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Abstract: Solar radiation is considered the main renewable energy source which reshapes the global
sustainability plan for future development. Due to the lack of solar radiation measurements, this work
investigates the performance of several temperature-based hybrid solar radiation models combining
the parametric, statistical and satellite data approaches to estimate the global solar radiation on a
horizontal surface. Over 35 years of meteorological data in the new location, Arar City, KSA (Latitude
30◦96′ N and longitude 41◦05′ E) are employed to establish and validate the models. These models
are validated using two datasets with different averaging time spans to investigate the accuracy
and reliability of different models as forecasting tools for the solar radiation. The mostly common
statistical indicators are calculated to identify the most accurate model. The results show that Model
(1) has the best performance among all models with high reliability as a solar radiation forecasting
tool in this new location. This model is also validated against the widely-used datasets, namely
NASA, On-Site measurements and PVGIS-SARAH data. The model shows excellent values for
statistical indicators with high values of coefficient of determination, R2 > 0.955, presenting the best
performance regardless of the time span of the validation datasets.

Keywords: energy sustainability; empirical models; solar energy; solar radiation; statistical indicators;
Arar City; KSA

1. Introduction

Due to the expanding consumption of fossil fuels because of the population increase
and economic activities along with instability of oil prices and the contamination of the
air pollution and greenhouse gas emissions, the interest in sustainable sources of energy,
particularly solar energy, is continuously increasing [1–5]. The proper knowledge of solar
radiation data is the initial stage in assessing solar energy availability in solar energy
research [6–12]. Solar radiation is also the basic input for a variety of solar energy applica-
tions [13–16]. Various solar radiation models are proposed for solar radiation estimation
because of the high cost of measurement equipment, calibration and maintenance [17–19].
Numerous studies have been carried out in attempt to develop models for estimating global
solar radiation, including the use of machine learning algorithm [20–22], day of the year
information [23], geographical information [24] and meteorological parameters [25–28].
R. Urraca et al. investigated five estimation methods for global solar radiation for central
Spain as a case study. Discarding the hybrid techniques, the investigated approaches are
parametric modeling, statistical modeling, interpolated ground-based measurements, a
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satellite-based dataset and a reanalysis dataset. The study shows the strengths and weak-
nesses for each approach and gives a deeper understanding for the selection of the adequate
estimation technique. The results show that SARAH satellite-based dataset is the most
accurate method with high spatial and temporal resolution and fairly accurate estimations
and is highly independent of cloudiness [16].

Generally, the basic model for calculating global solar radiation using sunshine du-
ration is presented by Angstrom [29]. This model is adjusted by Prescott [30], and it is
immensely utilized for global solar radiation evaluation across the world [31–33]. Many
studies are carried out to determine the suitability of various solar models for a given site
or a number of places throughout the world. Fariba Besharat et al., for example, examined
various empirical models for calculating global solar radiation and presented a case study
for Yazd, Iran. O.O. Ajayi et al. [34] introduced a novel model for calculating daily global
solar radiation across Nigeria. A comparative assessment of total, direct and diffuse solar
radiation by using various models on inclined and horizontal surfaces over Cairo, Egypt is
carried out by Samy A.Khalil and A.M. Shaffe [35]. Similarly, three simple new correlations
based on meteorological parameters for predicting global solar radiation on a horizontal
surfaces in Egypt are proposed by El-Metwally [36]. The collected findings revealed that the
presented models outperformed Supit–Van Kappel model [37] and with lower differences
than the Angstrom–Prescott model [30]. Mohamed Salah Mecibah et al. [38] conducted a
study to introduce the best model for estimating the monthly average daily global solar
radiation on a horizontal surface for six Algerian sites. Similarly, H. Khorasanizadeh and
K. Mohammadi [39] presented the most accurate model for predicting monthly average
global solar radiation across six major Iranian cities. The efficacy of 52 sunshine-based
models in predicting the monthly average global solar radiation values on horizontal
surfaces in Jouf, Saudi Arabia was reported by Al-Mostafa, Z.A. et al. [40]. The gained
results showed that certain models are completely inappropriate for these locations, while
others function differently.

The most frequent parameter employed for predicting global solar radiation is sun-
shine duration and the sunshine-based models have accurate estimates [39,40]. Recently,
different development efforts for empirical models including calibration and evaluation
and performance enhancement are achieved for different geographical area and climate
conditions [4,5,10–12,17,18,41–43]. However, compared to ambient temperature data at
normal meteorological stations [44], sunshine data is not as readily available, and the ambi-
ent temperature is simply recorded for most conventional meteorological activities [45]. As
a result, models based on sunshine duration are challenging to be applied in regions where
sunshine data is not available [46,47]. Therefore, new models based on the other meteo-
rological parameters, especially temperature data, are developed as alternative models to
predict solar radiation at various sites across the world.

For the temperature-based models, a simple model based on maximum and minimum
temperatures to predict solar radiation is introduced by Hargreaves and Samani [48].
Annandale et al. [49] updates Hargreaves and Samani’s model to calculate the impact
of reduced altitude and atmospheric thickness on global solar radiation by proposing a
correction factor. Hassan et al. [28] explored how 31 non-sunshine-based models performed
while predicting the monthly average of daily global solar radiation on a horizontal surface.
The models are grouped into six groups: (1) solely based on temperature; (2) solely based on
cloud cover; (3) solely based on relative humidity; (4) solely based on alien solar energy and
solar declination angle; (5) solely based on temperature; (6) solely based on temperature and
relative humidity. The obtained results showed that some models are inappropriate for use
in the research area, while others differ in prediction performance. Hassan et al. [50] also
introduced novel ambient-temperature-based models for evaluating global solar radiation
as alternative models to the widely used models based on sunshine data. According to the
results, the local formula for the most accurate model, from these novel temperature-based
models, gives accurate estimations for global solar radiation at various sites. Furthermore,
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the most accurate model (both local and general formulae) from these models outperforms
the two most accurate sunshine-based models in the literature.

The aim of this work is to study the performance of four different empirical solar
radiation models based on ambient temperature data to predict the monthly average daily
global solar radiation values on a horizontal surface. These four temperature-based solar
radiation models are selected due to their high accuracy and good performance based
on the literature, [28]. To achieve this purpose, the measured weather data at the study
location, Arar City, KSA (Lat. 30◦51′ N and long. 29◦34′ E), are employed to develop and
validate the suggested temperature-based solar radiation models. Although this region is
selected to develop different solar-energy-based projects because it is located in the most
favorable solar belt with the highest potential to receive solar radiation, there is a lack for
solar radiation ground measured data. Consequently, the need to solar radiation modeling
is the acceptable solution to perform the solar energy availability assessment which is
used for design and performance evaluation for different solar applications. The following
points can be considered some of the novelties and contributions of the current study:

• Evaluating solar radiation potential at the study location, Arar City, KSA.
• Assessing performance for one of the best Temp-Based Models, which has been

presented recently, for predicting global solar radiation at new location with different
weather conditions, Arar City, KSA.

• Evaluation and performance comparison of temperature-based models in estimating
monthly average daily global solar radiation on a horizontal surface.

• Investigate the effect of using long-term and short-term validation datasets (validation
using average data of three years and data of one year) on models’ performance
and accuracy.

• To investigate the stability and reliability of these models as temperature-based fore-
casting tools for the global solar radiation providing accurate predictions of solar
radiation values for engineers and designers, which can be employed in the design
and evaluation of performance for different solar applications in this region.

The models’ prediction is compared with the measured values of monthly average
daily global solar radiation. Long- and short-term validation datasets are used to evaluate
the performance and stability of these models as accurate and reliable forecasting tools
for global solar radiation. Furthermore, the majority and the most commonly statistical
errors such as mean absolute percentage error, MAPE, root mean square error, RMSE,
mean absolute bias error, MABE, relative error, e, t-Test, coefficient of determination, R2

and correlation coefficient, r, are calculated to evaluate models’ performance [51–53]. The
most accurate, stable and reliable model is identified based on the results of the validation
process with the measured data for the global solar radiation. Moreover, the performance of
the developed models is also validated and verified with different measured data of global
solar radiation from different available sources, namely On-Site Data and Photovoltaic
Geographical Information System (PVGIS) Data. Furthermore, a comparison between
the accuracy of the current work and the previous studies are achieved showing good
enhancement by the current work.

2. Models
2.1. Global Solar Radiation Models

Several novel temperature-based models for estimating global solar radiation on a
horizontal surface as alternatives models for sunshine-based models are presented by
Hassan et al. [39]. The most accurate model from these novel models is compared with
another three temperature-based models [28] which also provided very good performance
in estimating monthly average global solar radiation. These models are defined as follows:

Model 1 G/G0 = a Tb G0 + c (1)

Model 2 G = a + b G0 + c T (2)
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Model 3 G/G0 = a + b TMax + c TMin (3)

Model 4 G/G0 = (a + b T)∆T0.5 + c (4)

where G and G0 are the global solar radiation and extraterrestrial solar radiation on hori-
zontal surface (MJ/m2 day); T, TMin, TMax, ∆T (TMax − TMin), are the monthly average of
daily ambient, minimum, maximum and temperature difference (◦C), respectively. a, b and
c are the empirical coefficients.

2.2. Extraterrestrial Solar Radiation

Extraterrestrial solar radiation, G0, is the solar radiation above the atmosphere and its
equation given by [54]:

Go =
24× 3600 Gsc

π
f
[(π ω

180

)
sin(L) sin(δ) + cos(L) cos(δ) cos(ω)

]
(5)

where Gsc is the solar constant, equal to 1367 W/m2 [35,55], f, ω, δ and L are the eccentricity
correlation factor of the earth’s orbit, hour angle at sunset (◦), solar declination angle (◦)
and location’s latitude, successively. ω, f and δ are defined by the following [56]:

ω = cos−1[− tan(L) tan(δ)] (6)

f =

[
1 + 0.033 cos

(
360 N

365

)]
(7)

δ = 23.45 sin
[

360
365

(284 + N)

]
(8)

where N indicates to day of the year number starting from 1 January.

3. Data Set and Models Validation

In this work, over 35 years of long-term measured meteorological data from Jan. 1984
to Dec. 2019 are utilized to build the studied models as well as validate their performance
and applicability in estimating the monthly average values of daily global solar radiation
on a horizontal surface. All these meteorological data are collected for the study location,
Arar City, KSA (Lat. 30◦96′ N and long. 40◦05′ E). Arar region is located in northern Saudi
Arabia near the Iraqi border where the climate is classified according to Köppen–Geiger
climate classification system as an arid desert with hot and dry climate conditions. The
maximum minimum temperature varies between 40 and 3 ◦C and the relative humidity
varies between 15% in summer and 58% in winter. All used parameters—global solar
radiation, ambient temperature, minimum and maximum temperature data—are obtained
from power data access of NASA Surface Meteorology and Solar Energy website, which are
used and utilized in many studies [23,28,50,57]. The values of monthly average for various
parameters and extraterrestrial solar radiation as well as declination angle are computed
by in-house computer program.

Furthermore, the performance of the developed models is also validated and verified
with different measured data of global solar radiation from different available sources
namely; On-Site Data and Photovoltaic Geographical Information System (PVGIS) Data.
Regarding the On-Site Data, it is collected by Arar Technical Institute (Arar-TVTC) Solar
Resource Monitoring Station. The station is considered as one of the stations participating
in the Renewable Resource Monitoring and Mapping (RRMM) Program which related
to King Abdullah City for Atomic and Renewable Energy. The data is available through
the online Renewable Resource Atlas [58]. The On-Site Data (Monthly) is available from
1 December 2014 to 1 March 2021, where 2015, 2016 and 2019 have the only complete data
for the twelve months of the year. Similarly, PVGIS Data is obtained from the PVGIS web
interface providing the solar radiation data and photovoltaic system energy production
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between 2005 and 2016 based on SARAH satellite dataset, for different regions around the
world [16].

In order to investigate the performance of several temperature-based models in pre-
dicting global solar radiation, the majority of commonly statistical indicators, such as MPE,
MBE, RMSE, MAPE, MABE, e, t-Test, r and R2, are calculated to evaluate models perfor-
mance of [51–53]. RMSE values provide information about the short-term performance for
the developed model; its value always positive and zero is the ideal case, where smaller
value refers to better performance. The values of MBE supply information about the
long-term model performance, where positive value refers to overestimation in the model
prediction and the negative one refers to underestimation. The smaller values consider the
desired values, and they refer to better performance. The t-Test allows models to be com-
pared at the same time and indicates whether a model’s prediction is statistically significant
or not, where smaller value refers to better performance for the model [27,59]. The relative
percentage error (e) shows agreement between measured and calculated value of G, which
confirmed for each month and preferable values between −10 and +10%. Coefficient of
determination (R2) values provides information about the goodness of fit for the proposed
model, where its values fall between zero and one

(
0 ≤ R2 ≤ 1

)
and the largest value is the

desired one. r values, similarly, which close from unity (1) are the desired value and points
to good model performance. The acceptable range for these statistical indicators, RMSE,
MBE, MPE, MABE, MAPE, are between ±10% [27,34,41]. These indicators are defined
as follows:

RMSE =

[
1
n

n

∑
i=1

(Gi,c − Gi,m)
2

]1/2

(9)

MPE =
1
n

n

∑
i=1

(
Gi,c − Gi,m

Gi,m

)
× 100 (10)

MBE =
1
n

n

∑
i=1

(Gi,c − Gi,m) (11)

MABE =
1
n

n

∑
i=1
|(Gi,c − Gi,m)| (12)

MAPE =
1
n

n

∑
i=1

∣∣∣∣(Gi,c − Gi,m

Gi,m

)
× 100

∣∣∣∣ (13)

r =
∑n

i=1
(
Gi,m − Gm

)(
Gi,c − Gc

)[
∑n

i=1
(
Gi,m − Gm

)2
∑n

i=1
(
Gi,c − Gc

)2
]1/2 (14)

R2 = 1− ∑n
i=1(Gi,m − Gi,c)

2

∑n
i=1
(
Gi,m − Gm

)2 (15)

t =

[
(n− 1)(MBE)2

(RMSE)2 − (MBE)2

]1/2

(16)

e =
(

Gi,c − Gi,m

Gi,m

)
× 100 (17)

where Gi,c, Gi,m are the values of ith predicted and the measured global solar radiation
respectively, Gc is the mean estimated global solar radiation, Gm is the mean measured
global solar radiation and n is the number of observations which taken into account.

4. Results and Discussion

To check the applicability and the accuracy of the selected models in predicting
monthly average daily global solar radiation values, a long-term of recorded data of
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daily global solar radiation are employed. This data of global solar radiation is divided
into two sets and averaged to obtain the values of monthly average. The first subset
from January 1984 to December 2016 is used for establishing models using regression
analysis [33,34,39]. These regression coefficients are calculated and summarized in Table 1.
On the other side, the validation process is performed using other range of metrological
data from January 2017 to December 2019 which is different from the data set used for
model developing and training avoiding the probability of the overfitting for the model
predictions. The validation process is conducted using two validation sets based on the
time period between 2017 on 2019. The first one is the average data of three years for
the monthly-average-daily-global solar radiation, from January 2017 to December 2019,
and the second validation set is the data of one year, 2019 for the monthly-average-daily-
global solar radiation. These two validation sets are utilized for evaluating and validating
the developed models. Furthermore, the long term (average of three years) validation
dataset is used to evaluate the accuracy and general performance of the models while the
short term (one year) validation dataset is used to evaluate the reliability of the models as
forecasting tools for global solar radiation. The models’ prediction, Equations (1)–(4), are
compared with the measured values of monthly-average-daily global solar radiation and
the statistical indicators, RMSE, MBE, MPE, MAPE, MABE, t-Test, e r and R2 are computed
using equations Equations (9)–(17). The comparison between the predictions of the models
using the two validation sets is shown in the following sections.

Table 1. Regression coefficients for the developed Models (1–4) at study location.

Model a b c

Model 1 0.000218 0.864416 0.545053
Model 2 −4.995264 0.734905 0.125847
Model 3 0.206590 0.026851 −0.024184
Model 4 0.168603 0.000725 −0.065857

For the validation using average data of three years, from January 2017 to December
2019, the measured data of daily global solar radiation and temperature, as well as extrater-
restrial solar radiation, are averaged to receive monthly average data, where this period
starts from January 2017 to December 2019. All statistical indicators are calculated for all
models and summarized in Table 2. According to the obtained results, the most accurate
model is identified by comparing its statistical errors with those of the other models having
the largest value of R2. The best model is indicated in bold as shown in Table 2.

Table 2. Statistical indicators for the proposed Models (1–4) at study location (Validation with average
data of three years, 2017–2019).

Model t-Test MPE MBE RMSE MAPE MABE r R2 Rank

Model 1 2.3463 −4.0972 −0.6283 1.0878 5.0289 0.8801 0.9952 0.96896 1
Model 2 2.2111 −4.3206 −0.6447 1.1622 5.3327 0.9003 0.9934 0.96456 3
Model 3 3.4352 −5.3112 −0.8427 1.1714 5.7247 0.9551 0.9963 0.96400 4
Model 4 3.3725 −5.2353 −0.8272 1.1601 5.6458 0.9387 0.9964 0.96469 2

According to the measured data, statistical parameters for the estimated values of
global solar radiation, Gc, from all models are in the acceptable range ±10%, all mod-
els showed very good performance. The best performance is obtained by Model 1 and
its statistical errors, MPE, MBE, RMSE, MAPE, MABE, t-Test, r and R2 are −4.0972%,
−0.6283 MJ/m2, 1.0878 MJ/m2, 5.0289%, 0.8801 MJ/m2, 2.3463, 0.9952 and 0.96896, re-
spectively. Model 4 ranked the second one, with R2 equals 0.96469, followed by Model
2, Model 3, respectively. In fact, all models demonstrated good performances, and their
performances are slightly close to each other with excellent R2. The values of correlation
coefficient (r) are larger than 0.99, and coefficient of determination values (R2) for all models
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are higher than 0.96, which indicates a good fitting and Model 1 gives the most accurate
estimation. According to the revealed results, the proposed models are ranked based on
their performance and presented in Table 2. Figures 1 and 2 shows the overall performance
for all developed models, including the best model, Model 1, compared with the measured
values for the Three-years-averaged and Single Year Validation dataset, respectively.
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Based on the obtained results from validation dataset 1, the average data of three years,
it can be concluded that the developed models (four models; Equations (1)–(4)) have good
estimation for global solar radiation with excellent R2 values. Model 1, Hassan et al. [39]
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(Equation (1)), proved to be the most suitable model for predicting the monthly average
daily global solar radiation on a horizontal surface at the study location, Arar City. The
statistical errors for all models (1)–(4) are shown in Figure 3 (Three Years Validation). Table 3
illustrates the values of relative percentage errors for all the months for every model. The
results show that the obtained values are within the acceptable range, ±10%; except, for
winter months, it is slightly outside the range, −10.9%, −11.2% and −12.1% in Dec., Jan.
and Feb., respectively. This can be explained by different weather conditions especially in
winter season, such as cloud covers and rains. Moreover, it can be seen that the values of
relative error in Nov. for Model 1 and Model 2 are within the range (±10%) compared with
Model 3 and 4 whose values slightly exceeded the range, −3.1%, −3.2%, −10.4%, −10.2%,
respectively. Based on these results, Model 1 gives the minimum errors leading to the best
accuracy compared with other models.
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Table 3. Relative errors for all developed Models (1–4) at study location (Three-Years Averaged
Validation dataset).

Month Model 1 Model 2 Model 3 Model 4

January −11.2 −15.7 −14.6 −14.3
February −12.1 −11.8 −11.2 −11.3

March −9.0 −6.1 −6.9 −7.1
April 1.0 3.3 −0.5 −0.4
May 3.1 2.7 2.5 2.5
June −1.0 −3.0 −3.2 −3.0
July 1.2 −0.8 −2.1 −1.8

August 0.3 −0.2 −0.4 −0.2
September −3.3 −0.9 −0.2 −0.3

October −4.3 −0.4 −3.1 −3.0
November −3.1 −3.2 −10.4 −10.2
December −10.9 −15.7 −13.8 −13.6

In order to investigate the effect of the time span of the validation dataset on the
accuracy and performance of the models, a single year measurements data is used as a short
time span validation dataset. The validation results of the multi-year averaging datasets
are compared with those for the single year measurements dataset. The validation with the
multi-year averaging gives an indication about general performance of the model while
validation with single year data indicates the effectiveness of the model as a forecasting tool.
If the accuracy of the model is not largely affected by the time span of the validation set,
this proves the stability of the model predictions against time, indicating the high reliability
of the model as a forecasting tool for global solar radiation.

The measured data of single year, from Jan. 2019 to Dec. 2019, is used as a short
time-span validation dataset. The same procedure is used where the data are averaged
to find monthly average data, and all statistical parameters are computed for all models
and presented in Table 4. The obtained results showed that Model 1 also provides the most
accurate estimations having the largest value of R2 (0.95466). The best model is indicated
in bold as shown in Table 4.



Sustainability 2022, 14, 35 10 of 19

Table 4. Statistical indicators for the proposed Models (1–4) at study location (Single Year Valida-
tion dataset).

Model t-Test MPE MBE RMSE MAPE MABE r R2 Rank

Model 1 3.2867 −5.4339 −0.9395 1.3347 5.6970 1.0004 0.9928 0.95466 1
Model 2 3.2538 −5.7038 −0.9584 1.3685 6.6109 1.1218 0.9923 0.95233 2
Model 3 3.8783 −6.8941 −1.1851 1.5593 7.4205 1.3317 0.9925 0.93812 4
Model 4 3.8884 −6.7975 −1.1677 1.5348 7.2682 1.2989 0.9929 0.94004 3

The results revealed that all developed models have good performance in estimating
monthly average daily global solar radiation and statistical indicators for predicted values,
Gc, within the acceptable range ±10%. Model 1 displayed the best performance followed
by Model 2, Model 4 and Model 3, respectively, and its statistical errors, MPE, MBE, RMSE,
MAPE, MABE, t-Test, r and R2 are −5.4339%, −0.9395 MJ/m2, 1.3347 MJ/m2, 5.6970%,
1.0004 MJ/m2, 3.2867, 0.9928 and 0.95466, successively. It can be noted that the performance
of Model 1 (R2 = 0.95466) slightly changed compared to its performance when the average
of three years data validation set is used (R2 = 0.96896), which means that it has accurate
estimation for global solar radiation regardless of the time span of validation dataset.
Furthermore, it is cleared that the performance of both the third and fourth models are
affected, obviously compared to their performance when three years validation is used;
0.93812, 0.94004 and 0.96400, 0.96469, respectively. The models are ordered based on their
performance, as seen in Table 4. Moreover, models’ performances are showed in Figure 2.

Overall, based on the revealed results from dataset 2, the one-year validation dataset,
it can be assumed that the presented models (Equations (1)–(4)) also have good prediction
for monthly average global solar radiation with good R2 > 0.938. Model 1, Hassan et al. [39],
also showed the best performance compared with others models; therefore, it is the most
proper model for evaluating the monthly-average-daily global solar radiation on a horizon-
tal surface at the study location. The statistical indicators for all models (1–4) are clarified
in Figure 3 (one-year validation). Furthermore, Table 5 shows the relative error values for
all months for all models, as well as the best model (Model 1). The results indicate that the
majority of the months’ values are in the range ±10%, except for some months where the
range is exceeded—mostly during the winter season.

Table 5. Relative errors for all developed Models (1–4) at study location (Single Year Averaged
Validation dataset).

Month Model 1 Model 2 Model 3 Model 4

January −7.1 −12.0 −12.0 −11.7
February −15.0 −14.9 −16.2 −16.1

March −11.9 −9.0 −11.9 −11.9
April −4.5 −1.9 −5.2 −5.2
May 0.9 0.4 3.2 2.8
June 0.0 −2.2 −3.0 −2.8
July −0.8 −2.6 −2.8 −2.6

August −0.3 −0.7 −1.9 −1.7
September −4.8 −2.5 −1.2 −1.3

October 0.7 5.0 −2.2 −2.0
November −10.1 −10.5 −13.7 −13.6
December −12.4 −17.6 −15.6 −15.4

To study the effect of using short and long data sets on models’ performance and
accuracy, the statistical indicators for all models for two validation datasets (average data of
three years and average data of one year) are compared together, as appeared in Figure 3. It
can be seen that the values of statistical errors are slightly increased, especially for Model 1,
when one year validation dataset is used, but all errors’ values in the acceptable range
except values of relative error for some months are slightly out the range. In general, almost
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all the statistical parameters for all models have good values and are within the acceptable
range. Moreover, the performance of Model 1 has nearly inconsiderable change where it
still has accurate predictions with high accuracy (R2 values between 0.9547 and 0.9689).

In order to investigate the spatial validation of the suggested model, the accuracy of
Model 1, which shows the best performance compared with others models, is investigated
in two other locations. The first location is Riyadh city, which is the capital of KSA, located
at the center of the Kingdom (24◦38′ N 46◦43′ E) and south of ARAR city, having a hot
desert climate with long, extremely hot summers and short, very mild winters. The ambient
temperature varies between 43.6 and 9 ◦C, and the relative humidity varies between 10%
in summer and 47% in winter. The other location is Tabuk city, located at the north west
of KSA (28◦23′50” N 36◦34′44” E) and west of ARAR city, having tropical and subtropical
desert climate. The ambient temperature varies between 36.1 and 1.2 ◦C, and the relative
humidity varies between 18% in summer and 44% in winter. The long term of recorded data
from January 1984 to December 2016 including daily global solar radiation and temperature
are used to establish the models using regression analysis. The regression coefficients
for Model 1 are calculated for Riyadh and Tabuk cities compared to those for Arar city
and summarized in Table 6. The validation process is performed using an other range of
metrological data from January 2017 to December 2019, which is different from the data set
used for model developing and training, avoiding the probability of the overfitting for the
model predictions. The model validation for different locations is performed based on the
average data of three years from January 2017 to December 2019 and also based on single
year data for 2019.

Table 6. Regression coefficients for Model (1) at different locations for spatial validation.

Location a b c

Arar 0.0002184 0.86442 0.54505
Riyadh 0.0000001 2.91248 0.59875
Tabuk 0.0000004 2.31457 0.65766

Table 7 summarizes all statistical indicators calculated for Model 1 at different lo-
cations either for averaged three years or single year validation data sets. According to
the obtained results, Model (1) gives accurate predictions with good values of different
statistical indicators at different locations. The performances of Model (1) at different
locations are slightly close to each other with excellent R2 higher than 0.94, indicating good
fitting for both the validation datasets. Table 8 shows the values of relative percentage
errors for all the months for Model (1) at different locations either for averaged three years
or single year validation data sets. The results show that the values of the errors obtained
at Riyadh and Tabuk cities for all months based on both the validation datasets are within
the acceptable range, ±10%. These values are better than the values predicted at Arar
city where some values slightly exceed the acceptable range during the winter season. In
general, the obtained results show the good performance of Model 1 at different locations,
which confirms the spatial validation of Model 1. These results are consistent with results
predicted by Hassan et al. (2016) [50] where the accuracy of different temperature-based
models including the current model is tested at different locations in Egypt. Finally, the
performance of the developed models is validated and verified with other measured data
for global solar radiation from different available data sources, namely the On-Site mea-
sured data and PVGIS-SARAH satellite-based data, at the same location. The On-Site Data
(monthly) is available from 1 December 2014 to 1 March 2021, where 2015, 2016 and 2019
are the only years with complete data for the twelve months of the year [48].
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Table 7. Statistical indicators for the Models (1) predictions at different locations for different
validation data sets.

Validation Data Set Location t-Test MPE MBE RMSE MAPE MABE r R2

Average 3-Years
2017–2019

Riyadh 2.0830 −2.7685 −0.5165 0.9711 4.0481 0.8224 0.9874 0.95
Arar 4.3026 −3.4917 −0.6885 0.8693 3.6201 0.7056 0.9963 0.98

Tabuk 5.6277 −2.9384 −0.6558 0.7612 2.9384 0.6558 0.9977 0.98

single year data 2019
Riyadh 1.3366 −2.1561 −0.4347 1.1629 4.7058 0.9923 0.9753 0.94

Arar 3.2867 −5.4339 −0.9395 1.3347 5.6970 1.0004 0.9928 0.95
Tabuk 4.1356 −3.6162 −0.8881 1.1384 4.2713 0.9976 0.9946 0.96

Table 8. Relative errors for Models (1) at different locations for different validation data sets.

Month
Average 3-Years (2017–2019) Dataset Single Year 2019 Dataset

Riyadh Arar Tabuk Riyadh Arar Tabuk

January −8.7 −11.2 −3.5 −2.4 −7.1 1.9
February −2.1 −12.1 −2.9 −5.4 −15.0 −1.6

March −4.1 −9.0 −7.0 −8.4 −11.9 −7.6
April 2.1 1.0 −3.3 2.5 −4.5 −6.6
May 4.7 3.1 −2.4 9.4 0.9 −5.2
June −3.1 −1.0 −3.6 −0.8 0.0 −2.8
July 0.2 1.2 −1.4 −1.9 −0.8 −4.7

August −1.0 0.3 −2.4 −2.6 −0.3 −4.6
September −5.5 −3.3 −0.9 −5.6 −4.8 −3.4

October −6.8 −4.3 −3.2 −6.7 0.7 2.0
November 0.7 −3.1 −0.4 3.4 −10.1 −2.3
December −9.6 −10.9 −4.3 −7.3 −12.4 −8.4

The results of validation using the On-Site measured data in 2019 are presented in
Tables 9 and 10. It can be noted that all statistical indicator values are in the acceptable
ranges ±10%, as seen in Table 9. Moreover, the models show good performance with
slightly lower accuracy than that obtained when validated with NASA dataset (Table 4).
Model 1 still has the best performance compared with the other models, R2~95%. Generally,
it can be noticed that the models’ performance is marginally affected but still has good
performance, especially Model 1. On the other side, the revealed values of relative errors
are improved compared to those obtained when validated with NASA dataset (Table 5).
For example, the relative error values for the best model (Model 1) only surpassed the
preferred range in February and December as shown in Table 10, not February, March,
November and December as shown in Table 5.

Table 9. Statistical indicators for the proposed Models (1–4) at study location compared against
On-Site Data in 2019.

Model t-Test MPE MBE RMSE MAPE MABE r R2 Rank

Model 1 0.6899 −2.6448 −0.2822 1.3859 6.1119 1.1646 0.9871 0.9456 1
Model 2 0.7572 −2.9199 −0.3105 1.3951 6.8920 1.2434 0.9867 0.9448 2
Model 3 1.5286 −4.8483 −0.6876 1.6426 7.2959 1.3377 0.9837 0.9235 4
Model 4 1.3203 −4.2655 −0.5634 1.5232 6.6884 1.2074 0.9867 0.9342 3
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Table 10. Relative errors for all developed Models (1–4) at study location compared against On-Site
Data in 2019.

Month Model 1 Model 2 Model 3 Model 4

January −4.6 −8.8 −10.5 −9.5
February −12.4 −11.5 −15.3 −13.9

March −9.5 −6.7 −11.8 −10.3
April 1.0 3.0 −2.4 −0.8
May 7.9 7.5 10.5 10.1
June 6.7 4.6 4.2 3.9
July −0.1 −2.3 −3.2 −2.4

August 2.4 1.7 −0.5 0.5
September −4.4 −2.1 −1.1 −1.0

October 2.8 7.1 0.1 0.0
November −7.0 −7.2 −11.0 −10.6
December −14.4 −20.2 −17.0 −17.4

The statistical error values for both validation data sets (On-Site Dataset and NASA
Dataset) are compared together and presented in Figure 4. Models’ performance, R2, is
approximately similar. The relative error values are considerably improved when On-Site
Data is used. Figure 5 shows the best model’s prediction compared with the measured
data from both the On-Site Data and NASA Data in 2019. The results indicate that both
the On-Site Data and NASA Data are very close to each other all over the year, with
overestimations of the NASA data compared to the On-Site data during only May and June.
Moreover, the predictions for the best model (Model 1) are very close for both the On-Site
measured data or NASA dataset, with underpredictions for February, March, November
and December values.
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Comparing the values of the RMSE calculated for different models, Table 9, with those
obtained by R. Urraca et al. [11] for five different nonhybrid solar radiation estimation tech-
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niques, all the models used in the current work have RMSE values less than that obtained by
R. Urraca et al. for the parametric–Antonanzas method with a value of 2.68 ± 0.2. This can
be explained by the fact that the models used in the current study are based on the hybrid
technique between parametric, statistical and satellite data approaches which enhances
their performance compared to the pure parametric method having the lowest RMSE value
obtained by R. Urraca et al. [11]. Moreover, NASA satellite data for more than 30 years are
used to establish the models in the current study, which enhances the performance because
the satellite data-based method is found to be the most accurate nonhybrid technique by
R. Urraca et al. [11]. Furthermore, Model 1 with the best performance in the current study
has a RMSE value of 1.38 which is in the same range of the RMSE value of 1.49 ± 0.16 for
the satellite SARAH dataset-based technique representing the best performance obtained
by R. Urraca et al. [11]. These results show how the hybrid approach based on parametric,
statistical and satellite data techniques can enhance the performance of the stand-alone
techniques showing the ability to overcome the weaknesses of each technique, especially
the parametric approach, if implemented separately.

For long-term validation with On-Site dataset, the On-Site Data for 2015 and 2016 are
averaged and also used to evaluate the best model’s performance (Model 1). The obtained
results showed that Model 1 has excellent performance, with minor changes compared to
those for one-year On-Site validation showing R2 value also greater than 96%. Its statistical
errors, MPE, MBE, RMSE, MAPE, MABE, t-Test, r and R2 are −5.0411%, −0.8986 MJ/m2,
1.2232 MJ/m2, 5.5887%, 1.0439 MJ/m2, 3.5913, 0.9940 and 0.96384, respectively. All these
revealed results as a validation with On-Site measurements refer that Model 1, Hassan
et al. [40], can be used and employed for estimating global solar radiation on a horizontal
surface with high accuracy.

In order to validate the model predictions with one of the widely used solar radiation
datasets, the PVGIS-SARAH satellite-based data, which is considered the most accurate
nonhybrid approach for solar radiation estimation [11], is used. Because PVGIS-SARAH
solar radiation data are available only between 2005 and 2016, the available 2016 data of the
global solar radiation from the On-Site measurements, NASA dataset and PVGIS-SARAH
dataset are used to validate the predictions of the most accurate model (Model 1), as shown
in Table 11 and Figure 6. The results show that the On-Site Data, NASA Data and PVGIS-
SARAH data are relatively close to each other all over the year. Moreover, the predictions
for the best mathematical model (Model 1) are relatively close with the same trend to all
the available datasets, especially PVGIS-SARAH data and noticeable underpredictions
specially during winter months.

Generally, it can be concluded that the proposed four models have good predictions
with good R2 values larger than 0.93 and the most accurate estimation is provided by Model
1, Hassan et al. [39], with R2 > 0.95 even for single year validation datasets based on the
most widely used sources of data including the NASA data, On-Site measurements and
PVGIS-SARAH satellite data. This best model performs well in this new location, Arar City,
KSA, with approximately different atmospheric conditions compared to those mentioned
in the previous study [40]. Therefore, Model 1 can be considered the most accurate and
stable temperature-based solar radiation model for estimating the monthly-average-daily
global solar radiation on a horizontal surface at different locations with varies climate
conditions, [40]. Moreover, the stability of the results for Model 1 regardless of the time
span of the validation datasets proves its reliability as a forecasting tool to predict the
global solar radiation, providing valuable information for engineers and designers during
design and evaluation for future projects. Furthermore, this model can be established for
different locations around the world using the same methodology to calculate regression
coefficients based on the available NASA satellite dataset for more than 35 years for the
required location. The regression coefficients can also be annually recalculated according
to the recent measured satellite data provided by NASA dataset to update the model with
the highest possible accuracy as a forecasting too
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Table 11. Statistical indicators for the utilized data sources of the global solar radiation as well as the
best model prediction compared against the On-Site Data in 2016.

GSR Data MPE MBE RMSE MAPE MABE r R2

Best Model Prediction (Model 1) −6.5624 −1.2209 1.5967 7.1598 1.3779 0.9903 0.94
GSRH (NASA Data) −0.9019 −0.2433 0.6045 2.0854 0.4750 0.9964 0.99
GSRH (PVGIS Data) −1.9698 −0.4099 0.5632 2.0379 0.4279 0.9982 0.99
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5. Conclusions

Using more than 35 years of measured data for daily global solar radiation and ambient
temperatures for the study location, Arar City, KSA, the performance of four temperature-
based global solar radiation empirical models is evaluated for estimating the monthly-
average-daily global solar radiation on a horizontal surface. Two validation datasets with
different time spans, namely the multi-year averaging and single year measurements, are
used to validate and evaluate the performance of the models and investigate the effective-
ness of the models as forecasting tools. According to the obtained results, all developed
models in this study performed well in predicting monthly average daily global solar radia-
tion on horizontal surface. Model 1, which is based on extraterrestrial radiation and ambient
temperature, provides the most accurate estimations with the highest accuracy and excel-
lent values for statistical indicators (RMSE = 1.0878, MAPE = 5.0289, MABE = 0.8801,
r = 0.9952, R2 = 0.96896) compared with those for other models. Unlike the other three
models, Model 1 gives the largest coefficient of determination values, R2 > 0.95466 show-
ing the best performance for both the three-year averaging and single year measurements
validation datasets. This high accuracy and stable performance for Model 1 without a
noticeable effect due to the time span of the validation datasets, especially for the single
year validation, indicates the high reliability and effectiveness of the model as a forecasting
tool for global solar radiation. The spatial validation for Model 1 is also investigated on
other two locations, Riyadh and Tabuk, and the results confirm the applicability of the
model on other locations with high model performance. Moreover, this temperature-based
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model is validated against different sources of widely-used solar radiation datasets, namely
NASA data, On-Site measurements and PVGIS-SARAH satellite data showing high accu-
racy of predictions with a simplicity of implementation depending on the most available
meteorological data. This model which is based on a hybrid technique between parametric,
statistical and satellite data approaches shows the ability to overcome the weaknesses of
each approach if implemented separately. Simplicity of implementation; dependence on
the temperature, which is the most available meteorological data; long period historical
satellite data (35 years) to develop the model; and showing high accurate predictions
compared with the most widely-used solar radiation datasets are the main strengths of this
hybrid approach. Consequently, this reliable hybrid model can be used as a forecasting
assistant tool providing valuable information for engineers and designers in the feasibility
evaluation for different solar-energy-based future projects, satisfying different sustainable
Development Goals (SDGs) for different promising regions around the world.
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