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Abstract: Indications of people’s environmental concern are linked to transport decisions and can
provide great support for policymaking on climate change. This study aims to better predict individ-
ual climate change stage of change (CC-SoC) based on different features of transport-related behavior,
General Ecological Behavior, New Environmental Paradigm, and socio-demographic characteristics.
Together these sources result in over 100 possible features that indicate someone’s level of environ-
mental concern. Such a large number of features may create several analytical problems, such as
overfitting, accuracy reduction, and high computational costs. To this end, a new feature selection
technique, named the Coyote Optimization Algorithm-Quadratic Discriminant Analysis (COA-QDA),
is first proposed to find the optimal features to predict CC-SoC with the highest accuracy. Different
conventional feature selection methods (Lasso, Elastic Net, Random Forest Feature Selection, Extra
Trees, and Principal Component Analysis Feature Selection) are employed to compare with the COA-
QDA. Afterward, eight classification techniques are applied to solve the prediction problem. Finally,
a sensitivity analysis is performed to determine the most important features affecting the prediction
of CC-SoC. The results indicate that COA-QDA outperforms conventional feature selection methods
by increasing average testing data accuracy from 0.7% to 5.6%. Logistic Regression surpasses other
classifiers with the highest prediction accuracy.

Keywords: climate change stage of change; feature selection; transport-related behavior; optimization;
classification

1. Introduction

Governments around the world are trying to reduce transportation-related greenhouse
gas (GHG) emissions in response to concerns about climate change. An important aspect
of trying to reduce emissions is individual attitudes towards climate change [1]. Awareness
plays a crucial role in minimizing the negative impacts on climate change. It has been
demonstrated that individuals’ environmental awareness could affect their behaviors in
aiming to protect the environment and reduce their adverse effects on the environment [2].
Various research within the field of transport has demonstrated that environmental atti-
tudes can also help explain travel behavior (e.g., Anable [3]; Susilo et al. [4]; Gaker and
Walker [5]); this link is important to understand as it is a major challenge with regards to
personal emissions [6].

A few common measures of environmental behavior and attitudes exist. One of the
most established measures is the General Ecological Behavior (GEB) tool which includes
roughly 50 questions on various behaviors, including a few on transport. Another more gen-
eral “world view” measure for the environment is the New Environmental Paradigm (NEP)
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tool that includes 15 questions related to attitudes towards the environment. A simpler
measure is the Climate Change Stage of Change (CC-SoC), which was developed to quickly
capture attitudes and behavior with respect to personal climate emissions [7]. CC-SoC
was developed based on the Transtheoretical Model (e.g., Prochaska et al. [8]), where
individuals are presumed to go through stages with respect to a problematic behavior.
Essentially, the process starts from whether or not an individual believes there is a problem
(precontemplation), moves through stages of motivation to act to address the problem
(contemplation, preparation), taking action, maintaining it, and then establishing a habit
(termination). Detailed descriptions of these stages can be found in Prochaska et al. [8].
The CC-SoC was first proposed and used to examine differences in response strength to
information on climate change emissions in the Carbon Aware Travel Choices (CATCH)
research project by Waygood and Avineri [9] and subsequently used in various studies
(e.g., Daziano et al. [10]; Wang et al. [11]). It has been demonstrated that the simpler
CC-SoC measure can replace the more complex measures of GEB and NEP with a good
assessment of people’s environmental motivations [7]. Thus, it is worthy of predicting
CC-SoC accurately, if possible.

In contrast to other environmental behaviors, such as recycling or heating and cooling
practices, transport is essential for conducting many daily activities, and a disconnect
may exist between its use and climate change. As demonstrated, common environmental
behaviors such as recycling are not strong predictors of climate change behavior [7], and
people may conduct these as “token” environmental behaviors. Behaviors such as recycling
may be so commonplace that they might not be a good measure of whether a person has
strong climate change attitudes or behaviors, though an individual may see themselves
as so for having performed such token behaviors. Knowing what environmental and
transport behaviors and attitudes are associated with stronger climate change attitudes
and behaviors can help create proxies for such measures to better estimate how individuals
might respond to climate change policies.

In previous work [12], a variable attrition approach was used to analyze what be-
haviors and attitudes related to the CC-SoC. In this regard, an ordered logistic regression
was performed to model and predict CC-SoC. In the modeling process, 89 variables were
employed, and the model reached the Pseudo R2 of 0.1364. However, Artificial Intelligence
(AI) methods have the potential to improve the accuracy of the predictions, as well as the
selection of the most important predictive variables. At the same time, when dealing with
large numbers of variables, such as from the General Environmental Behavior questions
(50), it is difficult to determine which combination of variables will provide the most accu-
rate prediction model. Therefore, feature selection techniques are needed to select the most
important predictors. Several research questions will be investigated here:

a. Can the prediction accuracy of belonging to a CC-SoC be improved considerably by
applying AI techniques such as machine learning (ML) or deep learning?

b. Many ML methods exist, but which might be the most accurate for this type of
measure (non-linear nominal variable)?

c. When dealing with large numbers of variables, can using all variables in the predic-
tion model maximize the prediction accuracy?

2. Literature Review

Analyzing individual levels of concern about the environment has been investigated
in various studies. For example, Zha et al. [13] attempted to examine customers’ environ-
mental level of concern while purchasing electrical appliances, such as washing machines
and refrigerators. The authors used the appliance’s energy label as a proxy measure for
individuals’ environmental concerns. A mixed logit model was used to consider the effects
of various parameters, including energy label, power consumption, performance, price, and
brand, on customers’ choices. The results showed that energy labels, power consumption,
price, and brand significantly affected customers.
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Bedard and Tolmie [14] investigated the effects of online interpersonal and social
media usage on sustainable behavior in terms of purchasing. The relation between the
cultural dimensions and green purchase intentions was examined in their study. The
dataset came from the Mechanical Turk service of Amazon, and only those belonging
to the “millennial” generation were considered the target group. Subsequently, a linear
regression was applied for the modeling process. The results indicated that the impacts of
online interpersonal and social media usage on green purchase intentions were significant.
However, the influences of individualism were insignificant.

Cheung et al. [15] investigated the role of consumer–brand interaction and consumer–
consumer interaction in driving the consumer–brand engagement’s cognitive, behavioral,
and emotional dimensions. Furthermore, the influences of consumer–brand interaction
and consumer–consumer interaction on consumers’ behavioral intentions were examined
considering ongoing search behavior and repurchase intention. A case study including
316 customers was applied, and Partial Least Square Structural Equation Modelling was
used for the modeling process. The results indicated that consumer participation influ-
enced ongoing search behavior, and behavioral and emotional engagements significantly
impacted repurchase intention.

Likewise, environmental concern has been considered in making transport-based
decisions. For example, Liu and Cirillo [16] modeled vehicle purchase behavior and
predicted future preferences using a generalized dynamic discrete choice approach. Impacts
of different scenarios, including changes in vehicle purchase prices, vehicle characteristic
improvements, and fuel price changes, on environmental behavior were taken into account.
The results indicated that all the mentioned scenarios influenced environmental behavior
and could significantly affect the adoption of electric vehicles.

Although discrete choice models are easily interpretable methods and powerful mod-
els to scrutinize variables, it has been recognized that they generally have lower prediction
accuracy than machine learning techniques. Moreover, discrete choice models have longer
computational time than machine learning techniques [17]. Although some ML techniques
are black-box, sensitivity analysis can be applied to find the influence strength of different
features. Hence, researchers have begun to apply AI classification techniques to predict
environmental behaviors. Researchers have applied different classification techniques to
predict environmental behaviors.

Lee et al. [18] applied three prediction methods: a deep learning neural network; an
ordinary artificial neural network; and least square regression to predict environmental
consumption levels in different regions. Six features—i.e., health expenditure, pre-primary
education, pro-environmental consumption index, past orientation, and two features
related to the gross domestic product—were used in the classification modeling. The
results indicated that deep learning neural performed better than other prediction methods
based on the prediction accuracy.

Amasyali and El-Gohary [19] proposed an approach to predict the energy consumption
of cooling in office buildings. Five sets of parameters, including window status, occupancy
density, cooling setpoint, the power density of electric equipment, and density of lighting
power, were considered as the model’s input variables. Decision tree, deep neural network,
artificial neural network, and ensemble bagging tree were used for the classification process.
The results showed that the proposed approach could predict energy consumption as an
environmental behavior. Furthermore, the deep neural network was the most accurate
classification method. Aiming to predict whether people adopted green electricity policies,
Lee et al. [20] applied a machine learning approach to information on anti-environmental
and pro-environmental attitudes. The outcomes of the mentioned study revealed that
environmental attitudes had a significant role in adopting green electricity policies.

In a transport-related study, the prediction of fuel consumption was examined by
Ping et al. [21]. To this objective, trip route, vehicle type, weather condition, and traffic
conditions were used as features of the prediction model. A deep learning network method
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was modeled for classification purposes. The proposed deep learning method could
effectively detect the relationship between fuel consumption and driving behavior.

Given the many variables now available and considered in real-life prediction prob-
lems, feature selection techniques are increasingly used and can increase prediction accu-
racy. Feature selection techniques can make a prediction model easier to interpret, increase
the model’s generalization capability, and remove noisy features [22]. Chang et al. [22]
proposed a model to predict individual behavior in terms of transportation mode choice
and detect the most important features. The travel history of 162 households over 6 years,
comprising roughly 52,000 trips, was considered for the dataset. Twenty-three parameters
relating to individual characteristics, household characteristics, and trip properties were
considered in the initial feature set. A feature selection technique was employed, and the 14
features with the highest importance weights were retained. Subsequently, a set of feature
selection techniques were utilized, and the results revealed that Random Forest was the
most accurate prediction method.

Wade et al. [23] compared the performance of two feature selection methods, Random
Forest Feature Selection and LASSO, on a subcortical brain surface morphometry prediction
problem. Three machine learning algorithms, including Random Forest, Naïve Bayes, and
Support Vector Machine, were used for classification. The results indicated that Random
Forest feature selection outperformed LASSO based on the prediction accuracy. On the
other hand, LASSO was the better alternative for minimizing running time.

Sanchez-Pinto et al. [24] compared the performance of various feature selection meth-
ods on two datasets. Four regression-based feature selection methods, including LASSO,
Elastic Net, stepwise backward selection, Akaike information criterion, and four tree-
based feature selection methods, including Regularized Random Forest Feature Selection,
Random Forest Feature Selection, Gradient Boosted Feature Selection, and Boruta, were
considered in their comparison. The results showed that regression-based methods ob-
tained better parsimony in the smaller dataset, while tree-based methods achieved better
parsimony in the larger dataset. The regression-based feature selection methods showed
better (or equal) performance than the model without feature selection. However, some
performance loss was reported for tree-based methods.

CC-SoC was demonstrated to be an important indicator to estimate the influence
of climate change attitudes on vehicle choice [7]. To the best of the authors’ knowledge,
although environmental behavior prediction has been investigated in some studies, the
prediction of individual CC-SoC has not received enough attention considering the crisis
at hand. The transport industry generates 22.7% of global GHG emissions [25], and
understanding how transport-related behavior relates to CC-SoC is essential to address
the crisis. However, the role of transport-related behavior in predicting CC-SoC is not
well known. Perhaps it is not a behavior that people consider when they self-assess their
climate change attitudes and behavior. Further, how a multitude of general environmental
behaviors, attitudes, and socio-demographic characteristics are related to the CC-SoC is not
well known.

Although there are a number of features to predict the CC-SoC, such as transport-
related behavior, GEB, NEP, and socio-demographic characteristics, model prediction
accuracy may not be improved simply by increasing the number of features. To this end,
using robust feature selection techniques to detect the optimal features can be vital. How-
ever, detecting the optimal features for environmental behavior prediction has rarely been
taken into account. As well as this, comparing the performance of several AI techniques
to obtain the highest accuracy is essential and is often overlooked in environmental be-
havior predictions. Furthermore, prioritizing the model’s features and detecting the most
important parameters can be critical for policymakers. Nonetheless, detecting the features’
importance and ranking may be neglected in the aforementioned classification problem.
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Research Contributions

To address the aforementioned concerns, in this study a new approach is proposed to
predict individuals’ environmental attitudes and behaviors (i.e., CC-SoC). Due to the signif-
icant effects of transportation on generating harmful emissions, transport-related behavior
is taken into account as a variable as well as socio-demographic characteristics and envi-
ronmental behaviors (GEB) and attitudes (NEP). This large number of variables increases
the model’s computational complexity and may reduce the prediction accuracy [21]. Thus,
a new feature selection technique is introduced, capable of finding the optimal number of
features and the optimal feature set to maximize the prediction accuracy. Moreover, dif-
ferent common feature selection techniques are implemented and compared, and the new
approach improves model performance in the context of the CC-SoC prediction problem.
Similarly, various AI prediction methods are used to detect the best prediction algorithms
for the CC-SoC prediction problem. Finally, a sensitivity analysis is performed to priori-
tize the optimal features and determine the effectiveness of each variable on prediction
accuracy increment.

3. Methodology

This study proposes a methodology to predict individual CC-SoC using several dif-
ferent types of variables, including socio-demographic characteristics, the 50 questions
from the GEB, and the 15 questions from the New Ecological Paradigm (NEP) indices.
Moreover, it aims to detect which variables have the greatest effect on people’s CC-SoC.
With this objective in mind, eight classification techniques are applied as prediction tools.
Hence, one of the primary objectives of this study is to compare different prediction meth-
ods and detect the most accurate classifiers to solve the mentioned prediction problem.
Subsequently, a new feature selection technique, named Coyote Optimization Algorithm-
Quadratic Discriminant Analysis (COA-QDA), is introduced to determine the optimal
features and the optimal number of features to obtain the highest prediction accuracy. The
COA-QDA is compared with five conventional feature selection techniques based on the
average accuracy of classification methods to assess their effectiveness and determine the
most valuable feature selection technique. Finally, a sensitivity analysis is proposed to rank
the features based on their importance on CC-SoC prediction accuracy.

The methodology flowchart is illustrated in Figure 1. As can be seen, the first step of
this research was data preparation. Afterward, the proposed feature selection technique
(COA-QDA) was developed. Then, different feature selection techniques were applied, and
their performance was improved using classifier average prediction accuracy. A model
without applying feature selection (i.e., using all features) was used to evaluate the effec-
tiveness of feature selection methods on prediction accuracy. In the next step, the variables
resulting from the different feature selection methods were employed to predict CC-SoC
using eight classification techniques. Accordingly, the performance of feature selection
techniques and classifiers were compared. The best combination of feature selection and
classification techniques was determined, and its optimal features were applied in a pro-
posed sensitivity analysis to prioritize the optimal features.

In this section, the data preparation process is first described. Then, the classification
techniques applied in this study are presented. Following that, feature selection methods
are explained. Finally, the sensitivity analysis is presented.
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3.1. Data Preparation

The data comes from a project on framing CO2 emissions to predict individual willing-
ness to pay for emissions [10]. An online survey was conducted between December 2015
and March 2016 in Boston and Philadelphia, USA. As the original project was focused on
vehicle purchases, the survey was restricted to only car owners. As such, the transport ques-
tions in this survey were predominantly car-focused. A total of 1,580 complete responses
were collected through the recruitment agency Qualtrics. Some selected socio-demographic
information for the survey participants is displayed in Table 1.

The survey included questions on attitudes towards the environment including the
NEP and GEB questions, attitudes towards various relevant government policies, a CC-
SoC question (see below), and various transport-related questions. Additional infor-
mation about GEB and NEP questions was presented by Kaiser and Wilson [26] and
Dunlap et al. [27], respectively. All questions in the survey were quantitative, and as a
result, all input variables in the problem were categorical. The prediction model’s input
variables (features) can be divided into five groups, including: socio-demographic (18 fea-
tures); GEB (53 features; small changes were made in the GEB questions such as separating
cycling and public transport.); NEP (15 features); transport-related features (14 features);
and extra features (11 features). The extra features category included some questions on
policy support for emission reduction and climate change attitudes. Hence, the prediction
problem included 111 features.

After collecting data, incomplete responses and responses where individuals failed
“trap questions” (i.e., questions that are used to identify whether or not the respondent is
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paying attention) were eliminated from the initial dataset. The final dataset included 1536
samples. The final data were divided into three groups: training data; testing data; and
validation data. Training data was applied to educate the prediction models. Validation
data was employed to tune hyperparameters. Testing data was used to assess and compare
the prediction ability of soft computing methods. The portion of training, testing, and
validation data was considered 70%, 15%, and 15% [28]. The model attempted to predict
classes (categories) of respondent-reported Climate Change Stage of Change (CC-SoC). The
label of classes was based on the responses to the question “Please choose the phrase that
most corresponds to you for reducing greenhouse gases”. The possible responses were
as follows:

(1) I am not concerned;
(2) I would like to reduce my emissions, but I don’t know how;
(3) I would like to reduce my emissions, and will do so in the future;
(4) I have already reduced my emissions significantly.

Table 1. Selected socio-demographic characteristics of the respondents.

Socio-Demographic Variables Frequency Percent Mode

Gender
Male 794 50.2

2�Female 787 49.8

Household cars

1 616 39.0
2 739 46.7

2�3 155 9.8
4 or more 71 4.5

Residence location
Greater Philadelphia 926 58.6

2�Greater Boston 655 41.4

Education

Professional or Doctorate degree 80 5.1
Master’s degree 229 14.5

Bachelor’s degree 610 38.6

2�
Associate degree 145 9.2

Some college, no degree 314 19.9
High School Graduate (Diploma

or equivalent GED) 192 12.1

1–12th grade 11 0.7

Household income

Less than $30,000 105 6.7
$30,000–$39,999 105 6.6
$40,000–$49,999 134 8.5
$50,000–$59,999 163 10.3
$60,000–$74,999 247 15.6

2�
$75,000–$84,999 133 8.4
$85,000–$99,999 165 10.4

$100,000–$124,999 174 11.0
$125,000–$149,999 109 6.9
$150,000–$174,999 66 4.2

More than $175,000 103 6.5
I prefer not to answer 77 4.9

Hispanic Yes 104 6.6
2�No 1477 93.4

Political

Strongly conservative 110 7.0
Moderately conservative 364 23.0

Independent 633 40.0 2�
Moderately liberal 320 20.2

Strongly liberal 154 9.7
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3.2. Classification Techniques

Eight classification techniques, including Multi-Layered Perceptron (MLP), Gaussian
Naïve Bayes (NB), Logistic Regression (LR), Decision Tree classifier (DT), K-Nearest Neigh-
bor classifier (KNN), Random Forest classifier (RF), Support Vector Machine classifier
(SVM), and AdaBoost (AB) were applied to model and predict the CC-SoC. Moreover, these
methods were employed to compare the performance of different classifiers and obtain the
highest possible accuracy. The classifiers were briefly explained in this section.

3.2.1. Multi-Layered Perceptron

MLP is a deep Artificial Neural Network (ANN) containing more than one hidden
layer. ANNs can be employed to model complicated problems in a short time. They
are good at nonlinear prediction problems in a reasonable amount of time [29]. An MLP
generally includes an input layer, some hidden layers, and an output layer. There are some
processing units in each layer, called neurons. All neurons are connected to other neurons
by various connection weights (unidirectional connections). The input layer receives the
row information, adjusts them, and transfers them to the first hidden layer. The function of
the hidden layers is to allocate different weights to each neuron. Then, activation functions
are applied to change data representation, and the combination of neuron information and
their corresponding weights are transferred to the next hidden layer. Finally, the output
layer receives information from the last hidden layer and presents the prediction values
or labels [30].

3.2.2. Gaussian Naïve Bayes

Gaussian Naïve Bayes (NB) is one of the fastest and most straightforward classification
methods. In NB, each sample’s posterior probability is maximized during the labels’
allocation. NB assumes that the voxel contributions follow a Gaussian distribution, and
they are conditionally independent. NB applies a discriminant function for each category.
The mentioned function is based on the summation of the squared distances to each classes’
centroid weighted by its variance. Then, Bayes’ rules are used to calculate the logarithm
of the priori probability to train the model. Ultimately, for each testing data sample, the
discriminant function is calculated for all classes, and the testing data sample is assigned to
a class including the maximum discriminant function value [31].

3.2.3. Logistic Regression

Logistic Regression (LR) is a powerful statistical modeling method that has been
applied to solve classification problems. LR considers an explanatory variables’ set to
assess the dichotomous outcome event probability [32]. Dichotomous variables generally
denote the occurrence or not of some events. Generally, LR assumes the relationship
between the explanatory variables is linear. Thus, LR applies linear decision boundaries
while using a non-linear model [33].

3.2.4. Decision Tree Classifier

The Decision Tree classifier (DT) was inspired by the shape of trees and their nodes
and leaves. DT is easy to understand and interpret. Furthermore, DT easily supports
adding new scenarios if introduced, can work as a white-box method, and can be efficient
while using an enormous volume of data. Classification rules are mainly modeled based
on a set of selections in DT. DT is constituted of decision rules according to optimal feature
cut-off thresholds. These thresholds divide each feature into different groups in every
leaf node. Then, this process is continued in a hierarchical manner, and at each level, the
available samples are divided into different groups based on the splitting criterion [34].
At each step, the current node’s branching condition is assessed by splitting criteria. All
the mentioned processes are called DT construction. Subsequently, the pruning process is
performed. Pruning is a back forward process that eliminates the additional branches to
reduce the computational costs and improve the algorithm’s efficiency [35].
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3.2.5. K-Nearest Neighbor Classifier

K-Nearest Neighbor classifier (KNN) is a black-box classification technique, which has
been applied for statistical analysis since the 1970s. KNN is a non-parametric prediction
algorithm, and it predicts a sample’s label based on the labels of similar samples [36]. KNN
plots all samples in a hyper-dimensional space based on their features’ values. Afterward, a
distance function is utilized, and K nearest samples to the test sample are detected. The test
sample’s label is the most frequent label in the corresponding K nearest neighbor’s label
set. Considering a large value for K leads to high running time. Moreover, KNN cannot
perform well in the circumstances where more than one frequent label is detected in the K
nearest neighbor’s label set [37].

3.2.6. Random Forest Classifier

Random Forest (RF) is a prediction technique employed for solving regression of
classification problems. RF is an ensemble method that combines different DTs to improve
prediction accuracy. A particular number of DTs are modeled in the modeling process, and
each tree is generated from a random vector. Subsequently, all DT models are run, and the
label is determined by considering all DTs’ results [38]. Different DT models are run in RF
simultaneously, and the majority of class votes determine the predicted label. Research in
transport has shown that RF is a powerful method when the problem is large-scale such as
an origin-destination survey [39].

3.2.7. Support Vector Machine classifier

Support Vector Machine (SVM) is a powerful method used for classification, estimation,
and pattern recognition. A set of kernel-based functions are generally applied by SVM
to predict class labels in classification problems. Low-dimensional data are converted to
high-dimensional vector spaces by nonlinear mapping functions in SVM. As SVM utilizes
the theory of structural risk minimization, the over-fitting probability of the problem is
reduced [40]. Furthermore, nonlinear complex models can be transformed into simple
linear form problems by SVM. Accordingly, SVM can apply linear regression function in a
high dimensional space. Consequently, SVM allocates different values of bias and various
weights to the model. The SVM model is replaced with a mathematical optimization
problem using the principle of structural risk minimization. Afterward, slack variables
are added to the new model, and the ultimate prediction model is generated considering
fitting error. Ultimately, the optimal solution to the optimization problem is presented as
the final classification model [41].

3.2.8. AdaBoost

AdaBoost (AB) is an ensemble prediction method that works iteratively. AB combines
different weak classifiers in a model to generate an accurate classification method. First,
some weak classifiers (sub-classifiers) are generated, and equal weights are assigned to
them. Subsequently, the sub-classifiers are trained, and their corresponding error is cal-
culated. Then, the assigned weights are updated based on sub-classifiers’ errors, and the
updated weights are allocated to sub-classifiers in the next iteration. This iterative process
is continued, and ultimately, the class labels are predicted using the results of sub-classifiers
and their corresponding weight in the last iteration [42].

3.3. Feature Selection Process

This study aims to introduce an accurate model to predict an individual’s CC-SoC.
One approach to generate a precise model and obtain the highest accuracy is to detect
optimal features that should be applied as the classifiers’ inputs. In this regard, a new
feature selection technique capable of finding the optimal number of features is introduced
in the current study. In other words, the proposed technique can detect the optimal
number of features and optimal features simultaneously based on an optimization approach.
Moreover, different conventional feature selection methods—Lasso, Elastic Net, Random
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Forest Feature Selection, Extra Trees, and Principal Component Analysis Feature Selection—
are applied. Their structure is improved to enhance their performance. Hence, the other
objective of this study is to compare the performance of the introduced feature selection
technique with the improved version of some conventional feature selection techniques to
detect the best set of variables that leads to the maximum possible accuracy. In this section,
the introduced feature selection technique is presented. Afterward, the conventional feature
selection technique and the method applied to improve their performance are described.

3.3.1. COA-QDA Feature Selection

As mentioned, a new feature selection technique is introduced in this study to find
the optimal features leading to the highest accuracy. COA-QDA is developed with a
combination of the Coyote Optimization Algorithm (COA), as a metaheuristic optimization
algorithm, and Quadratic Discriminant Analysis (QDA), as a robust and fast machine
learning technique. In this section, COA and QDA are described respectively, and afterward,
the modeling of COA-QDA is presented.

COA is a metaheuristic optimization algorithm introduced by Pierezan and Coelho [43].
COA is a swarm intelligence algorithm inspired by the interactions and social behavior
of Canis Latrans (coyotes). This algorithm applies a particular number of solution vectors,
called coyotes, to investigate the problems’ feasible regions and find optimal solutions. In
the metaheuristic optimization process, each solution vector includes one value for each
optimization problem’s dependent variable. The set of independent variable values for
each solution vector (coyote) is called the coyote social behavior in COA, as presented
in Equation (1).

soch,iter
c = x = (x1, x2, . . . xD) (1)

where soch,iter
c signifies the social behavior of coyote c in herd h at the iteration of iter.

Meanwhile, xi and D imply the value of independent variable i and the optimization
problem’s dimension (number of independent variables), respectively.

Initially, various solution vectors are generated by assigning random values to each
independent variable. The assigned values should be between the lower and upper bounds
of independent variables. Subsequently, all coyote social condition (fitness value) is de-
termined using the problem’s objective function. Then, coyotes are divided into different
groups (herds). In other words, solution vectors are classified in order to investigate differ-
ent parts of the problem’s feasible region simultaneously. The coyotes are ranked based on
their fitness value in their herds, and the coyote with the highest fitness value (i.e., the least
objective function value in minimization optimization problems) is called alpha in each
herd. That is to say, alpha coyotes are the best solution vectors in their groups. Equation (2)
is applied to spot the alpha in each herd at each iteration [44].

alphah,iter =
{

soch,iter
c

∣∣∣argc={1,2,...,Nc}min f (soch,iter
c ) (2)

where alphah,iter is the alpha in herd h at the iteration of iter.
Consequently, “culture” is transferred within each herd. Each coyote moves toward

its groupmates and alpha in the feasible region in the culture transfer operation. The
gravity of each groupmate to attract a coyote depends on the social condition, and the
solution vectors with higher fitness values generate more attraction (gravity). Similarly,
each coyote is transferred to the nearest point to the group alpha [45]. Therefore, the
capable regions can be investigated meticulously by attracting more solution vectors. Some
coyotes are transferred between herds, and this process is called culture transfer. The
culture transfer operator avoids remaining in the local optimal solutions by scattering
some solution vectors across the problem’s feasible region. The death and birth process is
another operator improving algorithm performance by removing the weakest coyotes and
generating new coyotes. In each iteration, the solution vectors with the lowest fitness values
are removed from the society (through death), and new solution vectors are generated
randomly to investigate unseen areas [46]. The mentioned operators are run until the
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termination criteria are met. Ultimately, the solution vector with the highest fitness value
is introduced as the optimal solution to the problem. More details about the algorithm’s
pseudo-codes and the algorithm process are provided by Pierezan and Coelho [43] and
Pierezan et al. [45].

QDA is a supervised classification technique. QDA applies a Gaussian distribution
to model each category likelihood. Consequently, posterior distributions are employed
to predict the labels for testing data samples. The Gaussian parameters for all categories
can be predicted using maximum likelihood estimation and training data samples [47]. In
QDA, it is assumed that the feature vector is multivariate normally distributed in the group
with a given mean vector in a particular group and a specific covariance matrix. Hence,
non-linear decision boundaries are used in the classification process [48].

The COA-QDA aims to maximize the prediction accuracy by selecting the optimal
features; that is, maximizing the prediction accuracy is an optimization problem that
should be solved by an optimization algorithm. Since the type of the mentioned problem
is Integer Programming, and the number of decision variables is high, the problem is
non-deterministic polynomial-time (NP-hard). Exact optimization algorithms (e.g., branch
and bound) cannot solve NP-hard problems. Moreover, exact optimization cannot be
synced with machine learning techniques. Therefore, a metaheuristic optimization algo-
rithm should be employed to solve the mentioned problem [49]. As a result, as a robust
metaheuristic algorithm, COA is applied for optimization purposes.

Moreover, a powerful and fast classifier is required to predict the labels for each
solution vector in COA and calculate the accuracy. Hence, QDA is used as the classifier in
the proposed method. The modeling of the COA-QDA is as follows:

Maximize z =
(
α1 × Accuracytraining

)
+ (α2 × Accuracyvalidation (3)

Subject to:
α1 ∈ {1, 2, . . . , αmax} (4)

α2 ∈ {1, 2, . . . , αmax} (5)

NOPT = n n ∈ {1, 2, . . . , N − 1} (6)

xi ∈ { f ea1, f ea2, . . . , f eaN} ∀i ∈ {1, 2, . . . , NOPT} (7)

i ≤ NOPT (8)

I f xj = xk ⇒ f eaj = f eak ∀j, k ∈ {1, 2, . . . , NOPT} (9)

where α1 and α2 are the calibration weights. Accuracytraining and Accuracyvalidation signify
the accuracy of QDA for predicting training data and validation data, respectively. αmax
denotes the maximum value of calibration weights. NOPT and N imply the optimal number
of features and the number of features in the initial features set. xi and f eai are the optimal
feature i and the feature i in the initial features set.

In the proposed optimization process, Equation (3) is the problem’s objective func-
tion. This equation maximizes the model’s training and prediction accuracy. Considering
validation data accuracy is necessary to avoid over-fitting in the feature selection process
and selecting the optimal features that increase the model’s prediction power. Moreover,
calibration weights are applied to investigate the optimal calibration weights according
to the details provided by Naseri et al. [50]. After running the model and obtaining the
solutions, the testing data is applied to determine the calibration weight optimal value.
That is to say, the calibration weights leading to the highest testing data accuracy are
considered the optimal calibration weights. Equations (4) and (5) guarantee that the cal-
ibration weights are selected from the given range. αmax is considered to be 3 based on
Naseri et al. [51]. Equation (6) is another constraint that prevents the model from selecting
the optimal number of features higher or equal to the number of features in the initial
dataset. This constraint is applied due to us not limiting the model to select each feature
once at most. That is to say, the model can select one feature as an optimal feature more
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than once if the feature’s duplication improves the model’s performance. Additionally, the
approach is to reduce the input’s dimension, and the number of features should be reduced.

Equation (7) guarantees that exactly one feature is assigned to each optimal feature.
Meanwhile, Equation (8) forces the model to select exactly NOPT features, which is the
optimal number of features. Based on Equation (9), only one feature from the initial feature
set should be assigned to each optimal feature. After running the model, the xi set related
to the optimal solution is considered as the optimal feature set.

3.3.2. Lasso

Lasso is a soft computation technique proposed by Tibshirani [52]. Lasso has been
extensively applied to feature selection and regularization processes. Lasso shrinks the
model’s input size by minimizing the summation of the coefficients’ absolute value (L1-
penalty function) using conventional least squares regression. The L1-penalty function is
utilized to avoid overfitting and detect the selected features. That is to say, the penalty
parameter prevents the model from selecting significant values for coefficients [53]. Hence,
the coefficient of unimportant features becomes zero automatically. The features with the
assigned coefficient of zero are removed from the model. On the other hand, the parameters
with the corresponding non-zero coefficients are considered the selected features [54].

3.3.3. Elastic Net

Elastic net (EN) is another feature selection technique applied to improve the per-
formance of prediction models influenced by multicollinearity. In the cases that the data
is affected by multicollinearity, the model’s variance is significant while least squares
predictions are unbiased. Accordingly, the model estimation can be inaccurate. EN is a
conventional least squares regression modified with two penalty parameters, including the
L1-penalty function and L2-penalty function [55]. In other words, EN is the combination
of lasso regression and ridge regression. EN minimizes all coefficients’ absolute values by
adding the summation of coefficients’ absolute value and summation of coefficients’ square
to the least-squares function. Moreover, each penalty function is multiplied by a tuning
parameter that controls the shrinkage amount. Ultimately, the features with the coefficients
of zero are eliminated from the input sets, and the other features are taken into account as
selected features [56].

3.3.4. Random Forest Feature Selection

Random Forest Feature Selection (RFFS) is a robust feature selection reducing the
number of features based on the features’ importance score. It has been proved that RFFS
is efficient on dimensionality reduction when the model includes hundreds of features [57].
RFFS is an ensemble technique that generates several decision trees by choosing random
observations and random variables and combining them. Then, the votes generated by
each decision tree are aggregated; hence, the variables’ predicted likelihood and features’
importance score are calculated. The features with the highest importance scores are gener-
ally considered the chosen features, and the other features are overlooked [58]. Nonetheless,
there is not a particular threshold for features’ importance score, and it is a complicated
task to detect the number of optimal features in RFFS.

3.3.5. Extra Trees Feature Selection

Extra Trees Feature Selection (ETFS) is an ensemble method that has been used for
feature selection. ETFS is a variant of RFFS with higher randomization for selecting decision
boundaries at all steps. The generated trees in ETFS have more leaf nodes compared with
RFFS, and the computational efficiency of ETFS can be higher than RFFS. Meanwhile, the
variance-bias trade-off in ETFS may be higher than that of RFFS due to a higher level of
randomization. However, more randomization may lead to a reduction in the model’s
accuracy. ETFS combines different decision trees, and the aggregated votes are presented
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as the features’ importance factor [59]. Like RFFS, ETFS cannot detect the optimal number
of features that should be selected to obtain the highest classification accuracy.

3.3.6. New Feature Selection-Based Principal Component Analysis

Principal component analysis (PCA) is a powerful technique in data structure investi-
gation. PCA generates new variables (principal components or latent variables) by data
variance maximization. Hence, PCA application reduces the problem’s dimensionality.
Although PCA reduces the dimensionality, the number of original features is not reduced
as all original features can be applied to generate principal components [60]. In the current
investigation, the PCA is converted to PCA feature selection based on the details provided
by Song et al. [61]. The weight of each feature to generate all principal components are
summed, and the obtained value is considered the importance weight of the correspond-
ing feature. Moreover, the PCA model is run N − 2 times by considering the number of
principal components equal to 2, 3, . . . , N − 1. Where N represents the number of original
features in the initial features set. Consequently, the average value of importance weights
over N− 2 runs is calculated for all features, which is called the ultimate importance weight.
Finally, the features are ranked based on their ultimate importance weight, and the feature
with the highest ultimate importance weight is the most important feature, followed by the
features with the next rankings.

3.3.7. Finding the Optimal Number of Features for Conventional Feature Selection Techniques

One of the primary drawbacks of most feature selection techniques is not presenting
the optimal number of features. RFFS, ETFS, and PCA prioritize the features based on
their importance weights. However, there may not be a practical rule in order to define a
threshold for importance weights and remove features from the data set. Hence, it may
be impossible to realize the optimal number of features based on importance weights. On
the other hand, Lasso and EN can present the optimal number of features by removing
unimportant features. Nevertheless, there may be some features with very small coefficients
in Lasso and EN, and similarly, there may not be a standard threshold for selecting or not
selecting features with small coefficients. Thus, there is a need to improve the performance
of these feature selection techniques. In this regard, Equation (10) is used for finding the
optimal number of features for conventional feature selection techniques. Initially, the
features are ranked based on their importance weights. Then, all classification techniques
are run by considering the first and the second most important features, and the average
value of validation data for all classifiers is calculated. Subsequently, all classifiers are run
considering the first, second, and third most important features, and the average value of
validation data for all classifiers is calculated. Then, the four most important features are
applied, and validation data average accuracy is assessed. This process is continued until
the most important N − 1 features are employed in the model. Consequently, different
combinations of features are compared based on validation data average accuracy, and
the optimal number of features is determined for each feature selection technique. Finally,
the optimal feature set is used to train all classifiers, and the average value of testing data
accuracy is applied to compare the performance of different feature selections.

Ni
opt = Argmax

{
Accuracyval FSi

n

}
∀n ∈ {2, 3, . . . , N − 1} (10)

where Ni
opt is the optimal number of features for conventional feature selection i. Accuracyval FSi

n
represents the validation data accuracy of feature selection i run by considering n features
with the highest importance weights in the model.

3.4. Sensitivity Analysis

After detecting the best optimal feature set leading to the highest prediction accuracy,
a sensitivity analysis is performed to prioritize the optimal features. Initially, one optimal
feature is removed from the optimal feature set. Then, all classifiers are run, and their
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average testing data accuracy is calculated. Afterward, the average testing data accuracy
reduction for all classifiers is recorded. This process is performed for all optimal features.
The features are ranked based on their average testing data accuracy reduction. Accordingly,
the feature with the highest average testing data accuracy reduction is considered the most
important feature (first rank) and so on.

4. Results and Discussion

As mentioned, this research proposes an approach for predicting CC-SoC. In addition
to conventional environmental indexes (GEB and NEP) and socio-demographic variables,
transport-related features are considered to generate a robust prediction model. Different
feature selection techniques were applied to select optimal features. Various classifiers were
used to obtain the highest accuracy and spot the best classifier that fit the problem. The
results of this investigation are presented here. First, the results of improving conventional
feature selection techniques and their optimal number of features are presented. Then, the
performance of different feature selection methods is scrutinized. Classification technique
performance is then analyzed, and accuracy results are presented. Finally, the results of the
proposed sensitivity analysis for the most accurate feature set are presented.

4.1. Optimal Number of Features

Initially, conventional feature selection techniques were ran, and feature importance
weights were obtained. Then, the optimal number of features were tested incrementally
from 2 to 110 by decreasing value of importance weight. All classifiers were run, and
the average value of validation data accuracy was calculated for each possible optimal
number of features and for each conventional feature selection technique. The results
of this analysis are shown in Figure 2. As can be seen, the optimal number of features
for RFFS, ETFS, Lasso, EN, and PCA were 18, 19, 16, 35, and 17, respectively. A more
detailed look at this graph reveals that the applied method enhanced the performance of
feature selection techniques, even for EN and Lasso that already determine the optimal
number of features. The average accuracy of classifiers for EN and Lasso features were
increased by 2.8% and 0.8% respectively by considering the introduced improvement to
find the optimal number of features. Therefore, it can be inferred that the conventional
versions of Lasso and EN do not present the optimal number of features if the introduced
improvement technique is overlooked in their process. Additionally, these versions of RFFS,
ETFS, and PCA can present the optimal number of features. It should be noted that there is
not a direct correlation between increasing the number of features and an increase in the
prediction accuracy. By increasing the number of features, the accuracy was increased until
a threshold, and afterward, it reduced for all feature selection techniques. Thus, applying
the improved versions to find the optimal number of features for conventional feature
selection techniques in problems with a high number of features could be vital.

The optimal feature sets for all feature selection techniques were used to train all
classifiers, and then the accuracy of the testing data was calculated to compare their
performance. COA-QDA directly obtained the optimal number of features. The optimal
number of features was determined to be 46 by COA-QDA. Furthermore, the optimal value
of α1 and α2 was 1 and 2, respectively.

4.2. Feature Selection Technique Performance

The training and testing data accuracy of all classifiers for different feature selection
techniques is shown in Table 2. According to the results presented in Table 2, COA-QDA
provided the highest average testing data accuracy, followed by ETFS, EN, RFFS, all features,
Lasso, and PCA. That is to say, the average testing data accuracy of COA-QDA was 0.7%,
0.9%, 2.2%, 3.8%, 4.8%, and 5.6% higher than that of ETFS, EN, RFFS, all features, Lasso,
and PCA, considering all classifiers, respectively. Thus, it can be inferred that COA-QDA
is better at detecting the optimal features for CC-SoC prediction. Meanwhile, applying
COA-QDA, ETFS, EN, RFFS could improve the average prediction accuracy compared with
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a model without using any feature selection. On the other hand, the average testing data
accuracy of Lasso and PCA was lower than the all-features model, so the application of
these feature selection techniques is not recommended for the CC-SoC prediction problem.
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Table 2. The accuracy of classifiers based on various feature selection technique’s optimal features.

Feature
Selection

Techniques
Data
Type MLP NB LR DT KNN RF SVM AB Average

Accuracy
Maximum
Accuracy

Accuracy
Standard
Deviation

All features Training 0.461 0.528 0.623 0.570 0.438 0.979 0.838 0.519 0.620 0.979 0.179
Testing 0.338 0.481 0.502 0.351 0.390 0.502 0.506 0.459 0.441 0.506 0.066

ETFS Training 0.571 0.521 0.554 0.557 0.514 0.900 0.687 0.503 0.601 0.900 0.125
Testing 0.498 0.476 0.494 0.446 0.407 0.494 0.468 0.494 0.472 0.498 0.030

EN Training 0.735 0.505 0.561 0.554 0.497 0.935 0.754 0.515 0.632 0.935 0.149
Testing 0.476 0.485 0.524 0.398 0.420 0.489 0.498 0.472 0.470 0.524 0.039

Lasso Training 0.620 0.473 0.507 0.532 0.477 0.887 0.647 0.474 0.577 0.887 0.133
Testing 0.437 0.433 0.455 0.416 0.394 0.481 0.437 0.398 0.431 0.481 0.027

RFFS Training 0.556 0.491 0.517 0.559 0.473 0.914 0.659 0.479 0.581 0.914 0.138
Testing 0.459 0.481 0.494 0.394 0.381 0.494 0.511 0.446 0.457 0.511 0.045

PCA Training 0.620 0.408 0.470 0.548 0.473 0.927 0.627 0.477 0.569 0.927 0.153
Testing 0.398 0.381 0.459 0.420 0.407 0.476 0.455 0.394 0.424 0.476 0.033

COA-QDA Training 0.529 0.500 0.553 0.569 0.428 0.946 0.768 0.493 0.598 0.946 0.161
Testing 0.494 0.506 0.537 0.433 0.385 0.506 0.502 0.472 0.479 0.537 0.046

Drawing on the results presented in Table 2, the highest accuracy was obtained by
COA-QDA, with a value of 53.7%. The maximum accuracy achieved by EN, RFFS, all
features, ETFS, Lasso, and PCA were 1.3%, 2.6%, 3%, 3.9%, 5.6%, and 6.1% lower than
COA-QDA, respectively. Hence, it can be proposed that COA-QDA outperformed other
feature selection techniques based on obtaining the highest accuracy. The performance of
EN and RFFS were also desirable as their maximum accuracy was higher than that of the
all-features model. However, ETFS, Lasso, and PCA could not improve the accuracy if they
were replaced with the model without using any feature selection.

Another purpose of the current study was to find the best combination of feature
selection techniques and classifiers to achieve the highest prediction accuracy. For the
column of Maximum accuracy in Table 2, the highest testing data accuracy was related to
COA-QDA optimal features trained by logistic regression (COA-QDA/LR). The combi-
nation of COA-QDA and LR led to the highest testing data accuracy of 53.7%, followed
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by EN/LR, RFFS/SVM, COA-QDA/NB, COA-QDA/RF, and all features/SVM, with the
values of 52.4%, 51.1%, 50.6%, 50.6%, and 50.6%, respectively.

Computational complexity is a vital criterion to compare different soft computing
techniques., while running time is a straightforward method that is generally taken into
consideration to compare different methods. To this end, the running time of feature
selection techniques was evaluated and presented in Figure 3. The running time considered
the whole-cycle running time, including running the method and the time spent on finding
the optimal number of features. As can be seen from Figure 3, Lasso required the minimum
time to find the optimal feature set. Lasso’s short running time may be due to removing a
significant portion of features in the first step. Hence, in the second step, the number of runs
for different classifiers is reduced considerably. EN was the second fastest feature selection
technique. Hence, considering the average accuracy, maximum accuracy, and running time,
EN is the best option among the conventional feature selection techniques. COA-QDA was
the third fastest feature selection technique. Thus, the performance of COA-QDA is highly
attractive considering its average testing data accuracy, highest testing data accuracy, and
running time. Therefore, COA-QDA is found to be a competent approach to the CC-SoC
prediction problem. PCA, RFFS, and ETFS were the fourth, fifth, and sixth algorithms
based on running time ranking.
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4.3. Classifiers’ Accuracy

The average testing data accuracy of different classifiers over different datasets, gener-
ated by various feature selection techniques, is presented in Figure 4. As can be seen, LR
provided the highest average accuracy considering testing data. The average testing data
accuracy of LR was 0.1%, 0.76%, 1.57%, 3.36%, 4%, 6.93%, and 7.26% higher than that of RF,
SVM, NB, AB, MLP, KNN, and DT, respectively. The average testing data accuracy of all
classifiers on all datasets was 42.51%. Considering this value (i.e., 42.51%) as a threshold,
LR, RF, SVM, and NB can be considered appropriate classification techniques to predict
CC-SoC. On the other hand, the average testing data accuracy of AB, MLP, KNN, and
DT was less than the average prediction accuracy of all classifiers. Furthermore, it can
be deduced that LR and RF outperformed other classifiers based on testing data average
accuracy. In contrast, DT and KNN may not be appropriate techniques to predict CC-SoC
as they obtained the lowest testing data accuracy.
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4.4. The Most Important Features

As mentioned, one of the main purposes of this investigation is to detect the vital
features that should be used in classifiers to obtain the highest prediction accuracy. Thus,
COA-QDA/LR (LR trained by COA-QDA optimal features), as the most accurate model, is
applied in the introduced sensitivity analysis to prioritize the optimal features. COA-QDA
contained 46 features in the optimal features set. Each individual feature was eliminated
from the dataset to test for its influence. The model was then run, and the average testing
data accuracy reduction of all classifiers was calculated. In other words, the features were
ranked based on their effects on the prediction accuracy reduction. The ranking of optimal
features is presented in Table 3.

As can be seen from Table 3, the portion of GEB, transport-related, socio-demographic,
NEP, and extra features in the optimal feature set is 45.7%, 19.6%, 15.2%, 13%, and 6.5%.
Before highlighting the transportation features, we should point out the sample only
contained Americans who owned at least one car. In this sample, the production year of
the current vehicle was the most important transport-related feature on CC-SoC prediction.
Similarly, availability of a car with optional upgrades, expectation time to buy or lease
a new car, current car makes, the expected time to keep the next car, annual mileage
driving, selecting between purchase or lease, frequency of using a car, and model of the
current car were selected in the optimal feature sets, and they should be applied in order
to generate an accurate CC-SoC prediction model. Interestingly, six GEB questions in the
optimal set were based on transport behavior. Owning a fuel-efficient car, taking a plane
for long trips, driving the car into the city, being a member of a carpool, driving in such a
way as to keep one’s fuel consumption as low as possible, and using public transport for
distances up to 20 miles were the transport-based GEB questions that were selected as the
optimal features. Thus, 32.6% of features were related to transport behavior considering
transport-related and GEB questions. Therefore, it can be postulated that transport-related
behavior can be considered as climate-change related indices, and they should be applied
to predict CC-SoC.
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Table 3. The optimal features for CC-SoC prediction and their corresponding feature groups.

Ranking Questions (Features) Group

1 What was your total household income before taxes during the past 12 months? Socio-demographic
2 I buy milk in returnable bottles GEB
3 How much would you be willing to pay per ton of additional GHG emissions? Extra features
4 The production year of the current vehicle Transport-related
5 I talk with friends about problems related to the environment GEB
6 In summer, I turn the AC off when I leave my home for more than 4 h. GEB
7 I own a fuel-efficient automobile GEB

8 Government rules allow mini-vans, vans, pick-ups, and SUVs to pollute more than
passenger cars, for every gallon of gas used Extra features

9 For long trips (more than 6 h), I take an airplane. GEB
10 Do you have the base model or do you have a model with optional upgrades? Transport-related
11 Age Socio-demographic
12 When do you expect to purchase (or lease) your next car? Transport-related
13 I buy convenience foods GEB
14 Please select the make of your car Transport-related
15 What is your relationship status? Socio-demographic
16 I reuse my shopping bags. GEB
17 I have pointed out unecological behavior to someone. GEB
18 How many people have driver licenses in your household (including you)? Socio-demographic
19 What is your gender? Socio-demographic
20 Human destruction of the natural environment has been greatly exaggerated. NEP
21 We are approaching the limit of the number of people the earth can support. NEP
22 How many people are in your household including you? Socio-demographic
23 I buy beverages in cans GEB
24 Plants and animals have as much right as humans to exist NEP
25 I wait until I have a full load before doing my laundry GEB
26 I put dead batteries in the garbage. GEB
27 If I am offered a plastic bag in a store, I take it. GEB
28 How long would you plan on keeping your next car? Transport-related
29 Current car annual mileage Transport-related
30 Will you purchase or lease your next car? Transport-related
31 After meals, I throw leftovers in the garbage disposal. GEB
32 How often do you commute by car? Transport-related
33 Describe your housing type Socio-demographic
34 I drive my car into the city GEB

35 All cars, mini-vans, vans, pickups, and SUVs pollute about the same amount for
each mile driven. Extra features

36 In hotels, I have the towels changed daily. GEB
37 Please select the model of your car Transport-related
38 When humans interfere with nature it often produces disastrous consequences NEP
39 I am a member of a carpool. GEB
40 I bought solar panels to produce energy GEB
41 I drive in such a way as to keep my fuel consumption as low as possible GEB
42 I requested an estimate on having solar power installed GEB
43 The earth has plenty of natural resources if we just learn how to develop them NEP

44 If things continue on their present course, we will soon experience a major
ecological disaster NEP

45 For distances up to 20 miles, I use public transport GEB
46 I bring empty bottles to a recycling bin GEB

4.5. Comparing the Results with Previous Studies

Ramachandran et al. [62] compared the performance of random forest classifier and
logistic regression on predicting an ordinal variable (fall detection in geriatric healthcare
systems). Their study showed that logistic regression outperformed random forest classifier
based on prediction accuracy on ordinal variable prediction, which is in line with the
outcomes of the current study. Meti et al. [63] applied five machine learning techniques,
including Random Forest classifier, Support Vector Machine, K-Nearest Neighbor classifier,
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Multi-Layered Perceptron, and Naive Bayes, to predict neoadjuvant chemotherapy response
in breast cancer. Subsequently, they compared the prediction accuracy of the mentioned
classifiers, and the results indicated that the random forest classifier had a better prediction
performance than the other machine learning techniques. Hence, their results are in
harmony with the results of this study, shown in Figure 3.

In another study, Vanhoenshoven et al. [64] compared the performance of different
classification techniques, including Multi-Layer Perceptron, Naïve Bayes, Decision Trees,
k-Nearest Neighbors, Random Forest Classifier, and Support Vector Machines, on a binary
classification problem. The results demonstrated that Random Forest Classifier was the
best classifier in terms of prediction accuracy, which is consistent with the results of
this investigation.

Ahmad et al. [65] employed k-Nearest Neighbors, Multi-Layer Perceptron, Naïve
Bayes, Random Forest Classifier, and Support Vector Machine to model a gender recognition
task problem. Comparing the prediction accuracy of classifiers revealed that Support
Vector Machine was the best classifier to predict gender using speech. Therefore, this
outcome contradicts the results of the current study that SVM could not perform well. This
contradiction is due to the difference in prediction problems’ output. That is, the prediction
output variable of this study is an ordinal variable, while a binary variable (i.e., gender)
was considered the prediction output in Ahmad et al. [65] study.

5. Conclusions

This study proposed a new AI approach that was applied to predict individual CC-SoC.
Behaviors such as recycling may be more commonly thought of as environmental, but
transport must be considered as it is a major contributor of CO2 emissions. As such, so
transport’s role in predicting CC-SoC was examined. Transport-related behaviors, socio-
demographic characteristics, General Environmental Behaviors (GEB; established tool for
measuring environmental attitudes and behavior), and New Environmental Paradigm
(NEP; established tool for measuring environmental attitudes) features were all employed
to generate a prediction model. As the model included several features (variables), a new
feature selection technique was introduced to find the optimal number of features and
optimal features to obtain the highest accuracy. Different conventional feature selection
methods, including Lasso, Elastic Net, Random Forest Feature Selection, Extra Trees, and
Principal component analysis feature selection, were used to select the most valuable fea-
ture selections. Moreover, a new approach was presented to improve the performance of
conventional feature selection techniques and find their optimal feature sets. Consequently,
eight different classification techniques were applied to achieve the highest accuracy. Ulti-
mately, a sensitivity analysis was utilized to prioritize and rank the optimal features. The
main conclusions are as follows:

• Fifteen optimal features (out of forty-six) are based on transport behavior: nine from
transport-related questions and six from GEB transport-based questions. Hence,
32.6% of optimal features are related to transport behavior. This suggests that the
application of transport behavior to predict CC-SoC is vital. It should be noted that the
original survey focus was on vehicle choice and included only car owners. As such,
future research should examine a larger array of transport behaviors with a general
population sample.

• The introduced improvement method for conventional feature selection models can
increase the average prediction accuracy of EN and Lasso by 2.8% and 0.8%, respec-
tively. RFFS, ETFS, and PCA can also determine the optimal number of features using
the proposed improvement method.

• The average testing data accuracy of COA-QDA is 0.7%, 0.9%, 2.2%, 4.8%, and 5.6%
higher than that of ETFS, EN, RFFS, Lasso, and PCA. Accordingly, COA-QDA outper-
forms other feature selection techniques in terms of accuracy. Using an appropriate
feature selection technique, such as COA-QDA, can increase the average accuracy by
3.8% as compared to not using all features in the model.



Sustainability 2022, 14, 40 20 of 23

• COA-QDA provides the highest testing accuracy, with a value of 53.7%. The highest
COA-QDA testing data accuracy is 1.3%, 2.6%, 3.9%, 5.6%, and 6.1% higher than that
of EN, RFFS, ETFS, Lasso, and PCA, respectively. Furthermore, using all features
in the prediction models results in a model with 3% lower testing data accuracy
than COA-QDA.

• Lasso is the fastest feature selection method regarding the average running time,
followed by EN, COA-QDA, PCA, RFFS, and ETFS.

• The highest testing data accuracy is obtained by combining COA-QDA and LR (COA-
QDA/LR), followed by EN/LR, RFFS/SVM, COA-QDA/NB, COA-QDA/RF, and
all features/SVM. The testing data accuracy these methods is equal to 53.7%, 52.4%,
51.1%, 50.6%, 50.6%, and 50.6%, respectively. This may be a result of the type of
dependent variable (ordinal).

• The average testing data accuracy of LR, RF, SVM, NB, AB, MLP, KNN, DT is 45.5%,
45.4%, 44.8%, 43.9%, 42.2%, 41.5% 38.6%, and 38.3%, in the order given. There-
fore, in this study LR and RF outperformed other classifiers based on the average
prediction accuracy.

6. Limitations and Recommendations for Future Studies

The limitations of this study and some recommendations for considering in future
studies are presented in this section:

• The measure, Climate Change Stage of Change, captures individuals’ self-assessment
of their climate concern and behavioral intentions. It does measure what their actual
climate impacts are. It is possible for a person not to be concerned about climate
change and lead a low-carbon lifestyle. It should only be considered with respect to
how strongly they would likely support or react to climate-related information.

• In this study, the performance of COA-QDA is only examined on the CC-SoC pre-
diction study. Accordingly, it is recommended that assessing the performance of
COA-QDA on different prediction problems with different complexities will be con-
sidered in future studies.

• This study applies Coyote Optimization Algorithm to propose a feature selection
method (i.e., COA-QDA). Hence, it is suggested to employ various robust metaheuris-
tic algorithms to generate new feature selection methods using the proposed approach.

• One of the limitations of this study is to consider testing data accuracy as the per-
formance indicator. It is recommended that the effects of COA-QDA on testing data
F1-score will be examined in future studies.
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