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Abstract: Wetlands are a distinctive terrestrial ecosystem that benefits living things, including
people, in various ways. Sustainable wetland ecosystem resources are needed to protect the global
environment. Wetlands in China have undergone positive and negative changes in response to
several factors, but studies documenting their long-term dynamicity have been few, particularly in
Guangling County. This study examines the change of wetlands area based on remotely sensed data
while exploring trends associated with climate variations and economic growth in Guangling County,
China. Analysis of remotely sensed imagery, mainly in hilly and nonhomogeneous environments is
problematic, largely as a result of interference and their high spectral non-homogeneity. We conducted
experiments using five classical machine learning algorithms based on the Google Earth Engine (GEE)
and obtained the greatest robustness and accuracy using a Support Vector Machine (SVM)—Radial
Basis Function (RBF) kernel approach, with overall accuracy and kappa statistics ranging from 86% to
98.1% and from 0.789 to 0.960, respectively. Based on the SVM-RBF model’s outperformance of four
other algorithms, we identified spatial distributions of wetland in the study area and associated
change trends. We found that 45.71 km2 of wetland area was lost over the past 3.7 decades (January
1984–December 2020), or 81.82% of wetland area coverage. In this paper, we explore how factors
such as county economic growth (GDP), humidity, and temperature variations are tightly linked with
wetland change.

Keywords: wetland; change detection; climate; gross domestic product; Google Earth Engine;
machine learning; remote sensing; Guangling County

1. Introduction

Sustainable wetland ecosystems can offer direct monetary value to human beings
and indirectly serve human beings [1]. Wetlands are highly productive natural resources
that provide globally substantial social, economic, and environmental benefits. They are
regarded as the “kidneys of the Earth” and are its most important ecosystems [2]. Wetlands
perform a wide range of stabilizing functions, including by improving water quality;
recharging groundwater; storing water and natural products; offering aesthetic and recre-
ational opportunities; mitigating storms and flooding; controlling erosion and stabilizing
shorelines; helping support fish, timber, peat, and wildlife resources; and increasing tourism
opportunities [3,4]. The key role of many wetlands in supporting biological communities
means that they are ecosystems that provide valuable goods. For example, wetlands can
provide food, water, and shelter to plants, animals, and humans [5]. As an intact land cover,
they are equally associated with environmental monitoring and national economies.

Wetlands are naturally dynamic systems that can be created, re-formed, degraded,
and destroyed by a range of natural processes [3]. Natural or artificial wetlands can be lost
or formed, and sudden reductions in the degradation of wetlands have become a global
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phenomenon in response to population growth and climate change [6]. Wetland loss and
degradation are caused mainly by human pressure, which increases demand for agricultural
land associated and land reclamation with population growth [4,7,8]. The consequences
are very serious: Wetland loss means loss of habitats, decrease in water depth, deterioration
in water quality, and damage to natural ecosystems [9]. Since 1950, China’s wetlands have
faced serious issues that have led to calls for research and monitoring, being under constant
threat from multiple influencing factors [10]. During this time, they have undergone a
critical change.

Wetland change monitoring is particularly important with a spatial arrangement to
understand their ecosystem functions and services, as well as to establish management
policies and implementations [11]. Efficiently and accurately assessing change trends of
wetlands is particularly crucial for decision making and to mitigate wetland loss [12].
Mapping wetland status is, thus, key to monitoring and development planning before
adopting new policies for managing wetland resources [13]. The use of remote sensing
technology for change detection based on image differencing (including spectral mixture
modeling and various spectral indices) could be a particularly effective way of mapping
land cover changes [3]. Analyzing the time series of remote sensing imagery helps in
quantifying and understanding land cover changes. Because we aim to discover wetland
change trends, time-series data have the potential for correlating and finding differences in
adjacent periods between observations. Remotely sensed data from Landsat satellites are
the most common source of optimal ground resolution and spectral bands for use in tracking
and documenting land features. Owing to their long history and accessibility, Landsat
satellites have often been used in land cover monitoring applications [14–16], allowing
the use of historical data to track past adjacent change trends. Because remote sensing
time series data are numerous, substantial computational power is needed for analysis.
Remote sensing time series data are so numerous as to be infeasible to download, analyze,
and manage using our computer power [17], with processing method and classification
technology only raising the technological requirements. In this study, we used the Google
Earth Engine (GEE), a cloud computing platform that can process and run such time-
series data, enabling users to analyze petabytes of data on the fly without navigating
the complexities of cloud-based parallelization (https://earthengine.google.com accessed
on 5 February 2020). Google Earth Engine can be used for mapping [18] and classical
algorithms, such as support vector machine (SVM), random forest (RF), classification and
regression trees (CART), which can be freely implemented in GEE [17,19–21].

Previous studies such as [8,11,22] used satellite imagery to identify and map wetlands.
Landsat imagery, owing to its time scales, spectral bands, and spatial resolution, holds
great potential for wetland studies [2]. The consequences of climatic change and human
pressure due to population growth are the main cause for the degradation of wetland
ecosystems. The human activity caused by tremendous agricultural encroachment is the
main driver of natural wetland degradation [23,24]. Wetland loss in the eastern regions
of China (Northeast China, North China, Southeast China, and South China) is affected
mainly by urbanization [25].

Since wetlands’ resources are one of the most important natural environment resources
in the world; understanding, protecting, and using them wisely are essential to attaining
sustainable development. However, they remain among the world’s least understood and
most seriously abused assets [1]. The research gap and limited information throughout
the world about wetlands have been revealed by current scientific reviews and studies.
In China, we encountered little concern about wetland ecosystem resources and limited
databases about long-term wetland change trends in the country, particularly in Guangling
County. The wetland change trend data were sadly lacking. Wetland distribution and
documentation have been very limited in the county. This paper uncovers wetland change
trends over the past 3.7 decades and their links to climate variabilities and economic
growth in the county to maintain and restore ecologically vulnerable areas for sustainable
development of wetland ecosystems.

https://earthengine.google.com
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The specific objectives of the present study are to: (I) evaluate the performance of
the five classical machine learning algorithms on time-series data classifications based on
Google Earth Engine (GEE); (II) detect the change trends of wetland over the past decades
in Guangling County, Shanxi Province, China; and (III) explore wetland change trends’ link
with the economic growth of the county and climate fluctuations in the area.

2. Materials and Methods
2.1. Study Area

The region of interest is Guangling County, in the northeast portal of Shanxi
Province, China. Geographically, located between 113◦57′4.75′′~114◦16′58′′ E longitude and
39◦37′50.74′′~39◦45′37′′ N latitude. Guangling County (Figure 1) is surrounded by the
Taihang Mountains and is adjacent to Yu County in Hebei Province in the east, Ling Qiu
County in the south, Hun Yuan County in the west, and Yang Yuan County in the north. It
comprises around 1225 km2 of land area and a population of 185,000, of whom 150,000 are
based on agricultural activities. Economic data at the county level show that the gross
domestic product (GDP) is increasing continuously, reaching >3.985 billion yuan in 2019, a
year-over-year increase of >8.8%.
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Figure 1. Location of Guangling County (the background is from Esri street map (https://www.
arcgis.com/apps/mapviewer accessed on 1 October 2021)).

The study area has a continental monsoon climate, with significant annual variations
in temperature (in meteorology, diurnal temperature variation is the variation between a
high temperature and a low temperature on the same day, averaging 13.2 ◦C annually) and

https://www.arcgis.com/apps/mapviewer
https://www.arcgis.com/apps/mapviewer
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changes in precipitation (with more than three-quarters of annual precipitation occurring
from June to September and almost none in winter), and steppe climate refers to the climate
of a region receiving precipitation below potential evapotranspiration (http://www.sx-
guangling.gov.cn/ accessed on 1 September 2021). Guangling County is characterized
by a temperate continental monsoon climate, with an extreme maximum temperature of
38.2 ◦C, a minimum temperature of −34 ◦C, an average annual temperature of 7 ◦C, a
frost-free period of 134 days, precipitation of 388 mm, and 340 days of weather above grade
II. The county has a weak industrial base and is well known for traditional agricultural
activities. It is a source of more than 10 kinds of proven mineral resources, including coal,
iron, germanium, gallium, manganese, limestone, granite, and particularly reserves of
high-calcium limestone, high-grade magnesium-rich dolomite, and iron ore. The area is
characterized by different geomorphic types mainly mountains, hills, and basins. Loess is
widely distributed, and the terrain is high in the west and low in the east. Yongding River,
the source of the Liuhu River, runs through the east and west and belongs to the Haihe
River system. The county’s lowest point is about 930 m above sea level, where the Huliu
River flows out of the county.

2.2. Remote Sensing Datasets and Data Processing

When monitoring land use land cover change trends, time-series multitemporal and
multisource remotely sensed data are essential. In this study, open-access satellite data
based on compatible spatial resolutions were used. Being freely accessible and offering good
spatial resolution, Landsat data are consistent with data from former missions, allowing
assessment of long-term regional and global land cover changes [26]. In our experiment,
data with high quality from Landsat 5, 7, and 8 are used for classification and prediction. For
classifications, bands and periods of satellite imagery were selected. Owing to interference
and distortion during the cloudy or rainy seasons, periods of clear weather with fewer
cloudy and qualified images were used. We tried to use all cloudless freely available
qualified Landsat imagery in GEE. Data sources are summarized in Table 1.

Table 1. Data sets list and descriptions used in our experiments.

Datasets Descriptions & Acquisition Date Derived Variables Sources

Remote sensing data:
Level-1 Landsat images

167 Landsat images—30 m
resolution (2 TM images in 1984,

14 TM images in 1990, 24 TM
images in 1995, 21 ETM+ images in

2000, 33 ETM+ images in 2005,
2 TM images in 2010, 19 OLI

images in 2015, 52 OLI
images in 2020)

Normalized Difference Water
Index (NDWI), Normalized
Difference Vegetation Index

(NDVI), Modified Normalized
Difference Water Index
(MNDWI), Normalized

Difference Built-up Index
(NDBI), Bare Soil Index (BSI)

USGS
https://landsat.usgs.gov/

accessed on 4 April 2021 in GEE

Ground truth data Field data using GPS recorders
(28–30 August 2017) 35 filed observations Field trip

Shuttle Radar
Topography Mission

(SRTM)

Digital elevation data
(11–22 February 2000) Elevation and Slope

https://cmr.earthdata.nasa.
gov/search/concepts/C10000

00240-LPDAAC_ECS.html
accessed on 15 April 2021

Google Earth Time series imageries Wetland–non-wetland Google Inc.

Open street map Open-source data Vector polygon land
cover features

https:
//www.openstreetmap.org/

accessed on 1 May 2021

Global surface water
Distributions of water surface

(1 March 1984–
31 December 2020)

Waterbody
https://global-surface-water.
appspot.com/# accessed on

1 May 2021

Climate Temperature, precipitation, and
relative humidity (1981–2020) Climate time-series data

https://power.larc.nasa.gov/
data-access-viewer/ accessed

on 10 June 2021

http://www.sx-guangling.gov.cn/
http://www.sx-guangling.gov.cn/
https://landsat.usgs.gov/
https://cmr.earthdata.nasa.gov/search/concepts/C1000000240-LPDAAC_ECS.html
https://cmr.earthdata.nasa.gov/search/concepts/C1000000240-LPDAAC_ECS.html
https://cmr.earthdata.nasa.gov/search/concepts/C1000000240-LPDAAC_ECS.html
https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://global-surface-water.appspot.com/
https://global-surface-water.appspot.com/
https://power.larc.nasa.gov/data-access-viewer/
https://power.larc.nasa.gov/data-access-viewer/
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Because Tier 1 (T1) datasets available in GEE were used, no further preprocessing
was required. The data met preprocessing quality requirements, but the imagery covering
our study area was not clear enough (too bright pixels and black pixels), so we applied
to preprocess. The study area is surrounded by hilly and mountainous regions, remotely
sensed images may have a high probability of being distorted by shadows [20]. Cloud
masking metric was applied in preprocessing stage. For cloud masking (with deselecting
images having more than 3% of cloud shadow and images having more than 5% of cloud
cover), the metrics median () and mosaic () written in JavaScript were applied in GEE. Thus,
the cFmask, cloudScore, cloud, and cloud shadow masking metrics written in JavaScript
were applied to image composites of Landsat Tier 1 to remove various types of clouds and
noises to produce a per-pixel, minimally cloudy or cloud-free, and noise-free multispectral
composite of the region of interest.

As Table 1 specifies, spectral indices from optical imagery such as NDWI, NDVI, NDBI,
and BSI were extracted and used for feature extraction and model inputs in classification.
The Normalized Difference Water Index (NDWI) is a spectral index used for detecting
inundation and separating dry land from water bodies. NDWI was formulated from
spectral wavelengths of near-infrared NIR and short-wave infrared SWIR channels, which
are sensitive to open water and vegetation liquid water [27] (Equation (1)). Thus, NDWI
was used to clearly show water bodies and distinguish wet areas from dry land. The
Normalized Difference Vegetation Index (NDVI), the most common spectral index in land
cover monitoring applications, was used for vegetation studies because of its sensitivity to
photosynthetically active biomass and phonological dynamics in vegetation or forest [28]
(Equation (2)). The Normalized Difference Built-up Index (NDBI). Urban areas or built-up
areas and barren land show drastically different reflectance between NIR and short-wave
infrared SWIR, whereas vegetation has a slightly larger or smaller DN value on SWIR than
on NIR, so we used NDBI for verification (Equation (3)). The Bare Soil Index (BSI) was
calculated by combining blue, red, near-infrared, and short-wave infrared (SWIR) spectral
bands (Equation (4)). BSI can be used in numerous remote sensing applications, including
soil mapping and crop identification (in combination with NDVI) [29].

NDWI =
NIR− SWIR
NIR + SWIR

(1)

NDVI =
NIR− Red
NIR + Red

(2)

NDBI =
SWIR− NIR
SWIR + NIR

(3)

BSI =
(SWIR + Red)− (Green + Blue)
(SWIR + Red) + (Green + Blue)

(4)

In Landsat 4–7, bands 4 NIR and 3 Red were used to calculate NDVI; Bands 4 NIR and
5 SWIR to calculate NDWI [30]; Bands 5 SWIR and 4 NIR to calculate NDBI; and Bands
5, 3, 2, and 1 SWIR, Red, Green, and Blue, respectively, to calculate BSI. In Landsat 8,
bands 5 NIR and 4 Red were used to calculate NDVI; Bands 5 NIR and 6 SWIR to calculate
NDWI; Bands 6 SWIR and 5 NIR to calculate NDBI [31]; and Bands 6, 4, 3, and 2 SWIR, Red,
Green, and Blue, respectively, to calculate BSI. Cloud-masked Landsat imagery was used to
generate a per-pixel median composite of each of the multispectral bands and the spectral
indices. Bands 1 Blue to 5 SWIR in Landsat 5 and 7, Bands 2 Blue to 7 SWIR2 in OLI, and
Equations (1)–(4) NDVI, NDWI, NDBI, and BSI were extracted from the median composite,
clipped to the region of interest, and finally used as model inputs.

2.3. Sample Data

Adequate datasets are key to training machine learning models for use with remotely
sensed image analyses. The reference data used for dataset collection were field data as
ground truth data, obtained by field survey on 28–30 August 2017. The field data were
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recollected and merged into three classes, as described in Section 2.4, with Open Street Map
(OSM) and historical data of high-resolution Google Earth imagery used to collect datasets
(evaluation data) incorporating ground truth data. To precisely acquire wetlands of the
study area, we used various data sources to collect datasets, including Landsat images,
Shuttle Radar Topography Mission (SRTM), and Global Surface Water (GSW) [32]. A total
of 6792 data were collected, of which 5335 pixels or points were used as training data and
1457 points as validation or test data. The main data used for classifications and predictions
were Landsat images, including TM, ETM+, and OLI imagery. All imagery used was the
least cloud cover or noncloudiness imagery from early 1984 (Landsat TM) to the end of
2020 (Landsat OLI) at a 5-year interval.

2.4. Classification System

We performed image classification using pixel-based image analysis approaches,
which are more convenient for images with heterogeneity in nature than for object-based
image analysis [33]. Wetlands could include areas of marsh, fen, peatland, and water,
whether natural or artificial, permanent or temporary, whether water is static or flowing,
fresh, brackish, or salty—including areas of marine water with a low-tide depth of not
more than 6 m. Based on this definition, considering the features of global wetlands, in this
study, water both natural and artificial rivers or reservoirs, was considered as wetland [34].
All mapped land cover classifications and land cover changes were categorized as wetland
or non-wetlands. Thus, our experiment attempted to classify land cover features of the
study area as wetland (including forested wetlands) and non-wetland (forest and consider-
ing all other classes in one class); Figure 2 shows classification system (e.g., the first level of
Anderson [35,36]) and Figure 3 is general workflow of the study implemented for proposed
wetland mapping.
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2.5. Machine Learning Classifiers in GEE

Machine learning (ML) classifiers have emerged as a field of artificial intelligence
that uses complex reference data to build a classifier based on data-driven decisions [30].
We implemented land cover classifications using algorithms CART, Gradient tree boost,
Minimum distance, RF, and SVM.

2.5.1. Classification and Regression Trees (CART)

CART [37] is a decision tree-based model that uses tree structures for simplicity and to
reduce sample dimensions. The tree-structured approach is simpler in regression than in
classification. CART, a predictive modeling approach employed in machine learning and
other fields, uses a decision tree as a predictive model for use with tree models where the
target variables can take a discrete set of values known as classification trees and decision
trees where the target variables can take continuous values is regression trees.
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2.5.2. Gradient Tree Boost

The concept of the gradient boosting machine originated with Leo Breiman [38].
Subsequently, gradient boosting algorithms were developed by J.H. Friedman [39]. When
the decision tree is a weak learner, the algorithm is gradient-boosting and is typically used
with CART. Modification of Friedman’s design into gradient boosting algorithms improves
the quality of fit for each base learner.

The author in [39] let gradient tree boosting at the m− th step fit a decision tree to
pseudo residuals output of the hm(x) for input x is

hm(x) =

Jm

∑
j=1

bjm1Rjm(x) (5)
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The modified model by Friedman into the “tree boost”, where Fm(x) is
probability estimation:

Fm(x) = Fm−1(x) +∑Jm

j=1
γm1Rjm(x), γjmargminγ ∑xiεRjm

L(yi, the Fm−1(xi) + γ) (6)

where xi is input variables, yi is pseudo-responses, L is loss function, m is iteration step, Jm is
the number of its leaves, the partitions the input space into Jm disjoint regions, R1m, . . . ., RJm

predicts a constant value in each region, and bjm is the value predicted in the region Rjm.

2.5.3. Minimum Distance

In minimum distance classifiers, the items classified are groups of measurement vec-
tors, all from samples rather than individual vectors as they would be in more conventional
vector classifiers. Specifically, the sample, which is to say the group of vectors, is clas-
sified into the class whose known or estimated distribution most closely resembles the
estimated distribution of the sample to be classified. The measure of resemblance is a
distance measure in the space of distribution functions [40], meaning that the minimum
distance classifier can classify unknown image data into classes that minimize the distance
between the image data and the class in multifeatured space, with the distance representing
the index of similarity. In minimum distance algorithm, based on the training datasets to
find a mean value of pixels. This classifier can find the minimum distance from the mean
values of each class of the training datasets to the digital value of each pixel in imagery.

2.5.4. Random Forest (RF)

RF has a combination of tree predictors such that each tree depends on the values of a
random vector sampled independently, with the same distribution for all trees in the for-
est [41]. It is the most common classifier used in land cover classification because of its clas-
sification accuracy. In our experiment, 10 decision trees were used to achieve better classifi-
cation accuracy. According to [41], given an ensemble of classifiers, h1(x), h2(x), . . . , hk(x)
and with the training set drawn at random from the distribution of the random vector Y, X,
the margin function is defined as:

mg(X, Y) = avk I(hk(X) = Y)−max
j 6=Y

avk I(hk(X) = j). (7)

where I() is the indicator function.
The generalization error is calculated by:

PE∗ = pX,Y(mg(X, Y) < 0) (8)

The subscripts X, Y indicates that the probability is over the X, Y space. The margin
function measures the extent to which the average number of votes at X, Y for the right
class exceeds the average vote for any other class: the larger the margin, the more accurate
the classification.

RF, hk(X) = h(X, Θk).

As the number of trees increases, the sequences of Θ1 . . . .PE∗ converge to

PX,Y(PΘ(h(X, Θ) = Y−max
j 6=Y

PΘ(h(X, Θ) = j) < 0 (9)

Thus, RF does not overfit as the number of trees increases.

2.5.5. Support Vector Machine (SVM)

To be effectively functional and produce reasonable classification accuracy, SVMs
should address using certain parameters. The radial basis function (RBF) kernel was used.
Unlike the linear kernel, it maps nonlinear samples into a higher-dimensional space, so
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it can handle cases when the relation between class labels and attributes is nonlinear. In
training datasets, each instance contains one target value (i.e., the class labels) and several
attributes (i.e., the features of observed variables) [42]. The common goal of SVM is to
produce a model based on the training data that predicts the target values of the test data
given only the test data attributes.

With a certain training set of instances–label pairs (Xi, Yi), i = 1 . . . . . . l where Xi ∈ Rn

and y ∈ {1, −1} l an SVM requires the solution of limited optimization problems [42–44]

min
wbξ

1
2

WTW + C
l

∑
i=1

ξi

Subject to
yi(WTϕ(Xi) + b () ≥ 1− ξi , ξi ≥ 0 (10)

where Xi is a training vector, mapped into a higher-dimensional space by the function ϕ,
and C > 0 is the penalty parameter of the error term. SVM finds a linear separating
hyperplane with the maximal margin in this higher-dimensional space, RBF kernel:

K
(
Xi, Xj

)
= exp

(
−γ

∣∣∣∣Xi − Xj
∣∣∣∣2), γ > 0. (11)

where K(Xi, Yi) = ϕ (Xi)
Tϕ

(
Xj

)
is the kernel function. γ, T are the kernel parameters.

2.6. Classification Accuracy Assessment

After data classification, especially of satellite imagery in remote sensing, the clas-
sifier’s model performance should be verified and evaluated to assess the performance
of the classifier’s model. The most common way of assessing classification accuracy is
to calculate the error matrix of the classification, which is regarded as confusion of the
matrix of the classifier’s model. The confusion matrix is used to compare reference data
and the corresponding result of the classification. From the confusion matrix, the overall
accuracy of the model, kappa statistics, user accuracy, producer accuracy, omission error,
and commission error can be calculated. In our experiment, we assessed classification
accuracy in GEE, assessing the model’s overall accuracy (dividing the total number of
classified pixels by the total number of reference pixels), kappa statistics (Equation (12)),
user accuracy (number of correctly classified pixels in each class per total row for that class),
and producer accuracy (number of correctly classified pixels in each class per total column
for that class).

y = (N

r

∑
i=1

xii −

r

∑
i=1

(xi+ · x+i ))/(N2 −

r

∑
i=1

(xi+ · x+i )) (12)

where N is total number of observations in the confusion matrix, r the number of rows
in the confusion matrix, xii the number of observations in a row i and column i, xi+ the
total number of observations in a row i, and x+i the total number of observations in the
column i.

2.7. Grey Correlation Analysis

Climate change calls for use of scientific techniques to analyze trends and make deci-
sions. In this study, Grey’s relational analysis GRA [45] was used to analyze correlations
between climate change and wetland trends. GRA allows us to determine an appropriate
solution for real-world problems, pioneered by Chinese professor Deng Ju long. One of the
most widely used models of Grey system theory, it is promoted by various scholars and
institutions, such as the International Journal of Grey Systems and the International Associ-
ation of Grey Systems and Decision Sciences (IAGSUA). Grey correlation analysis is used to
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determine correlation coefficients and degrees between observations. The comprehensive
factors of climate change’s impact on wetlands exhibit a strong Grey character, which is
to say incomplete information and uncertainty [46], so Grey system theory is suitable for
comprehensively evaluating the correlation between climate variables and wetlands. Grey
relational analysis was used to evaluate the relationship between land changes such as
wetlands and environmental factors [46,47].

r(xo, xi)
1
n ∑n

k=1 r(x0(k), xi(k))

r(x0(k), xi(k))=
min

i
min

k
|x0(k)− xi(k)|+ $max

i
max

k
|x0(k)− xi(k)|

|x0(k)− xi(k)|+ $max
i

max
k
|x0(k)− xi(k)|

(13)

where xo is the reference data, xi is the comparison sequence, “$” is the resolution coefficient,
and “$” ∈ [0, 1], x0 (k), and xi (k) the number of points k of x0 and xi, respectively. To find
their degree of Grey correlation, we used wetland area as x0; climate data, including
temperature, humidity, and precipitation as xi, and “$” = 0.5 as the related effective
study [46,47].

3. Results
3.1. Classifications, Change Detection and Algorithms’ Model Performance
3.1.1. Classifications

In our proposed system, land cover classifications were performed aimed to detect
wetlands. Land cover classifications from 1984 to 2020 were accomplished. Landsat imagery
was offered for those periods, so time series satellite images from the Landsat Thematic
Mapper (TM) to Operational Land Imager (OLI) were investigated and used for land cover
classifications. Enhanced images were obtained and used for the calculation of spectral
indices (Section 2.2). Classifications were made within an interval of 5 years, eight land
cover classification and land cover change thematic maps were obtained (Figures 4 and 5).

3.1.2. Accuracy Assessment

Classified maps of 1984, 1990, 1995, and 2010 were created using satellite imagery
from Landsat 5 (Thematic Mapper). Accuracy for each year was calculated based on
the confusion matrix, assessing the model’s overall accuracy, kappa statistics, producer
accuracy, and user accuracy. For instance, the classification of 2015 showed wetland class
results with the highest user accuracy of 100% and producer accuracy of 100%. Forest
classification produced 97.28% user accuracy and 95.29% producer accuracy, and other
classifications produced 95.53% user accuracy and 97.43% producer accuracy. Overall
classification accuracy was 97.53%, with a kappa statistic of 0.963. The following tables
show the error matrix obtained by SVM classifier: Table 2 from classification data of 1984;
Table 3 from classification data of 2000; Table 4 from classification data of 2005, Table 5 from
classification data of 2020.

Table 2. Error matrix obtained by SVM (1984).

Wetland Forest Others Row Total User’s Accuracy

C
la

ss
ifi

ca
ti

on
D

at
a

Wetland 457 0 7 464 0.985
Forest 0 458 20 478 0.958
Others 0 24 491 515 0.953

Column total 457 482 518 1457
Producer’s accuracy 1.00 0.950 0.950

Overall Accuracy 0.965
Kappa statistics 0.947
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(e) 2005–2010, (f) 2010–2015, (g) 2015–2020.
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Table 3. Error matrix obtained by SVM (2000).

Wetland Forest Others Row Total User’s Accuracy

C
la

ss
ifi

ca
ti

on
D

at
a

Wetland 464 0 0 464 1.00
Forest 56 365 57 478 0.764
Others 1 7 507 515 0.984

Column total 521 372 564 1457
Producer’s accuracy 0.891 0.981 0.899

Overall Accuracy 0.917
Kappa statistics 0.875

Table 4. Error matrix obtained by SVM (2005).

Wetland Forest Others Row total User’s Accuracy

C
la

ss
ifi

ca
ti

on
D

at
a

Wetland 464 0 0 464 1.00
Forest 22 332 124 478 0.695
Others 0 58 457 515 0.887

Column total 486 390 581 1457
Producer’s accuracy 0.955 0.851 0.787

Overall Accuracy 0.860
Kappa statistics 0.789

Table 5. Error matrix obtained by SVM (2020).

Class name Wetland Forest Others Row Total User’s Accuracy

C
la

ss
ifi

ca
ti

on
D

at
a

Wetland 464 0 0 464 1.00
Forest 0 469 9 478 0.981
Others 14 4 497 515 0.965

Column total 478 473 506 1457
Producer’s accuracy 0.971 0.992 0.982

Overall Accuracy 0.981
Kappa statistics 0.960
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As shown in Tables 4 and 5, classifications for 2000 and 2005 were performed using
satellite imagery from Landsat 7 (Enhanced Thematic Mapper plus ETM+).

By contrast, classifications for 2015 and 2020 were performed using data from Landsat 8
(Operational Land Imager), assessing the model’s accuracy based on the test data.

Classifications were performed using five classical machine learning algorithms: SVM,
RF, gradient tree boost, minimum distance, and CART. Model performance was evaluated
through accuracy assessment based on testing datasets (summarized in Table 6).

Table 6. Summary of classification accuracy assessment achieved by classifiers (2015).

Classifiers Overall Accuracy (%) Kappa Statistics

Support Vector Machine SVM 97.53 0.963
Random Forest RF 97.30 0.960
Gradient tree boost 96.91 0.954
Minimum distance 84.49 0.768

Classification and Regression Trees CART 96.50 0.947

3.2. Wetland Change Detection

The accurate change detection of land cover’s features is critical for understanding
the differences over time and to know the relationships between human activities and
natural phenomena. To distinguish the long-term and spatiotemporal dynamics of wet-
lands, change detection is required [48]. Post classification process, change detection was
implemented in GEE based on the land cover classification results of time series data.
Because knowing how many pixels are converted to other classes can decide the spatial
distribution of wetland resources and their changes over long adjacent periods, GEE can
be used for simple tasks, such as creating composites of satellite imagery, but can also
handle more complex tasks, such as detecting long-term dynamics of things. Based on
performance evaluations of the five algorithms implemented on GEE, we chose SVM to
detect changes in classes for each year, because it offered better classification accuracy than
the other classifiers. Change detection was performed from 1984 to 2020 at 5-year intervals.
Figures 3 and 4 show the eight land cover change maps generated, (1984–1990, 1990–1995,
1995–2000, 2000–2005, 2005–2010, 2010–2015, and 2015–2020).

Land cover change trends were obtained from the SVM-RBF model (Figures 4 and 5).
As presented in Table 7, the change trends shown in Figure 4 are defined and calculated in
terms of pixels change of each class.

Of all land classes change over the past 3.7 decades, Figure 5 and Table 8 reveal the
critical land features change was observed from 1984 to 2020. Wetland conversion to other
classes has undergone the greatest change and the maximum wetland loss recorded. As
shown in Figure 6, the wetland change trends over the past 3.7 decades were identified in
this study in terms of square kilometers.

3.3. Climate Variation and Wetland Change

The most common characteristics of weather or climatic variables include temperature,
precipitation or rainfall, sunshine, wind, atmospheric pressure, and humidity. The values
and fluctuations of these climatic variables can easily affect the spatial extent and distribu-
tion of wetlands. Precipitation, temperature, and humidity are the most common factors.
We investigated the linkages between precipitations, temperature, and relative humidity
with wetland change. The climatic time-series data correlated with the corresponding
wetland changes of the area using a linear relationship.
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Table 7. Pixel changes (A) 1984–1990, (B) 1990–1995, (C) 1995–2000, (D) 2000–2005, (E) 2005–2010,
(F) 2010–2015, (G) 2015–2020.

Class Wetland Forest Others

(A)

Wetland 198,103.21 54,914.47 595,001.58
Forest 41,834.44 1,919,619.87 125,025.02
Others 515,025.02 1,177,495.84 10,202,487.88

(B)

Wetland 71,568.34 35,780.00 647,614.33
Forest 75,958.75 1,312,292.20 1,763,779.22
Others 470,257.54 980,071.96 10,597,427.46

(C)

Wetland 65,859.94 62,175.95 489,748.74
Forest 22,305.78 1,071,835.22 1,234,003.17
Others 436,639.12 1,148,719.44 11,423,462.44

(D)

Wetland 70,485.16 38,984.21 415,243.47
Forest 108,147.45 1,082,655.27 1,089,067.29
Others 290,300.44 1,749,882.56 11,101,326.66

(E)

Wetland 65,317.60 27,601.71 314,326.55
Forest 50,296.11 1,255,553.09 11,694,204.24
Others 329,650.38 1,554,975.75 10,662,553.35

(F)

Wetland 56,170.67 30,223.07 320,864.13
Forest 31,033.80 1,177,405.57 1,791,838.08
Others 234,078.80 1,348,116.71 10,965,018.96

(G)

Wetland 43,790.92 31,438.36 246,043.99
Forest 3528.18 1,488,849.63 1,063,367.54
Others 115,181.13 1,172,627.65 11,789,922.40

Table 8. The maximum number of pixel changes detected from one class to another class, 1984–2020.

Class Wetland Forest Others

Wetland 56,550.87 36,990.8 754,477.59
Forest 9145.70 1,412,220.02 1,790,356.07
Others 110,201.13 901,114.02 10,883,693.59

Precipitation time-series data (Figure 7) for Guangling County were taken from me-
teorological data (1956–2020), and compared with time-series data calculated from freely
available quasi global rainfall datasets; Climate Hazards Group InfraRed Precipitation with
Station data (CHIRPS) was used in this study. The CHIRPS dataset builds on previous
approaches by using “smart” interpolation techniques and high-resolution, long-term
precipitation estimates based on infrared cold cloud duration (CCD) observations [49].
Figure 8 is showing the linear relation between inter-annual rainfall and the wetland area
of Guangling County formulated from preceding year blocks of annual rainfall data corre-
sponding to wetland distribution change in each of eight different years (1984, 1990, 1995,
2000, 2005, 2010, 2015, and 2020).
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Temperature is the most influential variable, being strongly connected to the treatment
of sustainable natural environments, particularly wetlands. As the current meteorological
studies show climate variables are becoming one of the global problems, among them
temperature is the most significant factor showing increments.

The highest increment of annual average temperature was approximately 2.4 ◦C
(1995–2020), which had the greatest negative impact on wetland loss. Figure 9 shows the
continuous variation trend of the annual average temperature of the study area, 1981–2020.
The trendline reveals that the annual average temperature rises in Guangling County. In
the past 3.7 decades, on average it was risen by 0.75 ◦C with the value of R2 14.24%.
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The relative humidity of Guangling County shows yearly fluctuations (Figure 11).
Humidity is the most significant climatic factor, closely tied to wetland changes [46].
The average humidity of the area decreased from the fitting trendline by 4.1% in which
a significant amount of wetland resources was lost. To find the linear equation between
relative humidity and change of wetland area, using a linear regression method we took
the preceding year blocks of relative humidity data corresponding to wetland distribution
change in each of eight different years (1984, 1990, 1995, 2000, 2005, 2010, 2015, and 2020)
as shown in Figure 12.
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3.4. GDP and Wetland Change

The Gross Domestic Product of Guangling County shows a continuous increment
(Figure 13). The economy of the county with the value of R2 above 90%. Wetland’s change
could be directly and indirectly interrelated with the economic growth of one’s country.
As the number of population growth, the wetlands area substantially stressed in response
to economic growth [1]. Building new infrastructures, expansion of agricultural activities,
and other human modifications for settlements are the main activities that could degrade
the wetland ecosystem in response to economic growth.
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The annual GDP of the county corresponding to the change of wetland area of that
year was taken, Figure 14 shows their linear relationship.
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3.5. Grey Correlation Analysis

To calculate the Grey correlation of wetland area in Guangling County and correspond-
ing climatic factors, meteorological data from various sources were used. We selected 4-year
blocks of meteorological data—1981, 1982, 1983, and 1984 meteorological data sequence cor-
responding to wetland distribution data in 1984; 1987, 1988, 1989, and 1990 meteorological
data sequence corresponding to wetland distribution data in 1990; 1992, 1993, 1994, and
1995 meteorological data sequence corresponding to wetland distribution data in 1995;
1997, 1998, 1999, and 2000 meteorological sequence data corresponding to wetland distri-
bution data in 2000; 2002, 2003, 2004, and 2005 meteorological data sequence correspond-
ing to wetland distribution data in 2005; 2007, 2008, 2009, and 2010 meteorological data
corresponding to wetland distribution data in 2010; 2012, 2013, 2014, and 2015 meteoro-
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logical data sequence corresponding to wetland data in 2015; and 2017, 2018, 2019, and
2020 meteorological data sequence corresponding to wetland distribution data in 2020 were
used in Grey correlation analysis to calculate the correlation degree of climatic factors and
wetland area after normalization and calculation of the mean value, along with relevant
meteorological data sequence for the corresponding years of wetland distribution.

The values of grey correlation degree within each of 5-year intervals between climatic
variables and wetland area are shown in Table 9. The first line with the values of 0.667,
0.826, and 0.674 reports the degree of grey correlation between annual average temper-
ature (1981–1984) and wetland area (1984), relative humidity (1981–1984) and wetland
area (1984), annual rainfall (1981–1984) and wetland area (1984), respectively. The next
line with the values of 0.546, 0.874, and 0.647 reports the degree of grey correlation be-
tween annual average temperature (1987–1990) and wetland area (1990), relative humidity
(1987–1990) and wetland area (1990), annual rainfall (1987–1990) and wetland area (1990),
respectively. Similarly, the third line with the values of 0.472, 0.783, and 0.516 reports
the degree of grey correlation between annual average temperature (1992–1995) and wet-
land area (1995), relative humidity (1992–1995), and wetland area (1995), annual rainfall
(1992–1995) and wetland area (1995), respectively. The fourth line with the values of 0.740,
0.406, and 0.406 reports the degree of grey correlation between annual average tempera-
ture (1997–2000) and wetland area (2000), relative humidity (1997–2000) and wetland area
(2000), annual rainfall (1997–2000) and wetland area (2000), respectively. The fifth line with
the values of 0.414, 0.590, and 0.515 reports the degree of grey correlation between annual
average temperature (2002–2005) and wetland area (2005), relative humidity (2002–2005)
and wetland area (2005), annual rainfall (2002–2005) and wetland area (2005), respectively.
The sixth line with the values of 0.420, 0.480, and 0.438 reports the degree of grey correla-
tion between annual average temperature (2007–2010) and wetland area (2010), relative
humidity (2007–2010) and wetland area (2010), annual rainfall (2007–2010) and wetland
area (2010), respectively. The seventh line with the values of 0.420, 0.603, and 0.691 reports
the degree of grey correlation between annual average temperature (2012–2015) and wet-
land area (2015), relative humidity (2012–2015) and wetland area (2015), annual rainfall
(2012–2015) and wetland area (2015), respectively. The last line with the values of 0.520,
0.617, and 0.478 reports the degree of grey correlation between annual average temperature
(2017–2020) and wetland area (2020), relative humidity (2017–2020) and wetland area (2020),
annual rainfall (2017–2020) and wetland area (2020), respectively.

Table 9. Grey correlation degree of climatic variables and wetland area within each 5-year interval.

Climatic Factor Wetland Area Climatic Factor Wetland Area Climatic Factor Wetland Area

0.667 0.826 0.674
0.546 0.874 0.647

Temperature 0.472 Relative humidity 0.783 0.516
0.74 0.406 Rainfall 0.406

0.414 0.589 0.515
0.42 0.48 0.438
0.42 0.603 0.691
0.52 0.617 0.478

Table 10 shows the Grey correlation degree between wetland area and climatic factors
calculated using Equation (13).

Table 10. The total average correlation degree between climatic variables and wetland area.

Climatic Factors Wetland Area

Relative Humidity at 2 m 0.647
Annual Rainfall 0.546

Annual Average Temperature 0.525
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Based on analysis of the grey correlation between wetland area and climatic variables,
relative humidity, and wetland area has the highest degree of grey correlation than seen with
annual rainfall and annual average temperature, whereas the correlation of annual average
temperature has the smallest, indicating that wetland change was positively correlated to
relative humidity and negatively correlated to annual average temperature (Table 10). This
means that the annual average temperature had a greater negative impact on wetlands
resources of the area.

The linkage of a wetland area with humidity, rainfall, temperature, and economic data
(GDP) variations can be examined based on their linear relationship. From the linear equa-
tions of climatic factors, economic data with wetland area (Figure 8, Figure 10, Figure 12,
and Figure 14), we obtain the following equations:

yh = 0.002x + 58.38;
yr = −1.8141x + 461.35;
yt = −0.0154x + 6.993;
ye = −1.5182x + 55.78

(14)

where yh, yr, yt, and ye represent humidity, rainfall, temperature, and GDP, respectively.
x represents wetland area. Suppose, wetland area (wa) = x, the preceding equations become:

wa = 500yh − 2919;
wa = 254.31− 0.55yr;

wa = 454.025− 64.94yt;
wa = 36.75− 0.66ye

(15)

and can be rearranged as:

wa = 500yh − 64.94yt − 0.55yr − 0.66ye − 28444.89 (16)

Which shows the linkage of wetland change wa with economic growth ye, temperature
yt, humidity yh, and rainfall yr.

4. Discussion

Several previous studies have demonstrated the potential of classical ML algorithms
such as SVM, RF, gradient boosted trees, and CART in wetland mapping and detecting
wetland spatial distributions, showing the capacity of machine learning to handle high
dimensionality with complex characteristics [50]. Nevertheless, employing a machine learn-
ing model for many applications, including classification of satellite imagery and change
detection, requires that dataset be established, preferable algorithms selected, computa-
tional costs ascertained, user-defined parameter selection, and optimization. Performing
machine-learning algorithms in cloud platforms is a modern advance by which Earth
observation (EO) can be used for environmental monitoring [17]. Implementing machine
learning classifiers on the GEE platform makes this process easier and proved efficient and
effective in our experiment.

We employed machine learning models with selected algorithms and parameters.
SVM-RBF model displays the most robustness, which outperforms other model perfor-
mance, producing land cover classification maps and thematic land cover maps whose
trends are interpreted in Table 11.

Table 11. Wetland (km2) change trends within Guangling County (1984 to 2020).

Class 1984 1990 1995 2000 2005 2010 2015 2020 %Change

Wetland 59.82 52.10 44.69 34.96 30.78 30.10 22.80 14.11 −76.41
Forest 241.83 237.29 165.63 166.08 200.29 213.75 193.77 174.56 −27.82
Others 923.23 935.49 1014.56 1023.84 993.24 981.07 1008.31 1036.21 12.24

Note that: % is change in each class over the initial coverage area of that class.
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The pixels change detected (Table 8) reveals, 77.99% of the wet areas were converted to
other classes and around 3.8% of wet areas were transformed to forests. A total of 45.71 km2

wetland disappeared from 1984 to 2020, and a significant change was seen in the forest
(241.83 km2 to 174.56 km2) and other classes (923.23 km2 to 1036.21 km2). Wetlands in the
study area continually declined, especially within the first two decades (1984–2005), reach-
ing 30.78 km2. The adjacent 5 years showed no further decrease or increase in wetlands
within the area, but within the last decade loss of wetlands reached 14.11 km2, bringing to
the degradation percentage of wetlands in the area are around 76.41%. Grey correlation
analysis shows the maximum correlation was between wetland area and relative humidity.
The minimum was between wetland area and temperature, indicating that wetland ecosys-
tems have a strong connection with humidity and temperature, with decreases in humidity
and increases in temperature negatively affecting wetland ecosystems. The maximum
increment temperature (by 2.04 ◦C) was recorded within the interval 1995–2000 when the
most wetland resources were lost and the minimum annual average relative humidity
was recorded within the interval 1995–2000 when the most wetland resources were lost.
From the result, rainfall variations showed no further effects on the loss of wetlands during
the specified periods, but a significant decrease in precipitation was seen during the two
preceding decades, with the maximum recorded precipitation of 653.1 mm/year, by 89 mm
higher than the later.

The resulting linear Equations (15) and (16) showed a strong inverse relation of
annual average temperature and economic data with wetland area. Linear relationship and
correlation degree of annual average temperature and wetland change, the annual average
temperature had the greatest negative impacts on wetlands of the area. The rapid increase
in population with economic growth could negatively affect the wetland ecosystem [1,6].
When population increased in response to economic growth, through settlement, new
building, and construction of infrastructures and expansion of agriculture, unsustainability,
and loss of wetland resources resulted. Temperature shifts and economic growth bringing
increased population added to ongoing wetland losses. As a result of human activities
in response to economic and population growth; agricultural interventions lead to land
reclamation and water diversion from the wetlands, urbanization, and developments of
tourism have the main cause for wetland losses.

5. Conclusions

In this study, we have shown that GEE has the power to employ an advanced machine
learning model and used it to map the long-term dynamicity of wetlands based on time
series remote sensing data. SVM performed best at classifying satellite data and detect-
ing changes in time series data. The RF model classifier was highly accurate, but SVM
outperformed it because of its higher computational complexity when used for larger and
higher-dimensional data sets. The SVM-RBF model outperformed the other four classifiers,
allowing successful identification of potential locations of wetlands in the study area and
long-term changes to the wetland area.

Understanding the sustainability and status of our natural environment resources is
critical, and using them wisely is important. Wetlands are an essential natural terrestrial
environment, and their deterioration is a matter of global concern. Previous and present
studies show a positive and a negative change to the wetland ecosystem have occurred
in China. Restoration of wetlands and wetland ecosystem preservation bring positive
change [51]. However, in some parts of the country, an extensive loss of wetland resources
was experienced. Guangling County with a coverage area of 1225 km2 has experienced an
area of 45.71 km2 wetlands’ degradation within the past 3.7 decades. In general, around
81.82% of wetlands area has been lost and 12.33% newly added, showing the wetlands
of the study area were found to be undergoing critical change. Climate variations and
poor policy implementations, along with economic growth and population increases, have
led to a loss of wetlands through settlement, infrastructure construction, and agricultural
activities. We conclude that a serious consideration of new policies and implementations
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are needed to restore and strengthen the sustainability of wetland resources in Guangling
County. Extensive loss of wetlands resulted from less consideration and inadequate pol-
icy implementations. The present study can contribute to land cover information and
applications for natural resource management and environment studies.

Long-term change detection and monitoring of the earths’ features are critical to
natural environmental resource management. Although the present study demonstrated
effectively classified, land cover thematic maps, and explored change trends associated
with climatic change and economy of the study area, their application was limited without
detailed land features classifications and delineations. The detailed wetlands monitoring
and classifications that can be obtained through high-resolution satellite imagery might
allow deep learning to outperform machine learning algorithms. Therefore, the present
study could be extended to include detailed monitoring and classifications of wetlands with
high spatial resolutions and multispectral satellite imageries using a deep learning model.

Author Contributions: Formulation of the study, system, and methods conceptualization, G.F.G.;
investigation, X.R.; data collection, methodology, validation, X.R. and G.F.G.; computer code and
software execution; G.F.G.; writing—original draft preparation, G.F.G.; writing—review and editing,
X.R. and G.F.G.; H.L. contributed a scientific insight in the experiments and analysis. All authors
have read and agreed to the published version of the manuscript.

Funding: This study was funded by the National Key Research and Development Program of
China (Grant No. 2019YFC1804304), the National Natural Science Foundation of China (Grant No.
41771478), the Fundamental Research Funds for the Central Universities (Grant No. 2019B02514).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The long-term historical data Landsat imageries we used are from
the U.S. Geological Survey (USGS) and available online at (https://www.usgs.gov/ accessed on
4 April 2021).

Acknowledgments: We are grateful to the U.S. Geological survey, they provided the main data set
for the study, and all friends and advisors for their valuable help and comments.

Conflicts of Interest: There is no conflict of interest from the authors.

References
1. Smardon, R.C. Sustaining the World’s Wetlands; Springer: New York, NY, USA, 2009; Available online: https://www.amazon.com/

Sustaining-Worlds-Wetlands-Environmental-Management/dp/0387494286 (accessed on 3 October 2021).
2. Guo, M.; Li, J.; Sheng, C.; Xu, J.; Wu, L. A review of wetland remote sensing. Sensors 2017, 17, 777. [CrossRef]
3. Nielsen, E.M.; Prince, S.D.; Koeln, G.T. Wetland change mapping for the U.S. mid-Atlantic region using an outlier detection

technique. Remote Sens. Environ. 2008, 112, 4061–4074. [CrossRef]
4. Kraiem, H. Biophysical and Socio-Economic Impacts of Climate Change on Wetlands in the Mediterranean. Mediterr. Roundtable,

Athens, Greece. 2002. Available online: http://www.uicnmed.org/web2007/CDCambio_climatico/contenido/F/PDF/CC_f4
.pdf (accessed on 26 July 2021).

5. Amani, M.; Salehi, B.; Mahdavi, S.; Granger, J. Spectral analysis of wetlands in Newfoundland using Sentinel 2A and Landsat
8 imagery. In Proceedings of the ASPRS Annual Conference, Baltimore, MD, USA, 12–16 March 2017; Available online:
https://www.researchgate.net/publication/317069781_SPECTRAL_ANALYSIS_OF_WETLANDS_IN_NEWFOUNDLAND_
USING_SENTINEL_2A_AND_LANDSAT_8_IMAGERY (accessed on 5 July 2021).

6. van Asselen, S.; Verburg, P.H.; Vermaat, J.E.; Janse, J.H. Drivers of wetland conversion: A global meta-analysis. PLoS ONE 2013,
8, e81292. [CrossRef]

7. Torbick, N.M.; Qi, J.; Roloff, G.J.; jan Stevenson, R. Investigating Impacts of Land-Use Land Cover Change on Wetlands in the Muskegon
River Watershed, Michigan, USA; Springer: New York City, NY, USA, 2006; Volume 26, pp. 1103–1113.

8. Wang, X.; Xiao, X.; Zou, Z.; Hou, L.; Qin, Y.; Dong, J.; Doughty, R.B.; Chen, B.; Zhang, X.; Chen, Y.; et al. Mapping coastal wetlands
of China using time series Landsat images in 2018 and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 163, 312–326.
[CrossRef]

9. Alam, A.; Rashid, S.M.; Bhat, M.S.; Sheikh, A.H. Impact of land use/land cover dynamics on himalayan wetland ecosystem.
J. Exp. Sci. 2011, 2, 60–64. Available online: https://updatepublishing.com/journal/index.php/jes/article/view/1819 (accessed
on 5 July 2021).

https://www.usgs.gov/
https://www.amazon.com/Sustaining-Worlds-Wetlands-Environmental-Management/dp/0387494286
https://www.amazon.com/Sustaining-Worlds-Wetlands-Environmental-Management/dp/0387494286
http://doi.org/10.3390/s17040777
http://doi.org/10.1016/j.rse.2008.04.017
http://www.uicnmed.org/web2007/CDCambio_climatico/contenido/F/PDF/CC_f4.pdf
http://www.uicnmed.org/web2007/CDCambio_climatico/contenido/F/PDF/CC_f4.pdf
https://www.researchgate.net/publication/317069781_SPECTRAL_ANALYSIS_OF_WETLANDS_IN_NEWFOUNDLAND_USING_SENTINEL_2A_AND_LANDSAT_8_IMAGERY
https://www.researchgate.net/publication/317069781_SPECTRAL_ANALYSIS_OF_WETLANDS_IN_NEWFOUNDLAND_USING_SENTINEL_2A_AND_LANDSAT_8_IMAGERY
http://doi.org/10.1371/journal.pone.0081292
http://doi.org/10.1016/j.isprsjprs.2020.03.014
https://updatepublishing.com/journal/index.php/jes/article/view/1819


Sustainability 2022, 14, 439 24 of 25

10. Meng, W.; He, M.; Hu, B.; Mo, X.; Li, H. Status of wetlands in China: A review of extent, degradation, issues and recommendations
for improvement Ocean & Coastal Management Status of wetlands in China: A review of extent, degradation, issues and
recommendations for improvement. Ocean Coast. Manag. 2017, 146, 50–59. [CrossRef]

11. Mao, D.; Wang, Z.; Du, B.; Li, L.; Tian, Y.; Jia, M.; Zeng, Y.; Song, K.; Jiang, M.; Wang, Y. National wetland mapping in China: A
new product resulting from object-based and hierarchical classification of Landsat 8 OLI images. ISPRS J. Photogramm. Remote
Sens. 2020, 164, 11–25. [CrossRef]

12. Sun, S.; Zhang, Y.; Song, Z.; Chen, B.; Zhang, Y.; Yuan, W.; Chen, C.; Chen, W.; Ran, X.; Wang, Y. Mapping coastal wetlands of the
Bohai Rim at a spatial resolution of 10 M using multiple open-access satellite data and terrain indices. Remote Sens. 2020, 12, 4114.
[CrossRef]

13. Ndayisaba, F.; Nahayo, L.; Guo, H.; Bao, A.; Kayiranga, A.; Karamage, F.; Nyesheja, E.M. Mapping and monitoring the Akagera
wetland in Rwanda. Sustainability 2017, 9, 174. [CrossRef]

14. Farda, N.M. Multi-temporal Land Use Mapping of Coastal Wetlands Area using Machine Learning in Google Earth Engine. In
Proceedings of the IOP Conference Series: Earth and Environmental Science, Sanya, China, 20–22 November 2017; Volume 98.
[CrossRef]

15. Huang, H.; Chen, Y.; Clinton, N.; Wang, J.; Wang, X.; Liu, C.; Gong, P.; Yang, J.; Bai, Y.; Zheng, Y.; et al. Remote Sensing of
Environment Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sens.
Environ. 2017, 202, 166–176. [CrossRef]

16. Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next Landsat satellite: The Landsat Data Continuity Mission. Remote Sens. Environ. 2012,
122, 11–21. [CrossRef]

17. Hird, J.N.; Delancey, E.R.; Mcdermid, G.J. Google Earth Engine, Open-Access Satellite Data, and Machine Learning in Support of
Large-Area Probabilistic Wetland Mapping. Remote Sens. 2017, 9, 1315. [CrossRef]

18. Sun, Z.; Xu, R.; Du, W.; Wang, L.; Lu, D. High-Resolution Urban Land Mapping in China from Sentinel 1A/2 Imagery Based on
Google Earth Engine. Remote Sens. 2019, 11, 752. [CrossRef]

19. Wu, Q.; Lane, C.R.; Li, X.; Zhao, K.; Zhou, Y.; Clinton, N.; DeVries, B.; Golden, H.; Lang, M.W. Remote Sensing of Environment
Integrating LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using Google Earth Engine.
Remote Sens. Environ. 2019, 228, 111487. [CrossRef]

20. Adepoju, K.A.; Adelabu, S.A. Improving accuracy evaluation of Landsat-8 OLI using image composite and multisource data with
Google Earth Engine. Remote Sens. Lett. 2020, 11, 107–116. [CrossRef]

21. Tsai, Y.H.; Stow, D.; Chen, H.L.; Lewison, R.; An, L.; Shi, L. Mapping vegetation and land use types in Fanjingshan National
Nature Reserve using google earth engine. Remote Sens. 2018, 10, 927. [CrossRef]

22. Lunetta, R.S.; Mary, E. Application of Multi-Temporal Landsat 5 TM Imagery for Wetland Identification. Photogramm. Eng. Remote
Sens. 1999, 65, 1303–1310. Available online: https://www.asprs.org/wp-content/uploads/pers/1999journal/nov/1999_nov_13
03-1310.pdf (accessed on 3 October 2021).

23. Jia, M.; Wang, Z.; Zhang, Y.; Mao, D.; Wang, C. Monitoring loss and recovery of mangrove forests during 42 years: The
achievements of mangrove conservation in China. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 535–545. [CrossRef]

24. Mao, D.; Luo, L.; Wang, Z.; Wilson, M.C.; Zeng, Y.; Wu, B.; Wu, J. Conversions between natural wetlands and farmland in China:
A multiscale geospatial analysis. Sci. Total Environ. 2018, 634, 550–560. [CrossRef] [PubMed]

25. Mao, D.; Wang, Z.; Wu, J.; Wu, B.; Zeng, Y.; Song, K.; Yi, K.; Luo, L. China’s wetlands loss to urban expansion. Land Degrad. Dev.
2018, 29, 2644–2657. [CrossRef]

26. Mao, D.; Liu, M.; Wang, Z.; Li, L.; Man, W.; Jia, M.; Zhang, Y. Rapid invasion of Spartina alterniflora in the coastal zone of
mainland China: Spatiotemporal patterns and human prevention. Sensors 2019, 19, 2308. [CrossRef]

27. Gao, B. NDWI A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens.
Environ. 1996, 58, 257–266. [CrossRef]

28. Adam, E.; Mutanga, O.; Rugege, D. Multispectral and hyperspectral remote sensing for identification and mapping of wetland
vegetation. Wetl. Ecol. Manag. 2009, 18, 281–296. [CrossRef]

29. Diek, S.; Fornallaz, F.; Schaepman, M.E.; de Jong, R. Barest Pixel Composite for agricultural areas using landsat time series.
Remote Sens. 2017, 9, 1245. [CrossRef]

30. Mcfeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote
Sens. 1996, 17, 1425–1432. [CrossRef]

31. Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J.
Remote Sens. 2003, 24, 583–594. [CrossRef]

32. Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes.
Nature 2016, 540, 418–422. [CrossRef] [PubMed]

33. Mart, R.; Peciña, M.V.; Ward, R.D.; Bergamo, T.F.; Joyce, C.B.; Sepp, K. Machine Learning Classification and Accuracy Assessment
from High-Resolution Images of Coastal Wetlands. Remote Sens. 2021, 13, 3669. [CrossRef]

34. Gong, P.; Niu, Z.; Cheng, X.; Zhao, K.; Zhou, D.; Guo, J.; Liang, L.; Wang, X.; Li, D.; Huang, H.; et al. China’s wetland change
(1990–2000) determined by remote sensing. Sci. China Earth Sci. 2010, 53, 1036–1042. [CrossRef]

35. Anderson, B.J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use and Land Cover Classification System for Use with Remote Sensor
Data; U.S. G.P.O.: Washington, DC, USA, 1976.

http://doi.org/10.1016/j.ocecoaman.2017.06.003
http://doi.org/10.1016/j.isprsjprs.2020.03.020
http://doi.org/10.3390/rs12244114
http://doi.org/10.3390/su9020174
http://doi.org/10.1088/1755-1315/98/1/012042
http://doi.org/10.1016/j.rse.2017.02.021
http://doi.org/10.1016/j.rse.2011.08.026
http://doi.org/10.3390/rs9121315
http://doi.org/10.3390/rs11070752
http://doi.org/10.1016/j.rse.2019.04.015
http://doi.org/10.1080/2150704X.2019.1690792
http://doi.org/10.3390/rs10060927
https://www.asprs.org/wp-content/uploads/pers/1999journal/nov/1999_nov_1303-1310.pdf
https://www.asprs.org/wp-content/uploads/pers/1999journal/nov/1999_nov_1303-1310.pdf
http://doi.org/10.1016/j.jag.2018.07.025
http://doi.org/10.1016/j.scitotenv.2018.04.009
http://www.ncbi.nlm.nih.gov/pubmed/29635197
http://doi.org/10.1002/ldr.2939
http://doi.org/10.3390/s19102308
http://doi.org/10.1016/S0034-4257(96)00067-3
http://doi.org/10.1007/s11273-009-9169-z
http://doi.org/10.3390/rs9121245
http://doi.org/10.1080/01431169608948714
http://doi.org/10.1080/01431160304987
http://doi.org/10.1038/nature20584
http://www.ncbi.nlm.nih.gov/pubmed/27926733
http://doi.org/10.3390/rs13183669
http://doi.org/10.1007/s11430-010-4002-3


Sustainability 2022, 14, 439 25 of 25

36. Ball, J.E.; Anderson, D.T.; Chan, C.S. Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges
for the community. J. Appl. Remote Sens. 2017, 11, 042609. [CrossRef]

37. Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Chapman & Hall/CRC: Boca Raton, FL,
USA, 1984. [CrossRef]

38. Breiman, L. Arcing the Edge; Berkeley Statistics: Berkeley, CA, USA, 1997; Volume 4, pp. 1683–1702.
39. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
40. Wacker, A.G.; Landgrebe, D.A. Minimum Distance Classification in Remote Sensing. LARS Tech. Rep. 1972, 25, 1–27.
41. Breiman, L. Random Forests; Berkeley Statistics: Berkeley, CA, USA, 2001; pp. 1–122.
42. Hsu, C.-W.; Chang, C.-C.; Lin, C.-J. A Practical Guide to Support Vector Classification. 2016. Available online: https://www.csie.

ntu.edu.tw/~{}cjlin/papers/guide/guide.pdf (accessed on 26 July 2021).
43. Boser, B.E.; Laboratories, T.B.; Guyon, I.M.; Laboratories, T.B.; Vapnik, V.N. SVM-A Training Algorithm for Optimal Margin

Classifiers. 1992. Available online: https://doi.org/10.1007/978-0-387-30162-4_415 (accessed on 10 September 2021).
44. Corrinna Cortes, V.V. Support-Vector Networtks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
45. Ju-long, D. Control problems of grey systems. Syst. Control Lett. 1982, 1, 288–294. [CrossRef]
46. Zhang, Y.; Yan, J.; Cheng, X.; He, X. Wetland Changes and Their Relation to Climate Change in the Pumqu Basin, Tibetan Plateau.

Int. J. Environ. Res. Public Health 2021, 18, 2682. [CrossRef]
47. Li, W.; Xue, P.; Liu, C.; Yan, H.; Zhu, G.; Cao, Y. Monitoring and landscape dynamic analysis of alpine wetland area based on

multiple algorithms: A case study of Zoige plateau. Sensors 2020, 20, 7315. [CrossRef]
48. Romshoo, S.A.; Rashid, I. Assessing the impacts of changing land cover and climate on Hokersar wetland in Indian Himalayas.

Arab. J. Geosci. 2012, 7, 143–160. [CrossRef]
49. Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al.

The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015,
2, 150066. [CrossRef]

50. Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review.
Int. J. Remote Sens. 2018, 39, 2784–2817. [CrossRef]

51. Zhu, H.; Guan, Z.; Wei, X. Factors influencing farmers’ willingness to participate in wetland restoration: Evidence from China.
Sustainability 2016, 8, 1325. [CrossRef]

http://doi.org/10.1117/1.JRS.11.042609
http://doi.org/10.1201/9781315139470
http://doi.org/10.1214/aos/1013203451
https://www.csie.ntu.edu.tw/~{}cjlin/papers/guide/guide.pdf
https://www.csie.ntu.edu.tw/~{}cjlin/papers/guide/guide.pdf
https://doi.org/10.1007/978-0-387-30162-4_415
http://doi.org/10.1007/BF00994018
http://doi.org/10.1016/S0167-6911(82)80025-X
http://doi.org/10.3390/ijerph18052682
http://doi.org/10.3390/s20247315
http://doi.org/10.1007/s12517-012-0761-9
http://doi.org/10.1038/sdata.2015.66
http://doi.org/10.1080/01431161.2018.1433343
http://doi.org/10.3390/su8121325

	Introduction 
	Materials and Methods 
	Study Area 
	Remote Sensing Datasets and Data Processing 
	Sample Data 
	Classification System 
	Machine Learning Classifiers in GEE 
	Classification and Regression Trees (CART) 
	Gradient Tree Boost 
	Minimum Distance 
	Random Forest (RF) 
	Support Vector Machine (SVM) 

	Classification Accuracy Assessment 
	Grey Correlation Analysis 

	Results 
	Classifications, Change Detection and Algorithms’ Model Performance 
	Classifications 
	Accuracy Assessment 

	Wetland Change Detection 
	Climate Variation and Wetland Change 
	GDP and Wetland Change 
	Grey Correlation Analysis 

	Discussion 
	Conclusions 
	References

