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Abstract: In the U.S., approximately 9.3 million lead service lines (LSLs) account for most lead
contamination of drinking water. As the commitment to replace LSLs with safer materials grows,
empirical evidence is needed to understand which households are benefitting most from current
replacement practices. This exploratory study analyzes factors predictive of whether an LSL was
replaced fully (from water main to premise) or partially (only the portion on public property).
Conventional ordinary least squares, negative binomial, and geographically weighted regression
models are used to test the hypothesis that full lead service line replacements (LSLRs) were less
common in lower-income, higher-minority neighborhoods under a cost-sharing program design
in Washington, D.C. between 2009 and 2018. The study finds supportive evidence that household
income is a major predictor of full replacement prevalence, with race also showing significance in
some analyses. These findings highlight the need for further research into patterns of full versus
partial LSLR across the U.S. and may inform future decisions about LSLR policy and program design.

Keywords: lead contamination; drinking water; lead service line replacement; health equity; environ-
mental justice; environmental policy; environmental remediation; water utilities

1. Introduction

Lead water pipes, also known as lead service lines (LSLs), were widely used through-
out the United States (U.S.) until the 1980s. A service line refers to the span of plumbing that
connects a building with the public water main under the street. When any portion of this
service line is composed of lead pipe it is termed an LSL. Lead materials were historically
used because of favorable physical and chemical properties, specifically pliability and
relatively low corrosiveness [1]. It is now widely accepted that this plumbing material
choice is a source of lead in drinking water.

The harms associated with lead exposure are widely known and well documented [2].
There is no known safe level of lead exposure, and children are particularly vulnerable
due to their developing brains and bodies [3]. A vast and continuously growing literature
indicates that negative effects in children include anemia, hearing impairment, slower
growth, lower IQ, hyperactivity, and behavioral and learning problems [2,3]. In adults,
lead exposure has been linked to cardiovascular, renal, hepatic, immunological, and re-
productive problems [2,4–8]. Maternal lead exposure creates risk of fetal brain damage in
utero [2].

Water is an important source of lead exposure, especially for formula-fed infants who
may consume contaminated water through reconstituted formula [9]. When present, LSLs
are the largest source of lead in water, contributing 50–75 percent of the lead [10]. Con-
tamination risk is complex and tied to multiple, interacting factors including source water
chemistry (pH or degree of acidity), water temperature, flow rates, varieties of materials
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found in service lines and premise plumbing, and other system features. Water treatment-
based measures to control corrosion have played a vital role in reducing lead release into
drinking water across the U.S. for decades. Nonetheless, research and experience have
shown that LSLs can leach soluble lead into drinking water and unpredictably release
lead particulates even in systems with corrosion control, especially when service lines
are disturbed or water treatment is disrupted [11,12]. Although recent empirical work
indicates that water main replacements do not increase lead levels in drinking water under
all circumstances [13], water main work cannot be ruled out as a risk alongside other
physical disturbances such as road repairs, building construction, and hydraulic shocks
such as sudden flow changes [10,11,14].

The goal of eliminating LSLs from U.S. water distribution systems has gained signifi-
cant momentum in recent years. In 2015, the National Drinking Water Advisory Committee
(NDWAC) exhorted water systems to “work with their customers to implement full replace-
ment of all lead service lines in their service areas” [15] (p. 16). In a 2017 policy statement
following the widely publicized tragedy in Flint, Michigan, the American Water Works
Association called on “communities to develop a lead reduction strategy that includes
identifying and removing all lead service lines over time” and replacing them with non-lead
materials all the way from the water main to the building [16] (p. 1).

Since 2016, 17 states representing a total of 4–5 million LSLs have created proactive
policies to support full lead service line replacement (LSLR) programs within their bound-
aries according to a recent count [17]. Those state-level policies are in turn bolstering the
efforts of towns and cities, 115 of which have set a goal of eliminating LSLs [17].

Progress toward the goal varies from place to place. As of early 2021, nine commu-
nities had achieved LSL elimination and the cities of Flint, Michigan and Newark, New
Jersey were on track to finish replacing their full inventory of LSLs in 2021 [17–19]. By
contrast, the Mayor of Chicago in late 2020 announced a new plan to “chip away” at the
city’s 400,000 LSLs in a process expected to stretch “over several decades,” in the mayor’s
words [20] (p. 1). Nationwide, an estimated 9.3 million LSLs await replacement at a cur-
rent cost range of $3953–$6024 per line, according to the U.S. Environmental Protection
Agency (EPA) [21] (Exhibit 5-9). Other estimates range from 6.1 to 12.8 million LSLs [22,23].
The job of fully replacing all LSLs is likely to take decades under even the best-case sce-
nario. Pandemic-related fiscal pressure on state and local government budgets in 2021
and beyond will likely stretch target dates even further into the future. Notably, the Biden
administration has been vocal about LSLR as a U.S. national infrastructure priority [24].

Protracted timeframes for LSLR obligate policymakers to think about whose LSLs will
be fully removed and replaced sooner rather than later, and how to fund the billion-plus
dollars required to complete the work. Full replacement refers to removal of the entire
length of an LSL from water main to premise and replacement with non-lead material,
including segments of the service line located on both public and private property. Partial
LSL replacement involves removing and replacing only the portion of pipe on public land
(between the water main and the property line) and connecting the new non-lead pipe
on the public side to the old lead pipe on the private side (from the property line to the
building). Full replacement is the correct policy target because only full replacement can
eliminate service lines as sources of lead exposure risk. The NDWAC definitively states
that “[l]ead-bearing plumbing materials in contact with drinking water pose a risk at all
times (not just when there is a lead action level (LAL) exceedance)” [15] (p. 7). The AWWA
likewise warns of continued risks to public health “as long as there is lead in contact with
drinking water” [16] (p. 1).

Partial replacement is not a second-best alternative to full replacement and may
be worse than doing nothing. In some cases, partial replacements have been shown to
accelerate lead release due to galvanic corrosion and/or disturbance of pipe coatings that
normally protect against lead leaching [25,26]. Dissolved and particulate lead may spike
to very high levels following a partial replacement, and higher lead levels may persist in
the drinking water for months [27–29]. Even if those risks are controlled through flushing,
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corrosion control treatment at the water plant, and other measures (e.g., publicly supplied
water filters), such efforts have limits. Allowing any amount of lead pipe to remain in
the ground poses future risks of lead release. In a December 2021 announcement, the
EPA reaffirmed this key point: “Partial LSLRs can cause short-term elevation of lead
concentrations in drinking water and further extend lead health risk from service lines
because a portion of the lead line remains in service. EPA strongly discourages water
systems from conducting partial LSLR. EPA recommends systems proactively implement
full LSLR programs” [30] (p. 71582).

Which American households will experience the highest cumulative risk of lead
exposure while thousands of water systems work their way through roughly 9 million
remaining LSLRs? The environmental justice and public health literatures provide reasons
to worry that historically disadvantaged populations will bear the brunt of the burden. In
the U.S., measures of household financial means and markers of racial and ethnic identity
have proven to be statistically significant predictors of multiple environmental and health
outcomes, including drinking water quality and lead exposure from all sources [31–34].
Specific to the water sector, a recent EPA-funded environmental-justice analysis estimated
disproportionately high baseline levels of lead exposure risk for minority and low-income
households due to the higher probability of these populations occupying dwellings built in
decades when LSLs were most often installed [35]. Likewise, the U.S. Government Account-
ability Office found higher concentrations of LSLs in neighborhoods with more markers
of vulnerability, including higher poverty and unemployment rates, larger minority pop-
ulations, more single female-headed households, more renters, and lower educational
attainment [36].

Black Americans on average face especially high risks due to multiple, interacting
disadvantages with deep historical roots. The median level of household wealth in 2019
was 7.8 times larger for White households than Black households ($188,220 compared
with $24,100), and average levels of wealth were even more skewed than medians [37].
Well-known research by Raj Chetty and colleagues [38] documents lower rates of upward
mobility and higher rates of downward mobility for Black Americans compared to Whites
and Hispanic Americans. According to one study of a notable environmental outcome—
proximity to facilities that emit harmful particulate matter—non-Whites were found to
experience 1.28 times higher burden of exposure than the general population, and among
non-Whites, Blacks had 1.54 times higher burden [39]. With respect to lead exposure
specifically, a review of multiple studies found the highest mean blood lead levels among
Black Americans generally; and in studies reporting blood lead ranges, Black children were
more likely than other groups to experience elevated levels [34].

Given these baseline facts, even if future full LSLRs occur at identical rates for minority
and non-minority households, and at identical rates for all households across the income
distribution, population groups with higher baseline risk (especially Black Americans)
will continue to bear a higher level of risk until all LSLs are eliminated. Closing the race-
and income-based gap in baseline exposure risk would require fast tracking full LSLR for
low-income households and households of color.

Instead of either fast tracking or equal pacing, however, actual rates of full LSLR
are likely to be slower for low-income, minority households in the future for as long
as current cost-sharing arrangements remain in place. These local arrangements, which
are commonly used throughout the country, require property owners to pay to replace
LSL components located on private property at an estimated cost of $2514 to $3929 per
home [21] (Exhibit 5-9). “Since the LSLR is expensive,” cost-sharing requirements are likely
to produce fewer full replacements for low-income households because “the customer’s
willingness to share costs will depend on the household’s ability-to-pay” [35] (p. 14). As
a result, partial replacements “may be unavoidable if low-income households are unable
to afford the cost [of full replacement] and the system or other agencies do not subsidize
LSLR for low-income households” [35] (pp. 14–15).
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Some local governments and utilities have begun to address the equity issues associ-
ated with LSLR proactively by fully funding full LSLR, but this practice is still rare [17,40].
The infrastructure funding bill passed by the U.S. Congress in November 2021 will make
$15 billion available nationwide—roughly one-third of the total estimated cost of LSL elim-
ination. Thus, the EPA expects cost-sharing to be the norm going forward in the context
of goal-based, non-mandated LSLR initiatives. Specifically, EPA’s formula for calculating
the per-unit cost of a non-mandated full replacement rests on the assumption “that CWSs
[Community Water Systems] will only incur costs for the utility side of the LSLR, and that
customers will pay for their portion to achieve full replacements” [21] (pp. 5–188). The new
federal funding is likely to reduce local water systems’ reliance on cost-sharing but will not
end it.

In the absence of prohibitions on partial replacements, LSLR programs that continue
to employ cost-sharing may be at risk of perpetuating existing environmental and public
health injustices tied to income and race. If partial replacements are found to be more
common among lower-income households, including disproportionate numbers of Black
households, the risks associated with partial LSLR will load on top of existing disparities
in environmental and health burdens. Faced with this conspicuous social equity risk, it
is useful to gain a better understanding of the factors that may obstruct full replacement,
especially ability to pay.

This article is the first to explore social equity risk associated with LSLR empirically
using data on actual full and partial replacements. We do so by modeling patterns of full
versus partial LSLR prevalence at the neighborhood level using administrative data on
all LSLRs conducted by or reported to the utility that serves Washington, D.C. between
2009 and 2018. The results of the exploratory models point to significant and positive
correlations between neighborhood income and prevalence of environmental remediation
in the form of full LSLR. Neighborhood racial characteristics also appear to have some
predictive power, with larger percentages of Black householders associated with lower
probability of full replacement at more aggregated area levels. The evidence presented here,
though not definitive, provides impetus for further research as well as regular monitoring of
who is experiencing full versus partial—effective versus potentially harmful—remediation
of LSL risk.

2. Materials and Methods
2.1. Hypothesis and Approach

The EPA’s environmental justice analysis of LSLR does not state a hypothesis outright,
but it implies the following hypothesis: under cost-sharing arrangements common to many
water systems, households with greater financial means, many of whom are White, are
more likely to receive a full rather than partial LSL replacement compared to lower-income,
minority households (and vice versa) [35]. The environmental justice and public health
literatures strongly support this hypothesis, as does common sense, but no empirical
studies have attempted to test it until now.

The study team constructed a unique database with information about date and type
of LSLR at the premise level for 3419 full and partial LSLRs completed between 2009 and
2018 plus information about household income and Black race at the neighborhood level.
Ideally such a model would employ premise-level data for all variables, which in turn
would require access to Census Bureau data on household characteristics by street address.
The study team did not have such access and therefore used area-based measures of income
and racial composition, as have many previous studies of lead exposure [41–46]. Under
the approach adopted for this study, area-level demographic information estimates a given
household’s probability of having a particular income profile and racial/ethnic identity.

2.2. Case Study Background

The tests reported in this article are based on an exploratory effort to model neighbor-
hood prevalence of full versus partial replacements as a function of household characteris-
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tics in Washington, D.C. under a cost-sharing regime that operated via two programs during
the study period 2009–2018. Under the first, which we refer to as customer-initiated (CI)
LSLR, the homeowners either organized the replacements themselves or took the initiative
to contact DC Water (the local utility serving Washington, D.C.) to send a crew to conduct a
full replacement. All customer-initiated LSLRs were full replacements, by definition.

The second program, which we refer to as utility-initiated (UI) LSLR, refers to sit-
uations in which homeowners were offered the opportunity to fully replace their LSLs
at the same time the utility was undertaking other infrastructure work on their street as
part of a planned project (capital improvement) or in response to an emergency such as
a leaking water main. In advance of infrastructure work on a block, the utility provided
information to property owners about the importance of fully replacing LSLs, the conve-
nience of scheduling the full LSLR through DC Water’s contractors in conjunction with
other infrastructure work, and the average price range for the customer’s portion of the bill.
At premises where property owners did not respond to DC Water’s outreach, the utility’s
standard practice was to conduct a partial replacement. Partials did not require customer
approval. The utility covered all costs for partials.

In both programs during the study period, property owners had to agree to pay
for replacing the LSL portion on private property to receive a full replacement, and all
customers were treated equally in this respect regardless of underlying differences in
households’ financial capacities. The customer’s share of the cost of a full replacement
averaged $2500 per home under the UI arrangement or $3200 per home for a CI. The
28-percent difference in price between UI and CI reflects efficiencies associated with piggy-
backing a full replacement on other projects: when the utility is already opening the street,
the marginal cost of one more replacement job is lower. By contrast, customer-initiated
replacements require a special, scheduled trip to the property plus excavation, which
creates additional costs.

As shown in Table 1, nearly two-thirds of all replacements during the study period
were customer-initiated.

Table 1. Count of LSLRs by program and type, Washington, D.C. 2009–2018.

Type of
LSLR

Program

Total
CI + UI

Customer-
Initiated LSLRs

(CI)

Utility-Initiated LSLRs (UI)

Capital
Improvement

Projects

Emergency
Repairs All UI

Fulls 1356 805 86 891 2247
(65.7%)

Partials 0 815 357 1172 1172
(34.3%)

Total 1356
1620 443

2063 3419
(%) (40%) (60%) (100%)

The Washington, D.C. City Council adopted and approved funding for a new ap-
proach to LSL replacement in 2019. The new scheme focused on remedying past partial
replacements at the city’s expense and ensuring more equal access to full replacement in
the future through city funding of full UI replacements. Our study period closes in 2018 to
correspond with the end of the earlier cost-sharing scheme. Future research will compare
patterns of full versus partial replacement before and after the 2019 policy change.

2.3. Dependent Variables and Data Sources

American University signed a Memorandum of Understanding with DC Water in
April 2019 giving the AU research team access to a dataset with basic information about all
LSLRs conducted in Washington, D.C. between 2009 and 2018, inclusive. The study period
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was chosen to capture replacement patterns associated with cost-sharing for full LSLR—the
policy in place in DC Water’s service area prior to October 2019—and to maximize data
quality, which improved starting in 2008 due to new administrative protocols at the utility.

The analyses reported here seek to identify influences on two dependent (outcome)
variables at the neighborhood level for the study period: (1) raw count of full LSLRs and
(2) percentage of total LSLRs in which the service lines were fully replaced (full LSLR/total
LSLR), sometimes referred to in this article as the rate of full replacement. Higher values
for either dependent variable represent more desirable health and environmental outcomes
because only full removal and replacement of the LSL ensures complete and permanent
protection from service-line-related lead exposure. Because partial replacements are inferior
to full replacements, as explained previously, the study design does not use combined full
and partial replacements as an outcome variable.

2.4. Area Levels

Neighborhood patterns are examined at two levels: census tract (using 2010 census
tract boundaries) and ward. The latter refers to the city’s 8 primary political subdivisions.
In order to match each LSLR to a census tract and ward, 67 duplicate or incomplete
records were removed from the DC Water database, leaving a final set of 3419 addresses
where replacements of any type had occurred during the study period. Many of those
duplicate records consisted of a partial replacement followed by a full replacement. In
the 46 cases in which a full replacement occurred within two years of an earlier partial
replacement, the premise was coded once as full, and the other observation was dropped.
If more than two years elapsed between the partial and full replacements (3 cases), the
premise was counted twice—once as partial and once as full—to acknowledge the extended
risk faced by residents following the partial replacement and before its full remediation.
Two customer-initiated replacements identified as partials also were removed because
all customer-initiated replacements should be full replacements: these data points likely
represented administrative errors.

The data were then geocoded, with every LSLR address assigned to a census tract and
ward using ArcGIS. Out of 179 census tracts in Washington, D.C. as defined by the 2010
Census, six census tracts were dropped from this study due to lack of residential housing
of the type likely to have lead service lines. These include a military zone, the White House
and National Mall, and census tracts consisting entirely of hospitals, a prison, a sports
stadium, and two universities.

Replacements of any type were unevenly distributed across all eight wards (Table 2)
and 141 census tracts (Table 3); 32 census tracts out of 173 used in this study had zero LSLRs.

Table 2. Count of LSLRs by ward and type, 2009–2018.

Ward
Type of LSLR

Total
Full Partial

1 234 173 407

2 151 98 249

3 297 59 356

4 461 120 581

5 363 263 626

6 623 284 907

7 28 37 65

8 90 138 228

DC Total 2247 1172 3419
(Total %) (65.7%) (34.3%) (100%)



Sustainability 2022, 14, 352 7 of 27

Table 3. Descriptive statistics for LSLRs at census-tract level, by type, 2009–2018.

Type of LSLR
Total

Full Partial

Smallest number of LSLRs in a single census tract 0 0 0

Largest number of LSLRs in a single census tract 95 92 160

Median number of replacements for all census tracts 9 3 14

Mean number of replacements for all census tracts 15.94 8.31 24.25

Standard Deviation from the mean 18.70 13.05 28.96

2.5. Independent Variables and Data Sources

To test for health equity and environmental justice impacts, the outcome variables
(number of fulls and percentage full) were correlated with demographic characteristics—
race and income, specifically—to determine if full replacements were more likely in D.C.’s
more advantaged neighborhoods during the study period and vice versa, as hypothesized.

Race and income variables were sourced from the U.S. Census Bureau’s American
Community Survey (ACS). The ACS publicly available files report 5-year averages at the
census-tract level to ensure adequate sample sizes. ACS estimates from 2013 (incorporating
annual survey results from 2009 to 2013) and 2018 (incorporating annual survey results
from 2014 to 2018) were averaged to cover all relevant study years and avoid double
counting any years. The following ACS variables were used at the census tract and
ward levels:

• Median household income is a measure of capacity to pay for full replacements in
systems where customers are expected to pay for work done on private property.
Therefore, a positive correlation between median income and either outcome variable
is expected. In other words, demand for full replacements is expected to be elas-
tic with respect to income, recognizing that these variables represent demand at a
neighborhood level rather than individual consumer level.

• Percent Black householders is expected to be negatively correlated with the outcome
variables because it captures another potential source of systemic social disadvantage,
beyond income, that could function as an obstacle to accessing full LSLR. Householder
refers to an adult in whose name the housing unit is either owned or rented and
maintained (or any adult if no householder is present). The Black race variable was
employed because of Washington, D.C.’s long history of Black–White hypersegrega-
tion [47,48]. In 2016, midway through this project’s study period, D.C. had an index
of dissimilarity score (i.e., segregation index score) of 71 out of 100, which means
71 percent of D.C.’s Black residents would have to move to different census tracts to
produce a pattern of racial distribution at the census-tract level that mirrors D.C.’s
overall racial composition [49]. Scores above 60 on this index are considered very
high [48]. (Percent Hispanic householders was not significant in any of the models
and was therefore dropped.)

As Tables 4 and 5 demonstrate, demographic characteristics varied dramatically across
both wards and census tracts during the study period.
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Table 4. Descriptive statistics for demographic variables at ward level.

Ward
Median Household Income

in $ (Average of 5-Year
Averages for 2013 and 2018)

Percent Black Householders
(Average of 5-Year Averages

for 2013 and 2018)
SDI Score (2015)

1 89,557 24.10 68.4

2 103,734 9.24 39.9

3 130,696 5.50 29.2

4 84,410 48.53 60.0

5 63,060 57.55 63.9

6 104,873 26.12 43.5

7 47,691 70.08 87.6

8 30,527 73.79 95.2

Table 5. Descriptive statistics for demographic variables at census-tract level.

All Census Tracts
Median Household Income

in $ (Average of 5-Year
Averages for 2013 and 2018)

Percent Black Householders
(Average of 5-Year Averages

for 2013 and 2018)

Lowest value in a single
census tract 14,572 1.4

Highest value in a single
census tract 203,382 99.4

Median value for all
census tracts 75,703 48.3

An additional independent variable—count of residences built before 1950 (housing
vintage)—was included to control for the potential total pool of premises with lead service
lines in each census tract. Previous research has shown that housing age serves as a
reasonably reliable predictor of the presence of LSL in some locations [50]. In Washington,
D.C., most lead service lines were installed prior to 1936, according to utility officials with
whom we corresponded. Lead installations increased 1941–1946 due to World War II supply
demands on copper and then declined to less than 5 per year in 1948. Sporadic installations
continued until 1977. Given this background, 1950 looks like the correct cut-off year for
Washington, D.C.

2.6. Ward-Level Analysis

Analysis of health equity and environmental justice dimensions began with a pre-
liminary exploration of patterns at the ward level. The study team compared rates of full
replacement (number of full LSLRs/total LSLRs) for wards with the highest and lowest
markers of social vulnerability based on race and income. In addition, rates of full re-
placement for each of the eight wards were correlated separately with race, income, and a
measure of social deprivation known as the Social Deprivation Index on a simple bivariate
basis: those results are reported in Appendix A.

Although ward-level analysis provides too few observations (n = 8) for regression
modeling, it offers an opportunity to look at how patterns of LSLR vary across areas that
represent meaningful social and political divisions in Washington, D.C. Historical patterns
of residential segregation in the nation’s capital have tended to follow ward boundaries,
and as a result, reports on socio-economic conditions in D.C. often present findings at the
ward level [51–56].

In addition, ward-level analysis avoids the problem of census tracts with small num-
bers of replacements. In those census tracts the addition or subtraction of just one or two
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full LSLRs can dramatically change the overall rate of full replacement for that tract and
thus exaggerate differences between tracts. The small numbers problem does not occur
at the ward level thanks to large numbers of full replacements in each of the eight wards
compared to each of 179 census tracts.

2.7. Census-Tract-Level Regression Analysis

Measuring the strength of this study’s hypothesized relationships requires regression
analysis at the census tract level where a larger “n” is available compared to the ward level.
The study team ran two different types of regression as a check-and-balance. Negative
binomial regression (NBR) is considered a good choice for models in which the dependent
variable is a count variable and when the data comprising that variable are over-dispersed,
meaning their variance is greater than their mean [57]. Census tracts with zero full LSLRs
contribute to over-dispersion in our model’s count-type dependent variable. Tests of
over-dispersion compared conditional means and variances for each variable and found
variances to be larger than means, which supports use of the NBR model. Additional
diagnostics, including a Q–Q plot of full replacements (the dependent variable), also
support the choice of NBR.

Ordinary least squares (OLS) regression also was applied to establish baseline results
and because many readers will be most familiar with this approach and find it easiest to
interpret. Both types of models were run in R and Stata with robust standard errors. Median
household income and percentage of Black householders, described earlier, comprise the
explanatory variables in the main models. They are included to test the hypothesis that
areas with higher incomes and smaller concentrations of Black households will experience
more full replacements.

Regression models were run using the number of full replacements in each census tract
as the dependent (outcome) variable rather than the rate of full replacements. Using the raw
count of full LSLRs avoids the small numbers problem described earlier and enables the
model to account for differences in the scale of the LSLR intervention in each neighborhood.
Scale is important because a neighborhood could have many full replacements but a small
percentage of fulls if their total number of LSLRs (partials and fulls) is large. Likewise, a
neighborhood could have a high percentage of fulls but a small number of full replacements
if their total number of LSLRs is small.

It is worth noting that the housing vintage control variable serves an additional
purpose in the models. It functions roughly like the denominator of a ratio with the
dependent variable (count of fulls) as the numerator. If LSLs were being fully replaced at
exactly equal rates in all parts of the city, and if pre-1950 housing is an accurate estimator of
LSL presence, then the correlation between count of full replacements and count of pre-1950
housing units would be close to perfect (=1). In the negative binomial model (see below),
the pre-1950 housing count variable functions as the exposure term, which measures the
maximum number of possible events (in this case, LSLRs) in each census tract.

The resulting formal model can be written: FCi = ßo + ß1Ri + ß2Ii + ß3Vi + ß4W i + εi

• FC = Count of full replacements in census tract i
• R = Race, measured by percentage of householders identifying as Black/African

American in census tract i
• I = Median household income in census tract i
• V = Housing vintage, measured by number of housing units in census tract i
• built prior to 1950
• W = Ward fixed effects (binary indicator/dummy variables for each ward).

Ward fixed effects were included in the conventional OLS and NBR models to account
for persistent and significant differences between wards on many indicators of socio-
economic status and public health. As discussed in Section 2.5, ward boundaries capture
important features of life in Washington, D.C., including patterns of residential segregation,
which may influence the probability of having a full LSLR. Ward fixed effects offer a
complementary strategy to the geographically weighted (GWR) models described below



Sustainability 2022, 14, 352 10 of 27

by accounting for unobserved, but potentially germane, differences between wards that
also manifest at the census-tract level.

We ran all conventional (pre-GWR) models with and without fixed effects. The models
with ward fixed effects typically had higher overall significance (adjusted R-squared scores
and equivalents) and were more “conservative” than the models without ward fixed effects,
meaning the explanatory power of the main independent variables—race and income—was
lower in the fixed-effects models. The fixed-effects conventional models offer a tougher
test of this study’s hypothesis and provide one approach to accounting for geographic
variation, and are therefore the preferred model specification pre-GWR.

Conventional OLS models also were run using the natural logs of all variables, which
generates a more normal distribution of the underlying values for ease of interpretation.
In the logged models, the regression coefficient on the median household income variable
provides a proxy for income elasticity of demand. Those results are reported in Appendix B
(for all full LSLR) and Appendix C (disaggregated by program type). The log-transformed
models in Appendix B report an “n” of 129 because the log of zero is not a real number,
and therefore, census tracts with zero full LSLRs drop out. In Appendix C, the “n’s” are
smaller still because they include only census tracts containing LSLRs associated with each
program type.

2.8. Spatial Autocorrelation, Spatial Non-Stationarity, and Geographically Weighted
Regression (GWR)

Washington, D.C.’s high level of residential segregation means that relevant features
of census tracts may be systematically patterned rather than random. This phenomenon,
known as spatial autocorrelation or spatial dependency, has been found in other studies
of environmental justice [58,59]. Moran’s I test produced a value of 0.070 with standard
deviation of 0.008 and a p-value of zero for our dependent variable (full LSLRs). We
therefore reject the null hypothesis of no spatial autocorrelation in this dataset [60]. This
test tells us that census-tract-level values for full replacement are not randomly distributed
in D.C. and alerts us to the possibility that our conventional OLS and NBR results may
therefore be biased.

To better understand how geography enters our results, as well as to mitigate bias
caused by spatial autocorrelation, we ran geographically weighted regression (GWR) mod-
els. GWR has the potential to correct for spatial autocorrelation by taking distance between
census tracts into account when calculating parameter estimates. It does so by conducting
a series of regressions, one for each observation in the dataset—in this case, one for each
census tract. In each separate regression, the focal census tract’s dependent and indepen-
dent variable values are given full weight while the values for the other census tracts are
weighted according to their distance from the focal census tract. More distant census tracts’
values are weighted less. The rate at which weights diminish as distance increases (the
distance decay function) depends on a setting known as the model’s bandwidth.

In addition to addressing spatial autocorrelation, GWR also enables exploration of
non-stationarity, a phenomenon in which the statistical relationships between independent
and dependent variables vary from place to place within the geographic area. In this case,
GWR allows us to inquire about whether the relationships between race, income, and rates
of full LSLR might be different in different parts of D.C.

We ran both OLS and NBR models using the GWR package in Stata, which incorporates
an algorithm that sets bandwidths automatically. For each analysis, the first step involves
testing the bandwidth’s significance, which signals whether the GWR model is more
appropriate than the standard OLS or NBR model for this data. The second step tests each
variable in the model for non-stationarity, which involves comparing the GWR results
against data obtained from a Monte Carlo simulation with 1000 observations.
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3. Results
3.1. Ward-Level Results

The ward-level analysis provides preliminary evidence of a meaningful connection
between spatial variation in full LSLR participation and spatial variation in population
characteristics at the neighborhood level in Washington D.C. Table 6 displays the variation
in rates of full replacement (full LSLRs/all LSLRs) for the highest- and lowest-income
wards and wards with the largest and smallest percentages of Black householders. The
middle two rows show dramatically higher rates of full replacement in wards with the
highest incomes and smallest percentages of Black householders, compared to those with
the lowest incomes and highest percentages of Black householders, for both total LSLRs
and LSLRs associated with capital improvement projects.

Table 6. Ward-level participation in full LSLR by program, 2009–2018 (omits customer-initiated
LSLRs because they are all full replacements; none are partials).

Demographic Information

Full LSLR as a Percent of Total LSLR

TOTAL LSLR
Utility-Initiated (UI) +

Customer-Initiated (CI)

Utility-Initiated (UI)

WardsCapital Improvement
Projects

Emergency
RepairsVariable Quartile

Percent Black
Householders

Top 2 wards, 4th
quartile, (highest

concentration)
40 33 26 7 and 8

Bottom 2 wards, 1st
quartile (lowest
concentration)

74 63 22 2 and 3

Median
Household Income

Top 2 wards, 4th quartile
(highest income) 73 60 15 3 and 6

Bottom 2 wards, 1st
quartile (lowest income) 40 33 26 7 and 8

In each case (total and capital projects), the difference in full replacement rates be-
tween the least and most advantaged quartiles of wards is 30 percentage points or more. By
contrast, rates of full replacement when LSLRs are undertaken as part of emergency work
on water infrastructure do not vary much across quartiles: no connection between per-
centage of full LSLRs and demographic characteristics is evident in the case of emergency
replacements. Table 6 does not include separate calculations for customer-initiated replace-
ments because those replacements are all, by definition, fulls rather than partials: therefore,
percentage full cannot be calculated. Percentage full can be calculated for utility-initiated
and customer-initiated LSLRs combined: that aggregated outcome measure captures the
total effect of the utility’s total LSLR activity on city residents.

Because all households in this database that did not receive a full replacement received
a partial replacement, the full replacement rate in each area is the exact inverse of the
partial replacement rate. Table 6’s results therefore suggest that children and families
living in D.C.’s most socially vulnerable wards during the study period were more likely
to receive an inferior environmental remedy (a partial replacement) compared with their
fellow Washingtonians in less socially vulnerable wards. Appendix A reports the results
of ward-level bivariate correlations for rates of full replacement with each of the demo-
graphic variables. Those statistically significant correlations offer further circumstantial
evidence of a potentially consequential relationship at the ward level between demographic
characteristics and the probability of receiving a full LSLR rather than a partial LSLR.

Though preliminary, the results in Table 6 and Appendix A strengthen the case
for adding ward fixed effects to the regression models and exploring other aspects of
spatial patterning.
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3.2. Results for Census Tracts Grouped by Quartile

Figures 1 and 2 provide further reasons to suspect a relationship between prevalence
of full replacements and demographic characteristics at the area level. These simple visuals
organize Washington, D.C. census tracts by quartiles based on percentage of householders
identifying as Black/African American (Figure 1) and median household income (Figure 2).
Height of the bar for each quartile of census tracts corresponds with the total count of full
LSLRs that occurred within that group of census tracts. Figure 1 shows a sharp difference
between the fourth quartile and all others, which suggests that race-based inequities in full
LSLR participation may be skewed toward the neighborhoods with highest concentrations
of Black householders. Figure 2 shows a steady stair-step pattern, which points to a
potential linear correlation between income and full LSLR participation.
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3.3. Census-Tract-Level Regression Results

Regression analysis at the census-tract level allows closer examination of the ward-
level findings to observe which independent variables (IVs) appear to have the most
explanatory power. Regression also helps assess whether the relationships displayed in
Table 6 and Appendix A hold at a more disaggregated area level.

Tables 7 and 8 below summarize results of the regression models. Models 7.1–7.3 (in
Table 7) and models 8.1–8.3 (in Table 8) are identical except that the first group was run
using OLS and the second was run using negative binomial regression.

Table 7. Association of full LSLR with race and income characteristics at census-tract level: OLS
model results with robust standard errors (in parentheses).

Independent Variable Model 7.1 Model 7.2 Model 7.3

Percent Black Householders −0.315 ***
(0.108)

−0.087
(0.126)

−0.085
(0.120)

Median Household Income ($1000s) 0.175 ***
(0.054)

0.134 **
(0.052)

Vintage Housing Stock Count 0.013 ***
(0.003)

D.C. Ward Fixed Effects Yes Yes Yes

Observations 173 173 173

Adjusted R2 0.175 0.220 0.302
** p < 0.05; *** p < 0.01.

Table 8. Association of full LSLR with race and income characteristics at census-tract level: negative
binomial regression (NBR) model results with robust standard errors (in parentheses) and incident
rate ratios (IRR).

Independent
Variable

Model 8.1 Model 8.2 Model 8.3

Coefficient IRR Coefficient IRR Coefficient IRR

Percent Black
Householders

−0.028 ***
(0.009) 0.972 −0.007

(0.010) 0.993 −0.018 *
(0.010) 0.982

Median Household
Income ($1000s)

0.018 ***
(0.004) 1.018 0.010 **

(0.004) 1.010

Vintage Housing
Stock Count

0.001 ***
(0.0002) 1.001

D.C. Ward
Fixed Effects Yes Yes Yes

Observations 173 173 173

Pseudo R2 0.284 0.330 0.397
* p < 0.1; ** p < 0.05; *** p < 0.01.

According to both sets of models, race proves statistically significant when it is the lone
independent variable (models 7.1 and 8.1). Its significance disappears when other variables
are added in models 7.2, 7.3, and 8.2. It remains significant in the preferred model: NBR
model 8.3. Income is statistically significant when paired with race (models 7.2 and 8.2)
and when the housing vintage variable is added to create the full models (7.3 and 8.3). The
housing vintage variable demonstrates strong statistical significance in both full models.

Effect size is interpreted differently in the two types of models. Consider Table 7 first
because interpreting OLS regression coefficients may be more familiar to some readers
than incidence rate ratios. According to the full model in Table 7 (model 7.3), holding
other variables constant, a $1000 difference in median household income between two
census tracts predicts 0.134 more full replacements in the wealthier tract. Thus, a $10,000
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difference in median household income between two census tracts predicts 1.34 more full
replacements in the wealthier tract. Comparing a census tract with the lowest median
household income in our dataset ($14,572) to a census tract with the median level in
the dataset ($75,703), we would expect to see an additional 8.17 full replacements in the
wealthier tract. Using descriptive statistics for the dataset (see Table 3) as benchmarks for
understanding the scale of these differences, we see that adding 8.17 full replacements
amounts to a 51 percent increase over the mean number of fulls per census tract (15.94) or a
91 percent increase over the median number of fulls per census tract (9).

In model 7.3, the OLS regression coefficient for the control variable indicates that
a census tract with one more pre-1950 housing unit than another census tract would be
expected to have 0.013 more full replacements than the comparison tract, which translates
to 0.08 percent of the mean census tract’s full count. A census tract with 100 more pre-1950
housing units would likely have 1.3 more fulls (or 8 percent more than the mean census
tract). The race variable in model 7.3 is not statistically significant and therefore cannot be
used for explanation or prediction.

Negative binomial modelers (Table 8) typically convert regression coefficients into
incident rate ratios (IRR), which explain the effect of each independent variable on the
dependent variable in terms of impact on event probabilities or rates. Specifically, for the
mean census tract, IRR measures the effect of a change in the independent variable on the
ratio of the number of outcome events to the total number of times the event could have
occurred, otherwise known as the exposure risk, over a specified time period. For this
study, the outcome events are full LSL replacements in Washington, D.C.; the exposure risk
is measured by stock of pre-1950 housing as a proxy for premises with LSLs; and the time
period is 2009–2018. IRR values can be read as expected changes in event rates and are
never negative. Values above 1 point to a positive relationship between the independent
and dependent variables. Values below 1 indicate a negative relationship. A value of
exactly 1 represents the null hypothesis.

In Table 8’s full model, the coefficient on the race variable is statistically significant
at the 10 percent level. The IRR indicates that having a 1 percent larger share of Black
householders in a census tract predicts fewer full replacements by a factor of 0.982 (or
0.018 percent), holding other variables constant. Compare, for example, a census tract with
a very low level of Black householders (1.4 percent is the lowest level in our dataset) with a
census tract containing the median level of Black householders (48.3 percent). According
to Model 8.3’s parameters, that difference of 46.9 percentage points in racial composition
would translate to a difference in full replacements between the two tracts of 0.84 percent.

The IRR for income in Model 8.3 predicts that a $1000 increase in median household
income will increase that census tract’s full replacement count by a factor of 1.010 or
1.0 percent. According to this parameter estimate, the difference in median household
income between the lowest census tract’s level ($14,572) and the median census tract’s level
($75,703) predicts on average 62 percent more full replacements in the richer census tract.
According to the descriptive data in Table 3, that translates to 9.9 more fulls in a census
tract with the mean level of fulls for this dataset (15.94), or 5.6 more fulls in a census tract
with the median level of fulls (9). The OLS estimate of 8.17 falls in the middle of the range
of the NBR estimates (5.6–9.9) for the number of additional full LSLRs expected in the
median-income census tract compared to the poorest census tract.

According to the IRR score for the housing vintage variable, a census tract with 1 more
pre-1950 housing unit than another census tract would likely have 1.001 times more full
replacements, or 0.1 percent more. This estimate is a bit higher but comes close to the OLS
estimate of 0.08 percent discussed above.

3.4. A Note on Race and Income

Although race and income tend to be negatively correlated with each other, both
variables are included in these models because they represent separate and mutually
reinforcing social forces of privilege and disadvantage with potential to influence take-up



Sustainability 2022, 14, 352 15 of 27

of full LSLR. Sociologists have argued that analyses of social equity need to move “beyond
viewing race and economic resources as competing, rival explanations of life chances”
toward an “emerging view that racial stratification causes economic inequalities earlier
in and at various stages of life, and these economic inequalities then contribute to and
exacerbate racial inequalities later in life” [61] (p. 599).

Table 9 reports variable inflation factors (VIF) for the independent variables in this
study. Although none exceeds the threshold of 10 for determining multicollinearity, the
VIF scores for percentage of Black householders are consistently higher than the others.
This is not surprising given the complex social dynamics of income and race in the U.S.

Table 9. Variable inflation factors (VIF).

Independent Variable OLS Full Model 7.3 NBR Full Model 8.3

Percent Black Householders 8.21 7.80

Median Household Income (1000s) 3.60 3.43

Pre-1950 Housing Count 1.60 1.57

Two additional model specifications were developed to further explore how Black
race might mediate the role of median household income in explaining take-up of full
LSLR. First, a simple multiplicative interaction term—percent Black householders x median
household income in each census tract—was added to the models. Neither the interaction
term nor the separate variables for race and income were statistically significant in these
models. Vintage housing stock was the only statistically significant variable in these models.

Second, two-stage models were run using both OLS and NBR in an effort to isolate the
effect of income apart from race. In both cases, the coefficients on income were statistically
significant at the 95 percent confidence level. In the two-stage OLS model, the income
coefficient was smaller than its counterpart in model 7.3. Results for the two-stage NBR
model were essentially identical to the results in model 8.3, which provides additional
support for the appropriateness of NBR in this study.

In light of the results from the interaction term and two-stage models and the long
history of complicated interactions between race and income in the U.S., Tables 7 and 8
demand extra care in interpretation. On their face, Models 7.2, 7.3, and 8.2 suggest that
income is the more powerful of the two demographic variables used in this study at the
census-tract level. If true, the problem of unequal participation in full LSLR by lower-
income residents may be no better or worse for households in neighborhoods with larger
percentages of Black households than for others. In contrast, Model 8.3, based on the
preferred method of NBR, finds both race and income to be significant explanators.

Regardless of which model comes closest to reality, it should be remembered that
Black households are more likely than White households to experience lower incomes. In
2019 White residents of Washington, D.C. had a poverty rate of 5.1 percent compared to
23.4 percent for Black residents and 8.9 percent for residents of Hispanic origin, according to
the American Community Survey. Thus, the equity concerns raised by this study’s findings
on behalf of lower-income populations are likely to have a disproportionate impact on Black
households apart from whether the regression models do or do not show a statistically
significant impact of race on rates of full replacement independent of income.

In addition, given the disproportionately high baseline levels of lead exposure risk
experienced by Black populations in the U.S. [32] and the higher blood lead levels of Black
children compared to other racial/ethnic groups [34], there are reasons to worry that risks
of harm to low-income Black households from lead in drinking water may exceed risks to
other low-income households. Potential for cumulative harm should be kept in mind.

As already noted, regression results at census-tract level also should be understood in
the context of other area-level geographies that have shaped, and been shaped by, social
forces closely entwined with race and income. In addition to the larger-area results shown in
Table 6, Appendix A, and Figures 1 and 2, adding ward dummies to conventional regression
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models boosts explanatory power (as measured by adjusted and pseudo R-squared values).
Ward location appears to be capturing spatially distributed phenomena in the District of
Columbia that are less visible at the census-tract level due to disaggregation. The political,
environmental, and public health legacies of Black–White residential segregation may be
one such phenomenon.

3.5. Geographically Weighted Regression Results

GWR models aim to address concerns about spatial autocorrelation, such as those
raised by the Moran’s I values we reported in Section 2.7, and thereby produce less biased
regression coefficients. Tables 10 and 11 below report the average estimates from the
GWR models. In each case, the GWR models offer somewhat reduced goodness of fit,
as measured by adjusted and pseudo R-sqared, compared with the conventional models
reported in Tables 7 and 8. This surprised the research team and suggests that the smooth
distance-decay function that underlies GWR might not be fully capable of capturing the
spatial realities of scio-economic and environmental justice in Washington, D.C.

Table 10. Association of full LSLR with race and income characteristics at census-tract level: geo-
graphically weighted OLS model results with robust standard errors (in parentheses).

Independent Variable Model 10 Coefficient

Percent Black Householders 0.124
(0.078)

Median Household Income ($1000s) 0.191 ***
(0.051)

Vintage Housing Stock Count 0.011 ***
(0.003)

D.C. Ward Fixed Effects Yes

Observations 173

Adjusted R2 0.233
*** p < 0.01.

Table 11. Association of full LSLR with race and income characteristics at census-tract level: geo-
graphically weighted negative binomial regression (NBR) model results with robust standard errors
(in parentheses) and incident rate ratios (IRR).

Model 11

Independent Variable Coefficient IRR

Percent Black Householders 0.002
(0.005) 1.002

Median Household Income ($1000s) 0.012 ***
(0.003) 1.012

Vintage Housing Stock Count 0.001 ***
(0.0002) 1.001

D.C. Ward fixed effects Yes

Observations 173

Pseudo R2 0.040
*** p < 0.01.

Beyond goodness of fit and consistent with the conventional models, median house-
hold income and housing vintage continue to be statistically significant in both GWR
models. Like the conventional OLS full model (Model 7.3), the race variable is not statisti-
cally significant in GWR OLS Model 10. Unlike the conventional NBR model (Model 8.3),
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where race is statistically significant (albeit weakly: at the 10 percent level), race is not
statistically significant in the GWR version of NBR (Model 11).

The GWR routine allows for two hypotheses to be tested, based on using a Monte Carlo
simulation of 1000 observations where the spatial points are randomly distributed amongst
the data. The first test asks whether GWR describes the data better than a global regression
model. This utilizes the bandwidth estimated by the routine. In all our models, we find that
indeed GWR does describe the data better by this measure (but note some loss in goodness
of fit, as noted above). The second test asks whether the set of parameter estimates shows
substantial spatial variation. This is conducted by comparing the standard deviation of the
observed parameter estimates (Si) with those from the Monte Carlo simulation.

Results of the significance tests for non-stationarity are reported in Tables 12 and 13.
In both tests—OLS and NBR—race is highly statistically significant. Median household
income, on the other hand, achieves statistical significance only in the NBR version of GWR,
and likewise for the vintage housing exposure variable. These results indicate that the role
of the independent variables in explaining full LSLR probably varies from neighborhood
to neighborhood. This appears to be especially likely for the race variable given its strong
significance in both models.

Table 12. Tests of non-stationarity: GWR models using OLS.

Dependent Variable: Count of Full LSLRs (All Types)

Independent Variable Si p-Value

Constant 56.164 0.509

Percent Black Householders 2.528 0.000 ***

Median Household Income ($1000s) 0.341 0.888

Vintage Housing Stock Count 0.017 0.897
*** p < 0.01.

Table 13. Tests of non-stationarity: GWR models using NBR.

Dependent Variable: Count of Full LSLRs (All Types)

Independent Variable Si p-Value

Constant 0.820 0.015 **

Percent Black Householders 0.015 0.000 ***

Median Household Income ($1000s) 0.005 0.014 **

Vintage Housing Stock Count 0.000 0.055 *
* p < 0.1; ** p < 0.05; *** p < 0.01.

Appendix D displays chloropleth maps based on the preferred GWR-NBR model
results presented in Table 13.

4. Discussion

The Lead and Copper Rule (LCR)—the federal framework for regulating lead in
drinking water—was promulgated in 1991 [62], one year after EPA Administrator William
K. Reilly established the first-ever U.S. federal task force on socio-environmental disparities.
Formation of that task force and release of its report in 1992 marked important achievements
for the rapidly developing environmental justice movement and helped educate the nation
about the disproportionately higher burden of environmental risk borne by low-income and
minority Americans, including risk of lead exposure [63]. In 1994, President Clinton signed
Executive Order 12898, which directs federal agencies, including the EPA, to implement
environmental justice within their policies and programs.

Thirty years later, the revised LCR published in the Federal Register 15 January 2021
asserts that it “meets the intent“ of the EJ executive order (through corrosion control
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treatment) while also acknowledging a fundamental equity concern: “LSLR may not be
affordable for low-income households” (86 Federal Register at 4276). As more and more
states and localities embrace full LSLR as a preferred strategy for reducing the risk of
lead in drinking water [17,40], the latter statement assumes greater importance in the
policy conversation.

The models reported in this article provide the first available test of hypothesized
affordability and equity problems in LSLR using data on actual replacements. Under
cost-sharing arrangements in place during the study period, the probability of experiencing
full replacement of one’s LSL was significantly greater in higher-income neighborhoods
of Washington, D.C. when measured at both the census tract and ward level using OLS,
NBR, and GWR methods. Ward-level analysis suggests that neighborhoods with relatively
smaller Black populations also benefited disproportionately from full LSLR. GWR tests
for non-stationarity indicate that the relationship between race and full LSLR operates
differently in different parts of the city and may interact with income differently from
neighborhood to neighborhood.

The inequities identified in this study raise serious questions about which population
groups have been waiting longest to receive a proper environmental remedy for the problem
of lead risk in drinking water, both in Washington, D.C. and potentially nationwide. They
also raise questions about how policy—specifically the national Lead and Copper Rule
(LCR)—may have facilitated inequity. Although this study did not include empirical policy
research, several features of the revised LCR merit discussion because of their potential to
exacerbate the inequities we have identified in Washington, D.C. pre-2019.

The first is customer cost-sharing. While some of the 11,000 utilities with LSLs across
the U.S. may choose to pay some or all the cost of full LSLR during planned infrastructure
projects, others will not. Therefore, under the revised rule, many utilities could reason-
ably be expected to adopt arrangements similar to DC Water’s capital improvement and
customer-initiated LSLR programs. While such changes would have the positive effect
of increasing total number of full LSLRs and reducing partials overall (by making full
replacement easier for those willing and able to pay), our study provides evidence that
wealthier customers will be more likely to participate, leaving low-income households
(which are disproportionately Black) with increased risk of harm from drinking water. If
so, then the unintended consequences of the policy changes could make health equity and
environmental justice disparities worse, not better, than the current version of the LCR.

A second feature involves whether partial LSL replacements are allowed and if they
are conducted automatically when infrastructure work is being undertaken and customers
do not respond to information about full replacement. In the absence of means-tested
financial assistance during the study period, Washington, D.C.’s cost-sharing-based pro-
gram led to more full replacements for residents of more advantaged areas and more
partial replacements for residents in more disadvantaged areas. The partial LSLRs exposed
over-burdened households to additional risk based on passive rather than active consent
because households that did not respond to notices provided by the utility received partial
replacements by default. Such patterns translate into additional months and years of
lead exposure risk for residents in disadvantaged parts of the city. Similar patterns may
have occurred in cities with similar approaches to partial LSLR and customer cost-sharing:
further research is needed to test that hypothesis.

The findings reported here should be considered exploratory for several reasons. First,
lack of access to pre-2009 data constrained the study team’s ability to fully model the
distribution of full versus partial replacements across the District of Columbia. DC Water
replaced several thousand LSLs prior to the study period, but those premises could not be
included in the current study because the quality of the data is poor, according to utility
officials. Nor could those replacements be subtracted from the counts of pre-1950 housing
to ensure a more accurate control/exposure variable in the regression models because we
do not know where they occurred.
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Second, like many cities, Washington, D.C. has many premises with unknown LSL
materials—roughly 30,000 unknowns according to DC Water. If the status of those LSLs
was known, the resulting data could have been geocoded and substituted for the housing
vintage data to provide a far more precise exposure variable in the regression models. In
addition, with reliable data on the location of all LSLs in Washington, D.C., the models
could have been run with an alternative version of the rate-type dependent variable: the
ratio of full replacements to all remaining LSLs.

Third, the models do not include variables designed to capture reasons (other than
income) why property owners do or do not choose to take up invitations to invest in full
LSLR due to lack of empirical research on those reasons. The study team hopes researchers
will expand on and refine the basic model presented here in future studies. For example,
variation in the type of communications received from the utility might influence LSLR
take-up, but we did not have data on that factor. Finally, as noted in Section 2.1 above, this
study ideally would have utilized demographic information at the household/premise
level, but this was not available.

The Washington, D.C. case study lays the foundation for future research. In addition
to applying the research design described here to other cities as single case studies, we hope
future studies will compare differences in full versus partial LSLR patterns between water
systems operating under different policies and financing arrangements. As Washington’s
relatively new free and reduced-price LSLR program reaches maturity, a before-and-after
study design should be applied to compare the LSLR patterns from 2009 to 2018 (reported
here) with patterns being generated under the 2019 reforms.

5. Conclusions

This article makes two main contributions to the social science literature on lead
in drinking water and related public policies. First, the article presents a versatile new
indicator of environmental-remediation justice with potential utility in future analyses of
LSLR programs in multiple cities. The indicator may take the form of a count variable
or a ratio/rate variable, as demonstrated in our study. Either way, the core concept is
the relationship between full and partial lead service line replacements and who has
access to full LSLR, the superior form of remediation. The new indicator is especially
relevant for jurisdictions where the lead/non-lead status of large numbers of service lines
is unknown. In those contexts, researchers with access to reliable data about full versus
partial replacements can use the model developed here to investigate questions of social
equity within the LSLR data without having to infer underlying numbers of LSLs. This
article reports results from the first such study to examine social equity dimensions of full
versus partial LSLR using the new indicator.

Second, the patterns of inequity suggested by our findings have policy and program
relevance far beyond one city’s boundaries. Current proposed revisions to the national Lead
and Copper Rule neither ban partial LSLR nor facilitate funding for full replacement. In the
absence of further revisions to the LCR, key features of DC Water’s LSLR programs during
the study period are likely to persist in many other water systems. Of specific concern from
a social-equity perspective are customer cost-sharing requirements for all full replacements
and program designs that authorize partial replacement as a utility’s default action when
customers do not respond to opportunities for full replacement. Further research is needed
to test the robustness of the Washington, D.C. findings in other jurisdictions and under
other program settings.

Further research is also needed before specific, evidence-based policy remedies can
be recommended to address LSLR inequities. In the meantime, the Washington, D.C. case
study points to areas for potential improvement. Washington, D.C.’s free-and-reduced-cost
LSLR policy is designed to directly address the issues of environmental injustice and health
inequity documented in this article. As of October 2019, the city began fully covering the
cost of every full LSLR associated with new infrastructure work for all customers. The policy
also offers generous subsidies for full LSLR at premises where partial replacements were
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previously conducted (covering 80–100 percent of the cost for families with incomes below
the area median income). The policy includes additional outreach and public education
initiatives with the goal of increasing demand for full replacements to correct past partials.
Other cities are designing and implementing additional innovations to address economic
barriers to full LSLR [40].

Funds on a scale far beyond existing grant and loan programs are needed to extend
these types of remedies to all U.S. towns and cities with LSLs in need of replacement.
Several infrastructure bills introduced in the U.S. Congress in 2021 contain funding that
would significantly accelerate the national pace of LSLR and thereby reduce the risks for
those who must wait the longest for full replacement. The amount of funding approved for
LSLR by the U.S. Congress in November 2021 is roughly one-third of the original proposals,
which were based on estimates of total funding needed.

In March 2021, the EPA extended the effective date of the revised LCR to allow
additional public input, “particularly from individuals and communities that are most
at risk of exposure to lead in drinking water.” [64]. On 16 December 2021, EPA allowed
the revised rule to go into effect, but committed to starting the process to propose a new
rule that will incorporate principles of 100 percent lead service line replacement and
improving public health protection for those who cannot afford to replace the customer-
owned portion of the line [30]. Among the latter, EPA identifies the need to prioritize
“historically underserved communities” and those “disproportionately impacted by lead in
drinking water” [65] (p. 2). This article offers federal policy makers important clues about
the potential unintended consequences of current policy for these priority populations.
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Appendix A. Bivariate Correlations at Ward Level

Table A1. Rates of full LSLR as a percentage of all LSLRs correlated with demographic characteristics
at ward level, by program, Washington, DC, 2009–2018.

Demographic Characteristic

Bivariate Correlation with Percent Full

All LSLR
Customer-Initiated +

Utility-Initiated

Utility-Initiated

Capital
Improvement

Projects

Emergency
Repairs

Percent African
American/Black Householders −0.702 * −0.781 ** 0.345

Median Household Income 0.810 ** 0.820 ** −0.539

Social Deprivation Index (SDI) † −0.838 *** −0.921 *** 0.596
* Statistically significant at 10 percent level: critical r = |0.621|; ** Statistically significant at 5 percent level: critical
r = |0.707|; *** Statistically significant at 1 percent level: critical r = |0.834| † SDI is a rank-order index based on
a cluster of 7 social background variables often associated with poor health and education outcomes [66]. The
components of SDI are percentages of area residents with the following characteristics: income below poverty,
single-parent household, living in rental housing, living in overcrowded housing, education less than 12 years,
lacking a car, and experiencing non-employment. Each census tract’s score represents its centile ranking (scale of
0–100). Higher index numbers indicate more deprivation. SDI is expected to be correlated negatively with full
replacements because it captures multiple sources of social disadvantage.

Appendix B. Alternative OLS Model

Log transformation offers another approach to handling skewed variables. In addition,
running the dependent and independent variables as logs provides direct estimates of the
elasticities of the independent variables [67]. In the case of full LSLR, we are especially
interested in estimating the neighborhood equivalent of income elasticity of demand for
full LSLR. The table below reports OLS results for log-transformed versions of all variables.
These models, and those in Appendix C, use the Black population count in each census
tract rather than percentage Black householders because of the challenges of interpreting a
percent variable that has been logged.

Table A2. Total full LSLRs modeled as a function of median household income, Black population,
and vintage housing stock, with all variables logged, by census tract, Washington, DC, 2009–2018,
using OLS (robust standard errors in parentheses).

Dependent Variable: Logged Count of Full LSLRs, All Types

Independent Variable Model B1.1 Model B1.2 Model B1.3

Log Percent Black Householders −0.268 **
(0.134)

−0.081
(0.147)

−0.048
(0.141)

Log Median Household Income ($1000s) 0.884 ***
(0.322)

0.712 **
(0.312)

Log Vintage Housing Stock Count 0.667 ***
(0.194)

D.C. Ward fixed effects Yes Yes Yes

Observations 129 129 129

Adjusted R2 0.352 0.385 0.436
** p < 0.05; *** p < 0.01.

The coefficients on income in the preferred models (with fixed effects) suggest that
full replacement of a lead service line functions as what economists call a normal good at
the neighborhood level, meaning demand for full LSLR has an income elasticity between 0
and 1 [68]. The coefficients in those models show percentage increases (decreases) in de-
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mand for full LSLR to be positive and less than or equal to percentage increases (decreases)
in income.

Appendix C. Program Effects

We also ran the log-transformed models separately by program to compare income
elasticities. The table below reports OLS results for all full customer-initiated (CI) LSLRs by
census tract with all variables logged.

Table A3. Customer-initiated (CI) full LSLRs modeled as a function of median household income,
Black population, and vintage housing stock, with all variables logged, by census tract, Washington,
DC, 2009–2018.

Dependent Variable: Logged Count of Full LSLRs, Customer-Initiated Only

Independent Variable Model C1.1 Model C1.2 Model C1.3

Log Percent Black Householders −0.093
(0.130)

0.130
(0.141)

0.143
(0.135)

Log Median Household Income ($1000s) 1.033 ***
(0.309)

0.863 ***
(0.300)

Log Vintage Housing Stock Count 0.623 ***
(0.189)

D.C. Ward fixed effects Yes Yes Yes

Observations 117 117 117

Adjusted R2 0.348 0.404 0.454
*** p < 0.01.

Table A4. Utility-initiated (UI) full LSLRs modeled as a function of median household income, Black
population, and vintage housing stock, with all variables logged, by census tract, Washington, D.C.,
2009–2018, using OLS (robust standard errors in parentheses).

Dependent Variable: Logged Count of Full LSLRs, Utility-Initiated Only (Includes Capital
Improvement-Related and Emergency-Related UI)

Independent Variable Model C2.1 Model C2.2 Model C2.3

Log Percent Black Householders −0.260
(0.186)

−0.110
(0.192)

−0.071
(0.190)

Log Median Household Income ($1000s) 0.758 *
(0.390)

0.616
(0.392)

Log Vintage Housing Stock Count 0.518 *
(0.267)

D.C. Ward fixed effects Yes Yes Yes

Observations 96 96 96

Adjusted R2 0.108 0.131 0.150
* p < 0.1

More severe inequities of outcome might be expected in the distribution of CI re-
placements (all of which are full) compared with utility-initiated LSLRs for two reasons.
First, as noted previously, CIs are 28 percent more expensive on average than UI fulls.
That steeper price is likely to discourage lower-income property owners more than their
higher-income counterparts. In addition, CI replacements require more pro-active effort on
the homeowner’s part than UIs. Thus, residents from more privileged social groups may
feel more confident reaching out to DC Water and initiating the work. Full replacements
were expected to occur more often in higher-income, more privileged neighborhoods under
both the UI and CI programs, but moreso in the latter for those reasons.
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While race is not statistically significant in any of the logged models in either table, the
log of median household income is significant in models C1.2, C1.3, and C2.2, and it comes
close in model C2.3 (p = 0.119). These results provide some support for the program-effect
hypothesis while also illustrating weakness in the Table A4 models for predicting full
utility-initiated LSLR.

Appendix D. Chloropleth Maps

GWR tests of non-stationarity suggest that race, income, and take-up of full LSLR
opportunities may interact in different ways in different parts of Washington, D.C., as
reported in Tables 12 and 13 above. Figures A1 and A2 below allow further exploration of
these differences based on the results of the preferred model specification using NBR.

According to Figure A1, the race variable (percentage of Black householders) behaves
mostly as expected in parts of the city with the largest percentages of Black households:
namely, Wards 5, 7, and 8. GWR models centered in the census tracts comprising those
wards (plus part of Ward 6) generate mostly negative coefficients for the race variable
and those negative coefficients get larger the farther east one goes toward the city’s more
concentrated Black neighborhoods. Moving west through mixed neighborhoods and
toward the whiter areas of the city, coefficients on the race variable are closer to zero,
suggesting that race has less explanatory power in those areas. Some of the coefficients in
the farthest west neighborhoods have positive signs and larger effects sizes—an unexpected
result that deserve attention in further research.
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NBR specification.

According to Figure A2, the income variable (median household income) behaves
mostly as expected in parts of the city with the largest incomes: namely, Wards 1, 2, and 3,
and parts of 4 and 6. GWR models centered in the census tracts comprising those wards
generate positive coefficients for the income variable and those positive coefficients get
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larger the closer one moves toward the heart of downtown D.C., roughly opposite Wards 7
and 8 with their dramatically lower median incomes. In the far eastern census tracts, the
signs on the income coefficients are very close to zero (and some are actually negative),
perhaps because residents of those neighborhoods have more uniformly low incomes,
which makes differences in income a less useful predictor of full LSLR.
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