
����������
�������

Citation: Badgar, K.; Abdalla, N.;

El-Ramady, H.; Prokisch, J.

Sustainable Applications of

Nanofibers in Agriculture and Water

Treatment: A Review. Sustainability

2022, 14, 464. https://doi.org/

10.3390/su14010464

Academic Editor: Farooq Sher

Received: 14 December 2021

Accepted: 30 December 2021

Published: 2 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Review

Sustainable Applications of Nanofibers in Agriculture and
Water Treatment: A Review
Khandsuren Badgar 1,* , Neama Abdalla 2, Hassan El-Ramady 1,3 and József Prokisch 1

1 Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science,
Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street,
4032 Debrecen, Hungary; hassan.elramady@agr.kfs.edu.eg (H.E.-R.); jprokisch@agr.unideb.hu (J.P.)

2 Plant Biotechnology Department, Biotechnology Research Institute, National Research Centre,
33 El Buhouth Street, Dokki, Giza 12622, Egypt; neama_ncr@yahoo.com

3 Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
* Correspondence: b_khandsuren@muls.edu.mn; Tel.: +36-203-413-997

Abstract: Natural fibers are an important source for producing polymers, which are highly applicable
in their nanoform and could be used in very broad fields such as filtration for water/wastewater
treatment, biomedicine, food packaging, harvesting, and storage of energy due to their high specific
surface area. These natural nanofibers could be mainly produced through plants, animals, and
minerals, as well as produced from agricultural wastes. For strengthening these natural fibers,
they may reinforce with some substances such as nanomaterials. Natural or biofiber-reinforced
bio-composites and nano–bio-composites are considered better than conventional composites. The
sustainable application of nanofibers in agricultural sectors is a promising approach and may involve
plant protection and its growth through encapsulating many bio-active molecules or agrochemicals
(i.e., pesticides, phytohormones, and fertilizers) for smart delivery at the targeted sites. The food
industry and processing also are very important applicable fields of nanofibers, particularly food
packaging, which may include using nanofibers for active–intelligent food packaging, and food
freshness indicators. The removal of pollutants from soil, water, and air is an urgent field for
nanofibers due to their high efficiency. Many new approaches or applicable agro-fields for nanofibers
are expected in the future, such as using nanofibers as the indicators for CO and NH3. The role of
nanofibers in the global fighting against COVID-19 may represent a crucial solution, particularly in
producing face masks.

Keywords: natural fibers; cellulose; nano-medicine; agro-wastes; pollution; wastewater

1. Introduction

Nanotechnology has become one of the most promising research fields at the beginning
of the 21st century due to its leading technology of the new industrial revolutions. Due to
the growing environmental concerns of natural fibers, they have occupied a great position
in the research community, which have many advantages such as recyclability, cheaper,
high specific properties, lower density or lightweight, and biodegradability [1,2]. Natural
fibers also are considered renewable raw materials, which has become an obligatory issue
for safe living [3]. The synthetic material-based composites should be replaced by natural
ones in several manufacturing industries, such as the field of textiles, which flax was used in
ancient Egypt nearly 7000 years ago [3]. The cellulose is the most important component of
the lignocellulosic natural fibers, which many plants could order their content of cellulose
(%) as follows straw of rice (41–57), leaf of date palm (46), leaf of abaca (56–63), bast of jute
(61–71), leaf of banana (63–83), leaf of sisal (65), bast of hemp (68), bast of ramie (68.6–76.2),
bast of flax (71), bast of kenaf (72), leaf of curaua (73.6), leaf of pineapple (81), bast of nettle
(81–83), and seeds of cotton (83–91) [2,3].
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Nanofibers, as nanoproducts, have been used in several sectors, including biomedical,
pharmaceutical, agricultural, and industrial fields. Nanofibers could be found in natural
and synthetic form, whereas nanocellulose and its derivative materials are common natural
fibers. Nanofibers have many advantages, such as large specific surface area, high porosity,
and high size uniformity, which allow applying nanofibers in many environmental issues
such as wastewater treatment and removing pollutants from soils [1]. Nanofibers could be
defined as nanostructures that may be fabricated using several methods such as the drawing
method, template method, thermal-induced phase separation method, self-assembly, and
electrospinning [4]. The electrospinning method is considered the best method (simple and
easy) to fabricate non-woven nanofibers, which could be used due to the high-molecular-
weight polymers [4]. Several applications of nanofibers have been confirmed, such as
3D printing of fiber-reinforced nanocomposites [5], suitable nanocomposite materials and
fiber-reinforced polymer for airplane manufacture [6,7], fiber nano–bio-compositions for
cranioplasty, and other orthopedic applications [8,9], replacing conventional rubber by
the fiber-reinforced nanocomposites [10], using nano–coconut shell filler mixed jute mat-
reinforced epoxy composites for reducing the weight of the structures [11].

Therefore, this review focuses on the difference between fibers and nanofibers, their
applications, and their methods of fabrication especially using agro-wastes in producing
nanofibers. The sustainable applications of nanofibers in the field of agriculture and the
environment (particularly in wastewater treatment) are also discussed in the review.

2. Natural Fibers and Nanofibers

Agriculture is the main source of our supply of food, feed, fuel, and fiber. The natural
fibers are produced by the harvested plants, where different fractions have these fibers
(e.g., leaves, fruits, basts, stems, trunk, etc.) or animals (wool, silk, and hair) or minerals
(asbestos). The sources of natural plant fibers may include plant leaves such as abaca,
banana, and sisal; plant bast (e.g., kenaf, jute, and ramie, flax); seeds such as cotton; fruit
such as coir and oil palm; plant straw (canola, maize, rice, wheat); and others [3,12]. More
information about the natural fibers and differences between natural fibers and nanofibers
can be found in Table 1. Nanofibers are defined as fibers whose diameters are in the
nanometric range. Nanofibers have several main applications, including aerospace, 3D
printing industry, orthopedic and structural applications, polyurethane matrix, paper, and
textile industry [5,6,8–11,13–19]. It could also produce nanofibers from microbial sources
such as bacterial cellulose, which could be used in antimicrobial, filtration, biosensor, gas
sensor, and energy storage [20]. Bacterial cellulose nanofiber has been used for improving
its recycled paper quality [21], removing hexavalent chromium [22], removing methylene
blue [23], for 3D cell culture [24], or as a lithium-ion battery separator [25].

Table 1. A comparison between natural fibers and nanofiber, including their characterizations and
main applications.

Natural Fibers Nanofibers

Definition
The fiber is defined as a substrate of natural origin, which its
length/diameter ratio is more than 1:200 [26]

“Nanofibers could be defined as the fibers which have their diameters in
nanometric range” [27]

The main sources
Green composites based on natural fibers compared to petroleum-based
fiber composites [28,29]

Nanofibers are generally classified based on their composition into
metal oxides, polymers, metals, carbon, ceramics, and hybrid [30]

Main categories of natural fiber Main types of nano-lignocellulose fibers
1—Mineral fibers (asbestos, basalt, and brucite) 1—Lignocellulose nanofiber [31]
2—Animal fibers (hair, silk, and wool) 2—Bacterial nanocellulose [32]
3—Plant fibers (lignocellulose) [33] 3—Nanocrystalline cellulose [34]

4—Nano-fibrillated cellulose [16]
Main treatments for natural fibers Main fabrication techniques of nanofibers

Chemical (acetylation, alkaline, benzoylation, peroxide, potassium
permanganate, silane, and stearic acid) and surface treatments [1]

Non-electrospinning techniques (i.e., phase separation, drawing,
template synthesis, and self-assembly), electrospinning, and
hydrothermal techniques [35–38]

The main applications of natural fibers The main applications of nanofibers
Automobile, construction, aerospace, and marine structural
industries [39,40]

Aerospace, 3D printing industry, orthopedic and structural applications,
polyurethane matrix, paper and textile industry [13–15]
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3. Producing Nanofibers from Agro-Wastes

A large number of discarded wastes of many crops every year was produced along
with the crop production, which may cause environmental problems and have potential
safety hazards [41]. Globally, about 5 billion tons of bio-wastes are generated annually
from agricultural activities [42]. These wastes are the main source of a huge amount of
cellulose every year, such as banana rachis, coconut husk fiber, grain straw, grape skin,
garlic peel, soy hulls, and sugarcane bagasse [43]. These amounts of wastes could also
be produced from both the agriculture and forestry industries, which are characterized
as renewable, biodegradable, and low raw material cost. Cellulose nanofibers could be
divided into cellulose nanofibrils and cellulose nanocrystals (diameter 5–30 and 3–10 nm,
respectively), which are described as flexible, long, rope-like fibers with both crystalline
and amorphous regions [44]. Several studies were published concerning the use of different
agro-wastes in producing the nanofibers such as wastes of coconut husk and rice husk [43],
wastes of pineapple leaves [45], sugarcane bagasse [46], Eucalyptus sawdust [47], wastes
obtained from orange juice processing [48], quinoa wastes [49], discarded wooden bark of
Kozo plant [50], pomegranate peel [51], and wastes of peach branches [41]. A survey of the
most recent published articles regarding the use of agro-wastes in producing nanofibers is
listed in Table 2.

Table 2. List of some different agro-wastes that are used in producing nanofibers.

Nanofibers Obtained from Agro-Wastes and Used Method Comment on Nanofibers References

Polyvinyl alcohol/starch nanocomposite film reinforced with cellulose nanofiber of
sugarcane bagasse was produced using alkaline acid treatment under

ultrasonication

Nanocomposite film reinforced with cellulose
nanofiber [46]

Using wastes of bamboo (Phyllostachys pubescens) as lignocellulosic biomass using
microwave-assisted ethanol solvent treatment to produce cellulose nanofiber Cellulose nanofibers [52]

Lignocellulosic nanofiber can be produced by washing the Eucalyptus sawdust with
an aqueous surfactant solution Bio-nanocomposite films [47]

Wastes obtained from orange juice processing can be used to obtain biodegradable
film of reinforced cellulose nanofiber Nano-biocomposite films [48]

Using pomegranate (Punica granatum L.) peel extract beside polyvinylpyrrolidone
and polyvinyl alcohol Nanofibers for cosmeceutical purposes [53]

Quinoa wastes incorporated with multi-walled C-nano tubes-ZnO can be used to
obtain natural cellulose fibers Bio-nanocomposite [49]

Producing cellulose nanofibers obtained from the discarded wooden bark of Kozo
plant by acidified sodium chlorite and acetic acid Cellulose nanofibers [50]

In vitro assay of nanofibers obtained from ethanolic extract of pomegranate peel
used electrospinning method Gelatin nanofiber [51]

Peach branches used under high-pressure homogeneous to produce peach
branches–cellulose nanofiber Nanofiber reinforcer of gelatin hydrogel [41]

Crystalline nanocellulose was generated using coconut husk, and rice husk by
hydrolysis disintegration Mechanically reinforced polymer composites [43]

Nanocellulose incorporated in poly-lactic acid matrix obtained from cotton wastes
by acid hydrolysis Production of nanocellulose [54]

Producing cellulose nanofiber from pineapple leaf wastes, which reinforced into a
polystyrene substrate

Cellulose nanofiber reinforced polystyrene
nanocomposites [45]

4. Applications of Nanofibers in Agriculture

Recently, many researchers studied the main applications of nanofibers in agricul-
ture because of their tailoring properties, including the biocompatible and biodegradable
features, high surface area and porosity, ease of active ingredient additions (i.e., fungi-
cides, insecticides, herbicides, pesticides, hormones, and pheromones), and flexibility of
electrospun nanofibers [55]. Nanofibers can apply for plant protection (through applying
pesticides for pest control), plant growth (through applying hormones and/or fertilizers),
pollution and contamination controls, and irrigation systems (through water filtration), as
reported in Table 3 by Meraz-Dávila et al. [56], Raja et al. [57], and [58].
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Table 3. The main applications of nanofibers in the agricultural sectors as reported by the literature.

Main Applications of Nanofibers in
Agricultural Sectors References

1—Nanofibers for good germination by coating seeds [59–62]
2—Agro-wastes for production nanofibers [63,64]
3—Nanofibers-based filters for irrigation systems [65]
4—Nanofibers for plant protection [56]

4.1 Encapsulation of fungicides [66,67]
4.2 Encapsulation of herbicides [68]
4.3 Detecting trace pesticides in water [69]

5—Nano-silica grafted fiber [70]
6—Smart nanotextiles for sustainable agriculture [13]
7—Nanofibers for encapsulation of agrochemicals [71,72]

7.1 Fertilizer application [73]
7.2 Plant hormones (e.g., indole acetic acid) [57,74]

The main applications of nanofibers in the agricultural field may include coating
seeds [60–62], nanofibers-based filters for irrigation systems [65], nanofibers for plant
protection [56] through encapsulation of fungicides [66,67], or detecting trace some pesti-
cides in water [69], nano-silica grafted fiber [70], smart nanotextiles for sustainable agri-
culture [13], nanofibers for encapsulation of agrochemicals including fertilizer [75], and
phytohormones [71,72]. Nanofibers can be used as a smart and sustained delivery of agri-
cultural inputs through seed to improve germination and seedling growth in rice [59,76]
and cowpea [60], groundnut [57], and sesame [62].

Nanofibers were applied for plant protection through encapsulation of pesticides [56],
including fungicides [66,67], herbicides [68], nano-silica grafted fiber [70], and smart nan-
otextiles for sustainable agriculture [13]. The use of nanofibrous filters in irrigation systems
may involve functionalization (i.e., adsorption, filtration, and sterilization) by bioactive
compounds, which could be achieved by interfacial polymerization, doping nanoparticles,
self-assembly, and surface coating cross-linking or grafting, layer-by-layer [27]. Several
nanomaterials such as graphene oxide could be used for water purification because of
its multi-functionality, such as an antibacterial agent, excellent adsorption property, and
photocatalytic abilities [77]. Thus, nanofibers could be sustainably applied in many agri-
cultural processes that lead to reduce the loss in used agrochemicals pesticides, hormones,
and/or fertilizers [57,61–74], and to increase the productivity of crops through innovative
management of phytopathogens or nutrients [13].

5. Nanofibers for Water/Wastewater Treatment

Nanofibers are considered promising tools that are applied for diverse environmen-
tal conditions, especially polysaccharide-based electrospun nanofibers. The groups of
polysaccharides are suitable materials for these environmental issues because of their
biobased origins, variety of types, eco-friendly, and renewable nature [78]. In general,
the nanofibers have been applied for many environmental problems such as removing
pollutants from the air by filtration [79], water treatment [80], antimicrobial treatment [81],
environmental sensing [82], for heavy metal removing as adsorbents [83,84], and agricul-
tural/environmental remediation [78,85]. The environmental sustainability of water using
cellulose nanofibers-based green nanocomposites is considered one of the most important
environmental issues [86].

Based on the potential of water treatments under the global water crisis in a pure
and safe case, using nanofibers in this review in water/wastewater treatment and remov-
ing the pollutants is discussed in more detail as an urgent environmental task (Table 4).
The pollution of water causes an imbalance in different ecological environments and di-
rectly also affects human health. Thus, there is a great need for researchers to develop
effective technology in wastewater purification [35]. The main strategies in wastewater
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treatment may include filtration, adsorption, catalysis, centrifugation, biological treatment,
and electro-coalescence [87]. More than 200 natural and synthetic polymers were suc-
cessfully electrospun into nanofiber membranes, such as polyimide (PI), polyacrylonitrile
(PAN), poly/vinyl alcohol (PVA), poly/vinylidene-fluoride (PVDF), polylactic acid (PLA),
cellulose acetate (CA), polyurethane (PU), polyethylene oxide (PEO), and polycaprolactone
(PCL) [35].

Table 4. Using of nanofibers in water/wastewater treatments for removing heavy metal pollutants.

Nanofibers and Their Average Diameter Max. Adsorption Capacity Pollutant References

Polyvinylidene fluoride–polyacrylonitrile-ZnO nanofiber
membranes (200 nm) 350 mg g−1 Cd [88]

Amidoxylated polyacrylonitrile/Poly-vinylidene fluoride
(AOPAN/PVDF) (235–314 nm) 89.29 mg g−1 Pb (II) [89]

Nitro-oxidized carboxy-cellulose nanofibers obtained from moringa
plants (0.22 µm) 257.07 mg g−1 Hg [90]

Electrospun chitosan–polyethylene oxide-oxidized cellulose
biobased composite (159.3 nm and 21.7 µm, resp.) 15.72 mg g−1 Cu [91]

Modified poly butylene succinate nanofibers (10 µm) 91.2 and 122 mg g−1, respectively Ag (I) and Hg (II) [92]
TEMPO-oxidized cellulose nanofibers (diameter 6.15 nm) 56.50 mg g−1 Cu (II) [93]

Polyvinyl alcohol (PVP)-octa-amino-POSS nanofibers (21 µm) 37.4 and 120 mg g−1, respectively Cu (II), Pb (II) [94]
Starch-g-poly(acrylic acid)-cellulose nanofiber bio-nanocomposite

hydrogel (10 µm) 40.65 mg g−1 Cd (II) [95]

Oxidized regenerated cellulose nanofiber membrane (10 µm) 20.78 and 206.1 mg g−1,
respectively

Cu (II), Pb (II) [96]

polyvinylidene fluoride–amidoximized polyacrylonitrile nanofibers
(20.7 µm)

30.1, 25.8, and 72.5 mg g−1,
respectively

Cu (II), Ni (II), Pb (II) [97]

Modified prepared polyacrylonitrile nanofibers (320 nm) 22.95 and 12.36 mmol g−1,
respectively

Cu and Pb [98]

Centrifugal spinning of lignin amine/cellulose acetate nanofiber
(756 nm)

50.08 and 31.17 mg g−1,
respectively

Cu (II), Co (II) [83]

Visualized chitosan–polyacrylonitrile nanofiber membrane 164.3 mg g−1 Cu (II) [99]
Zn/Al/gallate layered double hydroxide–polystyrene nanofibers

(2–5 µm) 190 mg g−1 Cu (II) [100]

Polyacrylonitrile–polyetherimide nanofibers (0.84 mm) 242.7, 214.1, 258.3 mg g−1,
respectively

Cu (II), Cr (VI), As
(V) [101]

Polyhedral Oligomeric Silsesquioxane (POSS); 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO); Amidoxylated
polyacrylonitrile (AOPAN).

Concerning the mechanism of cellulose nanofibers (CNFs) in water purification, CNFs
can make a link with carboxylic surface functional groups by oxidation and chemically
bonded nanocomposites based on modified CNFs with various metal–organic or metal
pillars frameworks in order to create a robust and high-efficiency material [86]. The
mechanism of water purification using nanofibers consists of both physical and chemical
methods that could be explained based on the chemical and physical bases (Figure 1).
Chemically, the formation of stable chemical bonds between nanofibers and metal ions and
relevant oxidation-reduction is involved. Physically, the surface area and pore volume of
nanofibers are key parameters determining the fiber adsorption capacity and, therefore,
water treatment performance. This mechanism was confirmed by many researchers, such
as Agrawal et al. [102] and Uddin et al. [103]. Many recent reviews were published on the
removing of hazardous pollutants (i.e., both organic and inorganic materials) from wa-
ter/wastewater using nanofibers such as Chen et al. [104], Cui et al. [35], Ibrahim et al. [105],
Jahan and Zhang [106], Marinho et al. [107], Sakib et al. [80], Sjahro et al. [108], and El-
Aswar et al. [109]. These previous studies confirmed that electrospun nanofiber membranes
could be easily used for achieving different water treatments by combining multifunctional
materials due to their high specific surface area and unique interconnected structure [104].
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Figure 1. The mechanism of water purification using nanofibers consists of both physical and
chemical methods, which illustrates electrostatic and intermolecular forces between nanofibers and
pollutants in water.

6. Nanofibers for Food Packaging

In the food industry, nanofibers were applied in many processes such as encapsulation
of food materials [110], food preservation [111], beverage industry [112], and food packag-
ing industry [113]. Food packaging is considered a powerful impact on maintaining food
safety and its quality [113] through some functional properties, including gas or moisture
absorbents, specific gas barrier, antimicrobial properties, antioxidant activity, UV protection,
or monitoring capacity to report product quality [114]. The packaging materials are impor-
tant materials that could use in minimizing bacterial and chemical spoilage of foods [115].
Currently, food packaging can be prepared into intelligent and active forms [116]. Active
packaging is maintaining or improving the packaged food conditions or extending its
shelf-life, whereas intelligent packaging is the monitoring of the packaged food conditions
or the surrounded environment of the foods [114]. The group of intelligent packaging
systems is composed of colorimetric indicators, which may provide essential information
on any changes occurring in a food product or its surroundings, such as temperature or
pH, through observing visual color changes [113] (see Figure 1).

Due to their low price, availability, and desirable properties, petroleum-based plas-
tics are widely used as food packaging materials. These such plastic materials are non-
biodegradable, causing many environmental problems reducing food safety due to the
migration of some compounds such as monomers, plasticizers, and solvent residues from
plastics into the food [48]. Functionalized nanomaterials driven antimicrobial food pack-
aging are considered promising solutions as alternative substances for food packing [117].
The sustainable and green sources for producing edible films for food packaging have been
widely used, such as many fruit and vegetable purees as wastes resulting from food pro-
cessing [48]. Thus, nano-based filler compounds, including cellulose nanofibers, nano-clay,
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and nanometals, were utilized to improve the mechanical, physical, and gas inhibitory
properties of edible films (Table 5).

Table 5. The main applications of nanofibers in the field of food industry and packaging.

Main Applications According to Different Food Processes and
Industry References

1—Nanofibers for the field of food industry [118]
2—Nanofibers for beverage industry [112]
3—Nanofibers for encapsulation of food materials [110]
4—Nanofibers for food preservation [111]
5—Nanofibers for food packaging industry

5.1 Nanofibers for food intelligent packaging [113]
5.2 Nanofibers as an active food packaging system [119]
5.3 Nanofibers for active–intelligent food packaging [120]
5.4 Nanofibers containing biodegradable polymers [121]
5.5 Nanofiber for active food packaging [122]
5.6 Nanofibers for food freshness indicators [113]
5.7 Cellulose-based hydrophobic materials for food packaging [123]
5.8 Functionalized nanomaterials driven antimicrobial food

packaging [117]

Nanofibers such as cellulose nanofibers have been reinforcement agents in recent years
that have high thermal and chemical stability compared with other organic nanoparticles.
Due to the impermeability of nanofillers, cellulose nanofiber can trigger a controlled release
of active compounds and form complex diffusion pathways [48]. Accordingly, packaging
films can control pathogens and improve the quality and shelf life of food by acting as
carriers of antimicrobial, antioxidant, and active compounds [48]. The use of nanofibers in
food packaging may include different topics as presented in Table 5, which focused on using
nanofibers for active–intelligent food packaging [113,120,122], as an active food packaging
system [97], nanofibers containing biodegradable polymers [121], nanofibers for food
freshness indicators [113], cellulose-based hydrophobic materials for food packaging [123],
nanofibers for electrochemical DNA biosensors [124], and functionalized nanomaterials
driven antimicrobial food packaging [117].

7. Nanofibers for Biomedical Fields

The most common method in producing nanofiber is polyvinyl alcohol (PVA), as
a good candidate to be used for plastic and packaging materials to produce synthetic
biodegradable polymers (Figures 2 and 3). A polymer solution of electrospinning depends
on many factors such as polymer characterization (solubility and its molecular weight),
solvent type (volatility, vapor pressure, and dielectric constant), polymer solution (viscosity
and surface tension), and ambient conditions, including temperature and relative humid-
ity [107]. Several advantages of PVA were reported as excellent film-forming, adhesive, and
emulsifying properties, which could be used in different industries through its potential as
an agent for sizing of textile, an adhesive of paper, and soluble packaging films [46]. How-
ever, some limits in PVP usage were also reported, including its high cost, poor moisture
barrier, and low biodegradation rate, which need to modify PVA using other polymers
(such as starch and gelatin) and nanoparticles [121]. Due to the low mechanical strength
of the biodegradable polymers alone obtained from PVP, some materials are needed to be
inserted to improve these properties of biodegradable plastic [46]. Many applications of the
synthesis of natural cellulose nanofibers could be explained in the following sub-sections.
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Figure 3. Optical and SEM image of nanofibrous membrane.

The application of nanofibers or with some bioactive compounds is increasing in
medicine as drug release capsule; transdermal absorbent; drug release artificial skin; wound
dressing; artificial blood vessel; covered stent; artificial cornea; artificial skin; filling agent
for artificial bone, wound, and therapeutic applications; nerve or organ patch wound
covering and protective agent; dialysis membrane; surgical adhesive sheet; and adhesion
prevention materials [63]. Especially, nanofibers are still the most widely used as drug de-
livery control systems due to their functional properties, ability to deliver drugs to specific
targets, increased surface area, improved dissolution rate of specific drugs [125], and ability
to encapsulate various drugs. The medical applications of nanofibers were investigated
primarily in humans, but some researchers are considering them for veterinary applications.
However, there is a limited result on the practical application of electrospun nanofibers in
veterinary medicine. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) electrospun
fibers were filled with up to 20% of diclofenac sodium for encapsulation and release, which
is recommended for humans and animals for pain, fever, and inflammation [126]. Another
study presented that zein electrospun nanofibers were loaded with progesterone are ideal
media for progesterone delivery for bovine estrus synchronization. In particular, nanofibers
loaded with 1.2 g of progesterone had much stronger control of progesterone delivery than
1.9 g and 2.5 g of progesterone, releasing 87.28% of progesterone by 7 days [127].

Several studies reported about different applications of the nanofibers in medical sectors,
such as Malik et al. [37], de Carvalho and Conte-Junior [128], Ghajarieha et al. [129], Karthega
et al. [130], Rivelli et al. [131], Urbina et al. [63], Zhao et al. [132] and Zhong et al. [133], as well
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as in the pharmaceutical applications, for example, Imani et al. [134], Balusamy et al. [135],
Dodero et al. [136], Kumar et al. [137], Haidar et al. [138], and Pandey [139], as listed in Table 6.
The healing process of bones and tendons is very slow, and depending on the severity of the
injures, it takes at least six weeks or more for them to regain normal alignment. The slow
healing process of injured tissue in the tendon is mainly caused by an inadequate blood supply.
Deep tendon tissue receives the nutrients it needs, probably through diffusion. Some studies
reported that nanofiber-based scaffolds with functional additives have a greater ability to treat
these problems in animals.

Table 6. A list of applications of nanofibers in biomedical ad pharmaceutical fields.

Applications of Nanofibers in Medicine Applications of Nanofibers in
<break/>Pharmacology

Adhesion prevention materials Anticancer drug delivery
Artificial blood vessels, cornea, and skin Antimicrobial drug delivery

Drug release capsule Antibiotic drug delivery
Drug release artificial skin Anti-inflammatory drugs

Dialysis membrane Cell delivery and tissue engineering
Facemask, skin and vascular tissue

engineering Growth factor and protein delivery

Nerve or organ patch Neuroprotective drugs
Rhinosinusitis treatment Nucleic acid delivery
Surgical adhesive sheet Miscellaneous drug delivery
Transdermal absorbent Controlled release of gentamicin

Wound covering and protective agent Localized chemotherapy
Filling agent for artificial bone Smart active drug release systems

Wound dressing and healing systems Transdermal drug delivery

Wound and therapeutic applications Double-layered planar nanofibrous
scaffolds abdominal adhesion prevention

Poly-L-lactic acid (PLLA) nanofiber membrane was used in the treatment of bone
damage in rabbit tibia and compared with porous collagen membranes and collagenous
membranes reinforced by nanofiber membranes. After 3 weeks of the treatment, bone tissue
formation was high in the collagenous membrane reinforced by the nanofiber membranes
treated group. After 6 weeks of the treatment, the regeneration of cortical bone tissue was
also better in the collagenous membrane reinforced by nanofiber membranes treated group
than other groups. Additionally, nanofiber membrane and porous collagen membrane
treated groups were filled with spongy bone-like tissue during the treatment. These results
were indicated that electrospun nanofibers or combined with collagen could improve
bone regeneration [140]. Similarly, other studies reported that the effect of other polymer
nanofibers with active compounds in bone damage.

Poly(lactide-co-glycolide) scaffolds were enriched with calcium phosphate nanopar-
ticles (PLGA/CaP) and silver doped calcium phosphate nanoparticles (PLGA/Ag-CaP),
and they were shown great biocompatibility and bone healing without being absorbed by
adjacent bone during the treatment of bone defects in sheep. Both scaffolds are allowed
bone formation directly at the center of the former defect, and surface integrals of new bone
formation were very similar [141]. Another study reported that electrospun cellulose–iron
acetate nanofibers were also enhanced osteoblast cell attachment and proliferation among
mats’ porous [142].

Polyvinyl alcohol (PVA) nanofiber contained Eucalyptus globules extract was used in
the treatment of Achilles tendon injures. As a result, nanofibers loaded with eucalyptus
globules extract were shown reduced new angiogenesis, increase the ratio of fibroblasts to
fibroblasts, reduce edema, and the low placement of fine collagen fibers during treatment
compared to the untreated group [143]. The treatment mechanism is explained by inhibiting
oxidative stress. Eucalyptus extract is contained flavonoid and phenolic compounds,
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including quercetin, tannins, and saponins, which have antioxidant, antimicrobial, and
anti-inflammatory activities [144]. Basically, if nanofibers contain antioxidant agents, they
will have a potent ability to reduce the progression of oxidative stress by controlling reactive
oxygen species (ROS).

The mechanical properties and biocompatibility of electrospun nanofibrous membrane
are very promising in tissue engineering for implantation in the injures including vascular,
skin, cartilage, etc. The idea of combining different structures and materials with building
a multi-component tissue engineering vascular scaffold to improve mechanical properties
and biocompatibility was intensively utilized [145,146]. Electrospinning has emerged as a
common technique for producing nanofiber-based scaffolds for vascular and endothelial
reconstruction. This is because the simulation of the microstructure of natural arteries
and integration of the graft with surrounding cells and tissues are available [147,148].
Furthermore, it is convenient to incorporate the regulatory components into the drafts
during the electrospinning process [149,150].

The hybrid small-diameter vascular graft with sustained heparin release was de-
veloped from electrospun poly(ε-caprolactone) (PCL) and chitosan, which was shown
the anti-thrombogenic and endothelialization properties. Heparin functionalization in
nanofibers clearly improved the blood compatibility of these vascular grafts. It was continu-
ously released from the graft for over a month [150]. In addition, in vitro study investigated
the cartilage formation of mesenchymal stem cells (MSCs) on PCL nanofiber scaffolds in
the presence of transforming growth factor-beta (TGF-β1). The differentiation of stem cells
into chondrocytes on the nanofiber framework was comparable to established cell pellet
cultures. It was advantageous to use nanofibers instead of the cell pellet system for better
mechanical properties, oxygen/nutrient exchange, and ease of manufacture. The authors
reported that the PCL nanofiber scaffold is practical support for MSC transplantation and
is a candidate scaffold for a cell-based tissue engineering approach to cartilage repair [151].

A femoral artery model in canine was developed from poly(L-lactide-co-caprolactone)
(PLCL) scaffolds with collagen/chitosan in a 3:1 ratio. The draft scaffolds were shown im-
proved long-term patency, better growth of endothelial cells (ECs) and smooth muscle cells
(SMCs), and improved vascular gene and protein expression compared to non-concentrated
scaffolds [152]. In vitro study, PLCL nanofiber-based scaffolds with tussah silk fibroin as a
vascular draft effectively promoted the adhesion and proliferation of vascular endothelial
cells [153]. Moreover, electrospun nanofiber scaffolds for vascular graft application were
proposed by an in vitro study that allowed the mechanical properties of vascular substitutes
to be adjusted, and compliance adjustment for vascular tissue engineering improved [154].

A functional 3D model of stromal and epithelial cells was developed from polyglycolic
acid (PGA) nanofiber-based scaffolds and used to construct a functional reconstitution of
bovine endometrium. In a typical procedure, stromal cells were seeded into the scaffold
first, followed by epithelial cells after 1 or 7 days. The epithelial cells seeded on day 1 were
represented more natural endometrial tissue than the epithelial cells seeded on day 7. The
epithelial and stromal cells co-cultured on the scaffold were showed proper expression of
the natural endometrium and ZO-1 cytokeratin and vimentin by the epithelial cells [155].
Basically, in vitro and in vivo studies confirmed that PGA nanofiber-based scaffolds or with
some additives and their essential properties in medical applications. Xu and co-workers
that PGA scaffolds containing cells derived from tendon sheaths are functionally and
structurally similar to natural sheaths. After 12 weeks of surgery, this artificial sheath
formed a relatively mature structure and had a smooth inner surface and the histological
structure of the well-developed sheath with a clear space between the tendon and the
artificial sheath. Surprisingly, compared to the tendons that were surrounded by scar-
repaired tissue, the tendons used less energy to slide in the constructed sheath [156]. In
addition, PGA scaffolds containing 10% and 30% of gelatin improved the endothelial cells
and smooth muscle cell adhesion and survival [157].

After spreading the coronavirus disease (COVID-19), many approaches have been
applied to prevent this pandemic, including the use of respirators, practicing personal
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hygiene, social distancing, and wearing face masks [158]. Electrospun nanofibers are
considered suitable air filtration devices (diameters range from 40 to 2000 nm), which
allow air and prevent microbes from passing [159]. Thus, many recent publications have
been focused on the potential of “electrospun nanofibers-based face masks” to reduce the
spreading of SARS-CoV-2 among humans because these nanofibers may achieve virus
blocking, antivirus selectivity, biodegradability, etc. [160–162].

8. Conclusions

A comparison between natural fibers and nanofibers was discussed in this review,
besides different sustainable applications of nanofibers in fields of biomedicine, agriculture,
and the environment. Producing nanofibers from different agro-wastes and applying
nanofibers for food packaging were also the main topics in this manuscript. Based on
the environmental problems of synthetic nanofibers, particularly petroleum-based fiber
composites, natural nanofibers are recommended especially after reinforcement, along with
the matrix, for more performance and strength of the composites. The nano–bio-composites
could produce by coupling matrix of nanoparticles into bio-reinforcer, which converted
into the biofiber-reinforced polymer matrix. Nano-based reinforced polymeric composites
can be applied for sophisticated applications, mainly in agriculture (irrigation system,
seed coating, for plant protection, agrochemical encapsulation), environmental (removing
pollutants from the air by filtration, antimicrobial treatment, environmental sensing, for
heavy metal removing as adsorbents, and agricultural/environmental remediation, and
wastewater treatment), and food sectors (food packaging, beverage industry, encapsulation
of food materials, food preservation, and nanofibers for electrochemical DNA biosensors).
From the previous applications, using nanofibers in water treatment and food packaging
are important areas for research and development. Several further investigations are
needed to answer questions concerning the sustainable application of nanofibers in our
life, i.e., what are the new approaches for using nanofibers in agriculture? Can we use the
nanofibers as indicators for CO and NH3 in the air of rooms? Can we use nanofibers in
nano-biofortification? What are the expected roles of nanofibers-based face masks in the
global fighting against COVID-19?
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