater recharge was calculated for the Kumamoto area (Figure 1a)
sharing the groundwater basin. The method to calculate the groundwater recharge for
these land cover types in the study area is summarized in previous reports [1,26].

3.4.1. Groundwater Recharge from Paddy Fields

Groundwater recharge from paddy fields during the irrigation season with small
modification is expressed as follows:

Rpi = Ap × (W − E), (3)

Rpn = (Ap/2) × (W − E), (4)

where Rpi is groundwater recharge during the flooding period (m3/day), Rpn is groundwa-
ter recharge during the mid-summer drainage and interruptive irrigation period (m3/day),
Ap is the area of a paddy field (m2), W is the water requirement rate (m/day), and E is
evapotranspiration (m/day). A water requirement rate of approximately 1.08 km2 was
set for each grid in the Kumamoto area, with 0.02–0.075 m/day [26], and the rate was
averaged by aggregating the grids belonging to each municipality. The general irrigation
period in the Kumamoto area is late June to early October. During this period, food rice,
WCS, and feed rice will be grown in the paddy fields, and each crop will have a slightly
different cultivation calendar. However, it is difficult to determine the type of crop by
satellite images. In addition, the majority of paddy fields are occupied by rice for food.
Considering these factors, the cultivation calendar for food rice shown in Figure 5 [60] was
applied to all paddy fields in this study.
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Figure 5. Cultivation calendar for paddy fields. First, paddy fields are flooded from 20 June to 17 July.
Then interruptive irrigation and mid-summer drainage last for 6 and 8 days, respectively. After
that, paddy fields are flooded again until 14 September. Finally, interruptive irrigation is carried
out for 21 days. Since paddy fields are not always flooded during the mid-summer drainage and
interruptive irrigation period, it is important to calculate the groundwater recharge according to the
cultivation calendar.

3.4.2. Groundwater Recharge Other Than Paddy Fields

Groundwater recharge for other than paddy fields, such as plowed fields, grassland,
lawns and weeds, and forest, is expressed as follows:

Rn = An × (κn × P − E), (5)

where Rn is the groundwater recharge amount (m3/day), An is area (m2), κn is infiltration
coefficient, P is precipitation (m/day), and n is land cover categories. Infiltration coefficients
were set for each land cover type, as shown in Table 1. The coefficients were determined
based on the results of several surveys conducted in the study area [26]. Areas classified as
grassland and forest are mostly distributed in the mountainous region. Thus, an infiltration
coefficient of 0.2 was set for grassland and forest. For paddy fields during non-irrigation
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season and damaged paddy fields, an infiltration coefficient of 0.7 for plowed fields was
adopted. Lawns and weeds were subjected to the same coefficient as grassland, and 0.5 was
applied from its distribution area. The precipitation data for the years analyzed were
collected at Kumamoto Observatory (32◦ 48.8′ N, 130◦42.4′ E) [61].

Table 1. Infiltration coefficient for each land cover type. Since most of the rainfall in the mountainous
area is discharged into rivers by direct runoff and base flow, the lowest infiltration coefficient is set on
grassland and forest in mountainous area.

Land Cover Type Infiltration Coefficient

Plowed field 0.7
Grassland and forest in mountainous area 0.2

Grassland and forest outside of mountainous area 0.5

3.4.3. Evapotranspiration

Daily evapotranspiration was calculated using the Hamon method [62]:

E = (0.1651 × Ld × RHOSAT × KPEC)/1000, (6)

where Ld is the daytime length, which is the time from sunrise to sunset in multiples
of 12 h, RHOSAT is the saturated vapor density (g/m3), and KPEC is the calibration
coefficient, which was set to 1.2 in this study. RHOSAT was calculated based on the daily
mean air temperature (◦C) and saturated vapor pressure (mb) at a given daily mean air
temperature (see Lu et al. [62] for details). When the mean air temperature is less than 0,
the evapotranspiration is 0. The daytime length and mean air temperature data were also
collected at Kumamoto Observatory [61].

4. Results
4.1. Effect of Kernel Filter Size

Due to the high resolution of the images, a lot of noise is generated. As a visual
evaluation, the smoothing effect was not clearly visible with the 3 × 3 filter (Figure 6a),
while the larger 21× 21 filter could eliminate noise significantly (Figure 6b). Figure 7 shows
the sum of squared residuals (SSR) and absolute value of residual sum (AVRS) for paddy
fields. SSR decreased significantly with the 17 × 17 filter, then it did not decrease much,
even though the filter size increased. When the filter size was 41 × 41, it increased slightly.
For AVRS, larger values were found when the filter size was 3 × 3, 9 × 9, and 41 × 41. The
same as SSR, there was not much change in AVRS between 17 × 17 and 27 × 27 filter sizes,
but the minimum value was found at 21 × 21. Considering that the change in SSR was
small when the filter size was greater than 17 × 17 and that AVRS was at its minimum
value with the 21 × 21 filter, the filter size was set to 21 × 21 in this study, as mentioned
above. The relationship of the area of paddy fields between the statistical data and the
classification result with the 21 × 21 kernel filter is shown in Figure 8. Since we selected
the filter size with smaller residuals, the result shows that the area is close to the statistical
data, and the correlation coefficient is very high at 0.997.
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Figure 6. Smoothing effects with different kernel filter sizes: (a) 3 × 3 and (b) 21 × 21. With 3 × 3
filter, there is much noise. Larger 21 × 21 filter removes noise and makes each land cover coherent.

Sustainability 2022, 14, 545 11 of 19 
 

4. Results 
4.1. Effect of Kernel Filter Size 

Due to the high resolution of the images, a lot of noise is generated. As a visual eval-
uation, the smoothing effect was not clearly visible with the 3 × 3 filter (Figure 6a), while 
the larger 21 × 21 filter could eliminate noise significantly (Figure 6b). Figure 7 shows the 
sum of squared residuals (SSR) and absolute value of residual sum (AVRS) for paddy 
fields. SSR decreased significantly with the 17 × 17 filter, then it did not decrease much, 
even though the filter size increased. When the filter size was 41 × 41, it increased slightly. 
For AVRS, larger values were found when the filter size was 3 × 3, 9 × 9, and 41 × 41. The 
same as SSR, there was not much change in AVRS between 17 × 17 and 27 × 27 filter sizes, 
but the minimum value was found at 21 × 21. Considering that the change in SSR was 
small when the filter size was greater than 17 × 17 and that AVRS was at its minimum 
value with the 21 × 21 filter, the filter size was set to 21 × 21 in this study, as mentioned 
above. The relationship of the area of paddy fields between the statistical data and the 
classification result with the 21 × 21 kernel filter is shown in Figure 8. Since we selected 
the filter size with smaller residuals, the result shows that the area is close to the statistical 
data, and the correlation coefficient is very high at 0.997. 

 
Figure 6. Smoothing effects with different kernel filter sizes: (a) 3 × 3 and (b) 21 × 21. With 3 × 3 filter, 
there is much noise. Larger 21 × 21 filter removes noise and makes each land cover coherent. 

 
Figure 7. Changes in (a) sum of squared residuals and (b) absolute value of residual sum for paddy 
fields with different kernel filter size. Residual values were calculated based on classification results 
and statistical data in 11 current municipalities (Figure 1b). Statistical data of Kumamoto City did 

9

10

11

12

13

14

15

16

17

3×3 9×9 17×17 19×19 21×21 23×23 25×25 27×27 41×41

Su
m

 o
f s

qu
ar

ed
 r

es
id

ua
ls 

(k
m

2 )

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

3×3 9×9 17×17 19×19 21×21 23×23 25×25 27×27 41×41

Ab
so

lu
te

 v
al

ue
 o

f r
es

id
ua

l s
um

 (k
m

2 )

(a)

(b)

Figure 7. Changes in (a) sum of squared residuals and (b) absolute value of residual sum for paddy
fields with different kernel filter size. Residual values were calculated based on classification results
and statistical data in 11 current municipalities (Figure 1b). Statistical data of Kumamoto City did not
include enough on three towns (Ueki, Jonan, and Tomiai) integrated into Kumamoto City, so their
domain and data were excluded.
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Figure 8. Relationship of area of paddy fields between statistical data and classification result with
21 × 21 kernel filter. Each plot corresponds to 11 current municipalities in Figure 1b.

4.2. Classification Results

The confusion matrix constructed based on random reference points is shown in
Table 2. The user’s accuracy indicated a value of 70.6 to 95.1%, and the producer’s accuracy
ranged from 56.8 to 98.4%. The overall accuracy was 91.7%, with a kappa coefficient of 0.88,
computed from the confusion matrix. Since we obtained kappa coefficients above 0.75, our
classification result can be assessed as excellent [63]. The land cover classification result is
represented in Figure 9, compared to a 30 m resolution land use and land cover map for
2014–2016 (ver. 18.03 [64]), created by the Japan Aerospace Exploration Agency (JAXA),
which showed overall accuracy of 81.6% and kappa coefficient of 0.8. Actually, there are
more classes on JAXA’s map (e.g., deciduous broadleaf trees and evergreen conifers), so
they were unified into a forest for comparison. There are no classifications of damaged
paddy fields and lawns and weeds. Although the paddy field areas differ significantly, the
distribution of land cover is generally consistent between the two maps.

Table 2. Confusion matrix between classification results and ground truth data in 11 current munici-
palities (Figure 1b), Japan in 2016. Ground truth data at a total of 1923 points were compared with
classification results.

Land Cover Paddy
Field

Plowed
Field

Lawn and
Weed Forest Building

and Road
Bare
Land Total Producer’s

Accuracy (%)

Paddy field 148 36 0 0 1 0 185 80.0
Plowed field 12 211 0 0 9 0 232 90.9

Lawn and weed 0 0 63 30 14 4 111 56.8
Forest 0 0 4 936 10 1 951 98.4

Building and road 1 7 7 16 394 0 425 92.7
Bare land 0 0 2 2 3 12 19 63.2

Total 161 254 76 984 431 17 1923
User’s accuracy (%) 91.9 83.1 82.9 95.1 91.4 70.6
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Figure 9. (a) Land cover classification result and (b) JAXA’s map, provided by 30 m high-resolution
land use and land cover map of Japan (2014–2016) (ver. 18.03, 10 categories) (Japan Aerospace
Exploration Agency) in 11 current municipalities (Figure 1b), Japan in 2016. Since Jaxa’s map
represents average land use and land cover from 2014 to 2016, it does not represent changes due to
earthquake and heavy rainfall. Owing to the farmland mask and GIS data, our classification results
represent a significantly different map compared to JAXA’s map in the agricultural area.

4.3. Land Cover

The area of nine land cover categories in the Kumamoto area is shown in Table 3. The
largest area is occupied by forests, followed by buildings. These two categories account
for about 69% of the total area. Most of the remaining 31% is farmland: paddy fields
(8.15%), plowed fields (13.81%), and damaged paddy fields (0.09%). The area of damaged
paddy field is 0.91 km2, accounting for 1.06% of the entire paddy field area of 85.76 km2.
Most of the damaged paddy fields are distributed in Nishihara Village and Mifune Town,
with areas of 0.47 and 0.43 km2, respectively. A fault line runs through these locations
(Figure 1), causing direct damage to paddy fields. Furthermore, damage was also observed
in farmland in the mountainous areas in Mifune Town. The remaining farmland can be seen
in Kosa Town and Ozu Town. The area of bare land is the smallest in the Kumamoto area,
excluding the damaged paddy fields induced by the earthquake. Although most of the
bare land is occupied by school playgrounds, about 0.41 km2 (3.2%) of the total 12.70 km2 is
the result of the recharge area (forest and grassland) being changed to bare land due to the
landslides induced by earthquakes and heavy rains. Landslides caused the most damage
in Ozu Town, with an area of about 0.27 km2. The second most affected municipality was
Nishihara Village, with an area of 0.11 km2. Landslides were also detected in Mashiki
Town, Mifune Town, and Kumamoto City, with an area of less than 10% of that of Nishihara.
Looking at the land cover, if landslides had not occurred, most of the areas extracted by
landslides (97.6%) would have been classified as forest, and the remaining area would have
been classified as grassland.
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Table 3. Area of each land cover category in Kumamoto area (Figure 1a), Japan in 2016. The area of
each land cover was determined by using Add Geometry Attributes of Geoprocessing tool in ArcGIS
Pro 2.8.1 (Esri Inc.).

Paddy
Field

Plowed
Field

Damaged
Paddy Field Grassland Lawn and

Weed Forest Building
and Road

Bare
Land

Water
Body Total

km2 84.85 143.75 0.91 16.07 45.08 452.68 261.50 12.70 23.04 1040.58
% 8.15 13.81 0.09 1.54 4.33 43.50 25.13 1.22 2.21 99.98

4.4. Groundwater Recharge

The calculated groundwater recharge from each land cover considered as a recharge
area is shown in Table 4. The total groundwater recharge amount in 2016 was estimated
at 757.56 million m3. The target recharge of 636 million m3 [5] was achieved in 2016 due
to high precipitation. The total recharge from paddy fields during irrigated and non-
irrigated periods was 254.66 million m3, which was the highest in the recharge area. This is
equivalent to about 33.61% of the total recharge. This ratio is almost the same as that of
plowed fields, with the second highest recharge. Forests, which have the largest recharge
after paddy fields and plowed fields, also showed a recharge of over 200 million m3. From
the above, it can be seen that groundwater recharge from paddy fields, plowed fields, and
forest accounts for the majority of the total recharge.

Table 4. Groundwater recharge amounts from recharge area in Kumamoto area (Figure 1a), Japan in 2016.

Paddy Field in
Irrigation Season

Paddy Field
in Non-

Irrigation Season
Plowed

Field
Damaged

Paddy Field Grassland Lawn and
Weed Forest Total

Million m3 186.76 67.90 239.90 1.36 7.15 53.01 201.48 757.56
% 24.65 8.96 31.67 0.18 0.94 7.00 26.60 100.00

As mentioned above, 0.91 km2 of damaged paddy fields and 0.41 km2 of bare land due
to natural disasters may have affected the groundwater recharge amount. The groundwater
recharge amount in the absence of land cover changes due to natural disasters is shown in
Table 5. The total recharge amount from paddy fields during the irrigated and non-irrigated
seasons when there were no damaged paddy fields was 258.15 million m3. This amount is
3.49 million m3 more than in the case where there are damaged paddy fields. However,
since there was recharge of 1.36 million m3 from damaged paddy fields (Table 4), their
occurrence actually reduced the groundwater recharge by 2.13 million m3. On the other
hand, the recharge amount of grassland and forest decreased by 0.01 and 0.16 million m3,
respectively, due to landslides. These decreases are less than 10% of the value of paddy
fields. Overall, recharge decreased by 2.30 million m3, which is less than 0.5% of the total
recharge amount.

Table 5. Groundwater recharge amount from recharge area in the absence of land cover change due
to natural disasters in Kumamoto area (Figure 1a), Japan in 2016.

Paddy Field in
Irrigation Season

Paddy Field
in Non-

Irrigation Season
Plowed

Field
Damaged

Paddy Field Grassland Lawn and
Weed Forest Total

Million m3 189.69 68.46 239.90 0.00 7.16 53.01 201.64 759.86
% 24.96 9.01 31.57 0.00 0.94 6.98 26.54 100.00

5. Discussion

Our study demonstrates the effect of various kernel filter sizes on the classification
results. As mentioned above, the square kernel’s center pixel is replaced with the majority
class value of the kernel [57]. In other words, the application of a larger kernel filter means
that the class values farther from the center would also be reflected. It is found in detail
that a large size filter is effective for removing noise over a wide area, unifying each class,
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and improving the classification accuracy for SPOT 6/7 images as shown in Figures 6–8.
Since high-resolution satellite images of SPOT 6/7 were used, our tests of kernel filters
of different sizes demonstrated that larger filter sizes are effective and appropriate for
small pixel sizes, as stated by Stuckens et al. [47]. The filter not only changed the visual
appearance of the map, as shown in Figure 6a,b, but also changed the area, making it closer
to the statistical data. Since our main objective was to quantify the effect on groundwater
recharge amount due to natural disasters, calculating the recharge amount based on maps
with low accuracy is meaningless. Thus, the smoothing step using the larger kernel filter
size was essential to improve the accuracy of the map.

In addition to the use of a kernel filter, the classification method was built up by
integrating previous studies demonstrating the effectiveness of using GIS data and masks
regulating specific land covers. For example, the use of GIS data for narrow farm roads
and irrigation canals, which are difficult to extract with satellite images, contributed to
the reduction in misclassification of farmland. In addition, although paddy fields are
scattered even in the central building area on JAXA’s map (Figure 9b), our farmland mask
worked effectively to prevent such misclassification. In this region, where more than half
of the total area is occupied by farmland, we can assume that classifying farm roads and
irrigation channels, which are non-recharge areas, as farmland will lead to a substantial
overestimation of the groundwater recharge amount.

In Mashiki Town, damaged paddy fields were not represented in the map, although
they underwent liquefaction, cracking, and sinking due to the earthquake. This is because
the paddy fields were repaired immediately after the earthquake. Consequently, rice
planting was carried out as usual that year. In the Shirakawa River mid-stream area, where
Ozu Town and Kikuyo Town are located, the irrigation canals were damaged, making
it impossible to supply water. However, the channels caused by the earthquake were
repaired in a rather short time and emergency re-construction of the channels was finished
in 2017 [4]. In the following year, farming activities and artificial recharge were almost back
to normal [4]. On the other hand, in Nishihara Village and Mifune Town, which account
for the majority of the damaged paddy field area, the restoration of irrigation channels and
farmland is still underway as of FY 2021 [65]. As can be seen, the degree of restoration
varies by municipality, but it is expected that the restoration will be completed in a few
years and the decrease in groundwater recharge from paddy fields will be smaller.

In order to restore groundwater recharge in landslide scars, soil must be restored. A
study on natural vegetation recovery and soil development processes in a landslide scar
reported that the topsoil was regenerated over time as follows [66]. Twenty years after the
landslides, a humus soil layer of about 20 cm thick was formed. Fifty to sixty years after
the landslides, a soil layer of about 30 to 40 cm thick was formed. Then, over 100 years
after the landslides, a topsoil of about 40 to 50 cm thick was formed. More than 300 years
after the landslides, the topsoil developed to a thickness of 70 to 80 cm. The topsoil was
immature in terms of thickness and physical properties even more than 100 years after
the landslides [66]. Therefore, it is reasonable to assume that it will take at least 100 years
to recover the original groundwater recharge function in the landslide scars in the study
area. In other words, restoration of landslide scars takes much longer than restoration of
paddy fields.

Therefore, we should focus on reducing the recharge amount of 0.17 million m3 due to
landslides. Although that is a small fraction of the total recharge amount, since the annual
per capita domestic water use in the Kumamoto area in FY 2006 was about 124.8 m3 [5],
that decrease means that the annual water supply for 1362 people has been lost. The annual
groundwater recharge amount in FY 2024 is estimated to decrease by 9.9 million m3 from
the average amount during FY 2009 to FY 2017 [22], meaning that the annual amount
decreases by 1.41 million m3 every year. The decrease due to landslides accounts for 12.1%
of the estimated annual decrease. From this perspective, it can be said that the decrease in
recharge amount of 0.17 million m3 is not small. Therefore, it is important for sustainable
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groundwater use to compensate for the decreased recharge amount caused by land cover
change due to natural disasters.

For example, we considered rainwater seepage pits at houses for groundwater recharge,
promoted by municipalities. The recharge from a rainwater infiltration system can be calcu-
lated using Equation (5), where An is the area of the roof and κn is 0.95 [26]. The calculation
for precipitation in 2016 indicated that a roof area of 75,000 m2 can recharge 0.17 million m3.
In addition to rainwater seepage pits, installing permeable pavement and greening blocks
is recommended for groundwater recharge [67]. Permeable pavement is constructed in a
way that allows rainwater to infiltrate into the ground from the surface. Greening blocks,
made of concrete or other materials, are placed at equal intervals, and the gaps are covered
with turf to allow rainwater to infiltrate into the ground. These have been introduced, for
example, in parking areas. As with rainwater seepage pits, the recharge from permeable
pavement and greening blocks can be calculated using Equation (5), where An is the in-
stallation area and κn is 0.7 [26]. In 2016, these installations would have required an area
of 103,000 m2 to recharge 0.17 million m3 of groundwater. Finally, we considered interpo-
lating the artificial groundwater recharge project in the Shirakawa River mid-stream area.
Equation (3) is simplified by ignoring evapotranspiration, and the groundwater recharge
rate is estimated by setting a water requirement rate of 0.11 m/day [26]. For example,
if the area is to be flooded for 30 days, it will require an area of 52,000 m2 to recharge
0.17 million m3. On the other hand, if flooding is carried out for 90 days, the required area
can be reduced to 17,200 m2. The results of these calculations indicate that a reasonable
effort is required to recharge lost groundwater.

6. Conclusions

This study created a land cover map, which covers the Kumamoto area, representing
damage resulting from events such as landslides induced by the Kumamoto earthquake
and heavy rainfall in 2016. In the process of map creation, we showed that a large kernel
filter removed more noise over a wide area, GIS data and masks regulating specific land
covers contribute significantly to improving the map accuracy. The study further quantified
the effects on the groundwater recharge amount due to the change of land cover in the
Kumamoto area by using the created land cover map and revealed that the reduction
amount due to landslides was only a small portion of the total recharge. However, since
the reduction amount corresponds to 12.1% of the recent annual decrease in groundwater
recharge, we concluded that it is necessary to compensate for the lost recharge for sus-
tainable groundwater use. After studying some methods to compensate the groundwater
recharge, we found that it would take a lot of effort in all cases. The results of the analysis
of groundwater recharge and the suggestions for groundwater conservation presented in
this study can be used as useful data contributing to groundwater conservation measures,
as mentioned at the beginning.

Maruyama and Ikawa [68] reported that the Kumamoto earthquake may have changed
the water requirement rate in the paddy fields. In order to understand the impact of natural
disasters on groundwater recharge, not only land cover changes but also changes in the
water requirement rate, as indicated by Maruyama and Ikawa [68], should be considered.
However, the study of paddy fields [68] is limited to a few areas. As far as we know, there
is no publication reporting changes in the water requirement rate due to earthquakes in
the Kumamoto area. Specifically, we were not able to consider the change in the water
requirement rate. The restoration work and the resulting changes in land use depend, to
some extent, on the efforts and budgets of the national and local governments and are
largely anthropogenic factors, while the restoration of vegetation and soil development
in landslide scars is greatly influenced by natural factors. Specifically, it is difficult to
predict exactly how much time it will take to reach the previous land cover. In terms of
classification methods, the use of satellite images with high spatial resolution does not
necessarily result in a higher classification accuracy. One reason for this is that satellite
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images with high spatial resolution are more affected by noise. These matters represent the
limitations of the study or potential weaknesses of the research tools.

As a future study, we first need to investigate how much the water requirement rate
of the paddy fields in the study area, for example, was changed by the earthquake. This
study is also essential for administrative organizations to estimate groundwater recharge
amounts with higher accuracy.
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