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Abstract: The significance of the security of electrical energy, water, and food resources in the
future, which are inextricably connected, has led to increasing attention to this important issue in
studies. This is an issue inattention to which can have irreparable consequences in the future. One
of the sectors where electrical energy, water, and food are very closely associated is agriculture.
Undoubtedly, the ability to properly manage electrical energy, hydropower, and food resources
that have many uncertainties brings about the development of agriculture on the one hand and the
optimal allocation of electrical energy, water, and land resources on the other. Thus, while reaching
the highest economic profit, the greenhouse gas emissions reach the minimum possible value too.
In this study, via robust optimization and by precisely considering the existing uncertainties, a
model was developed for the optimal allocation of electrical energy, water, and land resources
for a region in the north of China. In addition to acknowledging the close relationship between
electrical energy, water, and food sources, the results show the method’s effectiveness for sustainable
management in agriculture.

Keywords: electrical-energy–water–food nexus; optimal resource allocation; robust optimization;
uncertainty; sustainable management

1. Introduction

According to the estimations carried out, the need for electrical energy, water, and
food will increase by 50% over the next 25 years because of factors like the growth of
industry and urban development, the growing population, and so on [1–3]. The COVID-19
pandemic, since 2020, has accelerated the recent issue as well. Today, a significant portion
of the world’s freshwater resources are used in agriculture and for food production: 30%
of the world’s electrical energy and 90% of freshwater resources are used to produce and
distribute food [4–6]. Access to freshwater sources and electrical energy has a direct and
very large effect on food production. Electrical energy, water resources, and food are closely
related. Having enough water has a huge effect on the availability of electrical energy and
food. Energy sources, water, and food sources have each been evaluated separately in the
past. The last three sources are completely related, and inattention to this connection in the
future can end in irreparable problems. For integrated management of the three sources,
the concept of the electrical-energy–water–food nexus was formed [7–9]. Figure 1 shows
the close relationship and interdependence of different parts of an electrical-energy–water–
food nexus. The authors of [10] fully examined the concept, challenges, and perspectives
in the electrical-energy–water–food nexus emphasizing the significance of attention to the
inseparable relationship of these three parts in the nexus. The authors of [11] emphasized
the significance of the management of an electrical-energy–water–food nexus in the agri-
cultural sector. In this reference, the nexus was examined using a conceptual model. The
authors of [12] examined the existing social and economic connections between different
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parts of an electrical-energy–water–food nexus in a city. Examining the issue of security
in the electrical-energy–water–food nexus is very important for this purpose, which is
why various types of the electrical-energy–water–food nexus in different countries around
the world have been evaluated and modeled in references [13–16]. The interrelationships
between electrical energy and water sources in a nexus have been evaluated to reduce
the costs associated with hydropower plants and desalination plant installations in [17].
Sustainable management and optimization in an electrical-energy–water–food nexus is a
major challenge because of the many uncertainties and interrelationships between various
parts of the nexus. Using robust optimization, and specifically considering the existing
uncertainties, the study developed a model for the optimal allocation of electrical energy,
water, and land resources for a region in the north of China. As a result, while achieving the
highest economic benefits, the greenhouse gas emissions and the causes of water pollution
also reached their minimum possible values.
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Figure 1. Interaction between various sectors of a nexus.

2. Robust Optimization

Robust optimization presents a different method to solve problems involving uncertain
parameters. In a robust optimization problem, there is no need to know the distribution
function of uncertain parameters, and having the range of changes of these parameters
suffices [18,19]. Two important criteria were considered in designing this method:

A. Feasibility of calculations: theoretically, it is desirable if the main problem can be
solved in a reasonable and possible time. A robust optimization problem has this
feature.

B. Probability limits: from a probability perspective, when the uncertain parameters
follow the general probability distributions, it can be guaranteed that the answer to
the problem is possible and achievable.

Usually, the general structure of linear optimization problems is as follows:

Maximize CTx

subject to :

aix ≤ bi, ∀i ∈ I, ∀ai ∈ A, ∀bi ∈ B

(1)
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Equation (1) assumes that only the elements of matrix A have uncertainty. With-
out losing the comprehensiveness of the problem, it is assumed that the vector of the
coefficients of the objective function, vector C, has no uncertainty. However, despite the
uncertainty in the objective function coefficients, one can replace the objective function by
optimizing an auxiliary variable such as Z and instead add the constraint Z− CTx ≤ 0 to
the problem. Consider line i from the coefficient A of the matrix and assume that Ji contains
the coefficients of line i, which are subject to uncertainty. Each element like aij, where j is
selected from the Ji set, is modelled as a symmetric and finite variable of ãij. The variable
takes a numeric value in the interval [aij −

.
aij, aij +

.
aij] [20].

In the following, the “Soyster” as well as the “Ben-Tal and Nemirovsky” methods for
robust optimization are examined.

2.1. Soyster Method

The mathematical expression of the Soyster method for the uncertain optimization
problem defined in Equation (1) is as follows.

Maximize CTx

subject to :

∑
j

aijxj + ∑
j∈Ji

.
aijyj ≤ bi ∀i

−yj ≤ xj ≤ yj ∀j

y ≥ 0

(2)

If x* is assumed to be the optimal answer to the above relations, then, we have
yj =

∣∣∣x∗j ∣∣∣ for the optimality of the answer; thus,

∑
j

aijx∗j + ∑
j∈Ji

.
aij

∣∣∣x∗j ∣∣∣ ≤ bi ∀i (3)

For any uncertain data value of ãij, the answer to the problem remains possible and
achievable, which will be a robust answer, as Equation (4) demonstrates the answer to be
possible and achievable for each uncertain parameter occurrence.

∑
j

ãijx∗j = ∑
j

aijx∗j + ∑
j∈Ji

ηij
.
aijx∗j ≤∑

j
aijx∗j + ∑

j∈Ji

.
aij

∣∣∣x∗j ∣∣∣ ≤ bi ∀i (4)

The above robust optimization modeling is known as the Soyster method. The main
drawback of this method is failure to control the number of undetermined coefficients [21].

2.2. Ben-Tal and Nemirovsky Method

The robust optimization model proposed by Ben-Tal and Nemirovsky is a linear model
that not only controls the number of undetermined coefficients but is also appropriate for
robust optimization of problems with discrete variables.

To run the robust optimization model using this method, it is necessary to define the Γ1
parameter as the uncertainty budget. This parameter determines the number of uncertain
parameters. For instance, in the Equation (1) optimization problem, matrix C elements are
assumed to be uncertain; thus, the uncertainty budget is the number of uncertain matrix C
elements, which selects a value from the [0, |j1|] range as J1 =

{
j|dj > 0

}
.

The uncertainty budget actually controls the extent to which the problem is robust. If
Γ1 = 0, the uncertainty effect of all undetermined problem parameters is not considered. If
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Γ1 = |J1|, then the uncertainty effect of all undetermined problem parameters is considered.
This helps us define the robust optimization problem as follows:

Maximize ∑
j

cjxj − z1Γ1 − ∑
j∈J1

q1j

subject to :

z1 + q1j ≥ djyj ∀j ∈ J1

xj ≤ yj ∀j

q1 ≥ 0 ∀j ∈ J1

yj ≥ 0 ∀j

z1 > 0

aix ≤ bi ∀i ∈ I

(5)

The constraints added to the above model were obtained using duality theory and
linearization. The above robust optimization model assumed that the cj parameter was
uncertain, as these parameters select a value from the

[
cj, cj + dj

]
range. Variables z1, q1j,

and yj are duality and slack variables, respectively, so that the undetermined parameter
selects the worst values [22].

Figure 2 is the flowchart of robust optimization implementation in this study.
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In the study, with the utilization of the MATLAB software, after defining the variables,
objective functions, and assumed constraints and then extracting a set of feasible solutions,
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we sought to find the best point (assuming an uncertain value for constraints) from among
a set of extracted solutions.

3. Problem Formulation

We developed a model for integrated management of an electrical-energy–water–food
nexus in the agricultural sector and for reaching the two objective functions of maximum
economic profit and minimum greenhouse gas emissions in the nexus considering the
constraints like access to electrical energy, surface and underground water resources, food
resources, and land.

3.1. Objective Functions
3.1.1. Maximizing Nexus Profit

One of the main goals of any system is to increase its net profit. As we know, profit in
any system is obtained by subtracting the total cost from the total revenue. Equation (6) is
the nexus profit maximization objective function. As shown in Equation (7), the revenue
stated in Equation (6) is derived from the production of a variety of foods. Moreover, as
shown in Equation (8), the cost stated in Equation (6) includes the cost of energy needed
for the water supply, the cost of energy needed for the food supply, and the cost of water
supply needed for the food supply. As Equation (9) shows, the cost of energy needed for
the water supply is itself a sum of three costs, including the cost of energy for irrigation
using surface water, irrigation using groundwater, and the energy for drainage, explained
in Equations (10)–(12), respectively. The cost of energy needed for the food supply, as seen
in Equation (13), is composed of different components like the cost of supply of chemical
fertilizers, pesticides, agricultural machinery, agricultural films, seeds, and labor. Equation
(14) is the cost of the water supply needed for food preparation with two parts considering
the price for surface water and groundwater.

maxFNP = max{R− C} (6)

R =
I

∑
i=1

P

∑
p=1

PCp ·YAp·Aip (7)

C = ECW + ECF + WCF (8)

ECW = ECIsw + ECIgw + ECD (9)

ECIsw = EC ·
[

HIsw

102× 3.6 · µsw

(
I

∑
i=1

P

∑
p=1

IQswip·Aip

)]
(10)

ECIgw = EC ·
[

HLi f t + Hn + Hlossess

102× 3.6 · µp · µm

(
I

∑
i=1

P

∑
p=1

IQgwip·Aip

)]
(11)

ECD = EC ·
[

I

∑
i=1

HDi
102× 3.6 · µdrai

(
P

∑
p=1

DMp · Tp

)
· Aip

]
(12)

ECF =
I

∑
i=1

Aip

P

∑
p=1

(
δp f er + δppes + δpmac + δp f ilm + δpseed + δplabour

)
(13)

WCF =
I

∑
i=1

WPswi

(
P

∑
p=1

IQswip · Aip

)
+

I

∑
i=1

WPgwi

(
P

∑
p=1

IQgwip · Aip

)
(14)

3.1.2. Minimizing CO2 Production and Water Pollution

Another key goal to be considered besides reaching the maximum economic profit
is minimizing the adverse effects that one must consider regarding the environment. As
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Equation (15) shows, this minimization has two parts: minimization of CO2 emissions and
water pollution, expressed in Equations (16) and (17), respectively.

minFEI = min{AE + WEP} (15)

AE =
I

∑
i=1

P

∑
p=1

[(CEF · Fi + CEP · Pi + CED · AMi + CEAF · AFi) · Aip + (CEPL + CEI) · Aip] (16)

WEP =
I

∑
i=1

P

∑
p=1

[(
PEICODcr + PEINH3−N + PEITN + PEITP

)
· Aip + (LN + LP) · Aip

]
(17)

3.2. Constraints

Besides reaching the objective functions, one needs to consider and observe a series of
requirements to be modeled as constraints along with the objective functions. There are
six constraints in the nexus that were considered, which are examined in the following.
The level of access to surface and groundwater in paddy fields and drylands must not
exceed the value of surface and groundwater in the nexus as raised in Equations (18) and
(19), respectively. We need electrical energy to collect surface and groundwater because
of the use of electric pumps. Thus, the required electrical energy must not exceed the
allowable range of access to electrical energy in the nexus. This constraint is shown in
Equation (20). The population in the nexus determines the food needed for consumption
and must specifically match the food produced in the nexus. This constraint is specified
in Equation (21). According to Equation (22), depending on the food needed in each area,
the range of the area needed for irrigation must be determined. As a definite constraint,
the values of all decision variables in an optimization must not be negative as specified in
Equations (23)–(26).

p1

∑
p=1

(
IQswip · Aip

)
/ηswp f+

P

∑
p=p1+1

(
IQswip · Aip

)
/η

swdl
≤ SWAi ∀i (18)

p1

∑
p=1

(
IQgwip · Aip

)
/ηgwp f+

P
∑

p=p1+1

(
IQgwip · Aip

)
/ηgwdl ≤ GWIAi ∀i

I
∑

i=1
(GWIAi − GWLi − GWIi) ≤ TGWA

(19)

(
HIsw
µsw ∑P

p=1 IQswip ·Aip+
Hli f t+Hn+ flossess

µp ·µm ∑P
p=1 IQgwip ·Aip+

HDi
µdrai

∑P
p=1 DMip ·Tip ·Aip

)
102×3.6 ≤ EWi

I
∑

i=1
EWi ≤ EWA

(20)

P

∑
p=1

YAip · Aip ≥ POi · FD (21)

Aipmin ≤ Aip ≤ Aipmax ∀i, p (22)

Aip ≥ 0 ∀i, p (23)

SWAi ≥ 0 ∀i (24)

GWIAi ≥ 0 ∀i (25)

EWi ≥ 0 ∀i (26)

4. Real Case Study

We implemented the model using information received from an electrical-energy–
water–food nexus in “Fujian,” northeastern China, to implement robust optimization
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in a real case study [23,24]. The highest factor of water consumption in this city is the
agricultural sector with a cultivated area of 5 hectares. Corn, soybean, and rice are the
three main products in these areas, considered in this paper too. This cultivated area is
divided into four parts: “Songhuajiang,” “Jinshan,” “Huama,” and “Toulin.” These were
called Zone 1 (or A), Zone 2 (or B), Zone 3 (or C), and Zone 4 (or D), respectively, for ease
of expression. Four electric pumps are used in these four areas, the technical specifications
of which are shown in Table 1. The optimal allocation of electrical energy, water, and land
resources in these areas is a major challenge. Robust optimization has been implemented
while developing the model to solve this challenge and to increase the profit on the one
hand and reduce the adverse environmental effects on the other. The government reports of
“Fujin,” annual statistical reports, and the reports obtained from water measuring stations
in these four areas were used in the study to collect the information needed for the four
areas stated [25,26]. We examine some of the collected information. The prices of soybean
products, corn, and rice and the costs of fertilizers, pesticides, agricultural machinery, seeds,
labor, agricultural film, and drainage systems for all three products are shown in Table 2.
Table 3 is the use of fertilizers, pesticides, diesel, groundwater, and population in the four
areas. The cost of using ground and surface water per cubic meter was CNY 0.29 and 0.16,
respectively. Other information like the land availability range and the share of surface
and underground irrigation for each of the crops in the four areas is given in Table 4. In
this study, the equilibrium limit was 0.4. The types of efficiencies, including surface and
groundwater use efficiencies for paddy fields and drylands separately, pump efficiencies,
and engine efficiencies are given in Table 5. The CO2 production and the causes of water
pollution are stated in Table 6.

Table 1. The technical specifications of pumps.

Pump Hydraulic Heads (m) Flow (m3/s) Power (kW)

A 1.40 4.20 110

B 2.95 3.56 185

C 2.55 0.71 37

D 3.46 1.18 75

Table 2. The parameters of crops.

Parameter Rice Corn Soybean

PCp (CNY/kg) 3.16 2.25 5.40

δpfilm (CNY/ha) 2.1 2.1 2.1

δplabor (CNY/ha) 1361.4 1043.7 311.6

δpseed (CNY/ha) 320.4 350.9 476.7

δpmac (CNY/ha) 1566.3 973.1 846.9

δppes (CNY/ha) 289.2 148.2 141.6

δpfer (CNY/ha) 885 801 645

DMp (m3/d/ha) 80.35 67.39 67.39
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Table 3. Parameters for various zones.

Parameter Zone 1 Zone 2 Zone 3 Zone 4

Fi (kg/ha) 1464.58 1179.36 464.22 348.52

Pi (kg/ha) 15.48 3.99 1.57 2.07

Ami (kg/ha) 236.13 95.21 37.48 3.00

AFi (kg/ha) 9.29 0.92 0.36 0.30

GWLi (104 m3) 81.00 291.00 109.00 183.00

GWIi (104 m3) 41.00 908.00 106.00 272.00

POi (104 people) 0.77 4.31 1.12 1.62

Table 4. Parameters for various zones and crops.

Parameter Crops Zone 1 Zone 2 Zone 3 Zone 4

Aipmin (104 ha)

Rice 0.51 1.23 1.85 1.43

Corn 0.02 0.19 0.38 0.84

Soybean 0.002 0.09 0.17 0.45

Aipmax (104 ha)

Rice 0.53 1.85 3.34 2.28

Corn 0.03 0.69 1.37 1.77

Soybean 0.004 0.32 0.62 0.95

YAip (kg/ha)

Rice 8465.67 8511.17 8511.17 7887.33

Corn 9087.80 9142.80 9142.80 8545.83

Soybean 1988.83 2151.33 2151.33 1917.67

IQswip (m3/ha)

Rice 3648.99 3668.61 3668.61 3399.71

Corn 1529.50 1507.24 1507.24 1349.34

Soybean 1285.88 1390.95 1390.95 1239.87

IQgwip (m3/ha)

Rice 1216.33 1222.87 1222.87 1133.24

Corn 509.83 502.41 502.41 449.78

Soybean 428.63 463.65 463.65 413.29

Table 5. Parameters for various efficiencies.

Parameter Value

ηswpf 0.51

ηswdl 0.53

ηgwpf 0.75

ηgwdl 0.78

µp 0.8

µm 0.4

µsw 0.5
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Table 6. The CO2 production and the causes of water pollution.

Parameter Value

CEF (kgco2/kg) 0.9

CEP (kgco2/kg) 4.93

CED (kgco2/kg) 0.5927

CEAF (kgco2/kg) 5.18

CEPL (kgco2/kg) 312.6

CEI (kgco2/kg) 226.48

PEICODcr (kg/ha) 150

PEINH3-N (kg/ha) 11.85

PEITN (kg/ha) 171.75

PEITP (kg/ha) 62.25

LN (kg/ha) 0.687

LP (kg/ha) 0.261

5. Evaluation of the Results

As stated in the previous sections, a model was developed for the optimal allocation
of electrical energy, water, and land resources in this study using robust optimization and
specifically considering the existing uncertainties. Moreover, the two objective functions of
maximum economic profit and minimum adverse environmental effects were achieved
simultaneously.

After defining the variables, objective functions, and assumed constraints and then
extracting a set of feasible solutions, we sought to find the best point (assuming an uncertain
value for constraints) from among a set of extracted solutions. Of the 1000 feasible points,
the optimal point at which both objective functions were reached simultaneously is shown
in Figure 3. Moreover, Figures 4–7 show the revenue, cost, CO2 production, and water
pollution of all 1000 feasible points as well as the optimal point, respectively. The optimal
land allocation for planting corn, rice, and soybeans in each of the four areas is given in
Figure 8. The access to the surface and groundwater as well as the available electrical
energy in each of the four areas are given in Figures 9 and 10, respectively.
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Figure 8. The optimal land allocation for planting corn, rice, and soybeans in each of the four areas.
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As is seen, using the obtained results, the ability to properly manage electrical energy,
water, and food resources is provided, and thus the possibility of agricultural development,
on the one hand, and optimal allocation of electrical energy resources, water resources, and
land, on the other, is brought about.

Studies on the nexus provide promising perspectives on the relationship between
water, electrical energy, and food from different perspectives. In future studies, more
research on system boundaries, data uncertainty and modeling, the nexus mechanism, and
system evaluation can be considered by researchers.

6. Conclusions

The close relationship and the reciprocal effects of electrical energy, water, and food
resources, being critical resources across the world, are undeniable. The key to agricultural
development, and optimal allocation of electrical energy, water, and earth resources, is
the ability to appropriately manage electrical energy, water, and food resources, which
involves many uncertainties. This study developed a model for a region in northern China
using robust optimization by specifically considering existing uncertainties in order to
optimally allocate electrical energy, water, and earth resources. The findings suggested
that greenhouse gas production was reduced to its lowest level possible, while the highest
economic return was achieved. The findings not only confirmed the close relationship
between electrical energy, water, and food resources but also indicated the effectiveness of
the proposed method for sustainable agricultural sector management.
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Abbreviations
FNP Objective function of nexus profit
C Cost
R Revenue
i Index of subarea (1, 2, . . . , I)
p Index of corp (1, 2, . . . , P)
sw Surface water
gw Ground water
max Maximum
min Minimum
pf Paddy field
dl Dry land
ECW Water energy costs
ECIsw Surface-water-based irrigation energy costs
ECIgw Groundwater-based irrigation energy costs
ECD Drainage energy costs
ECF Food energy costs
WCF Food water costs
AE Atmosphere effect
WEP Environmental water pollution
PCp Crop p price
YAip Crop p yield per area unit in subarea i
EC Energy cost
HIsw Surface-water-based hydraulic head
µsw Surface-water abstraction efficiency
IQswip Crop p surface irrigation quota in subarea i
IQgwip Crop p groundwater irrigation quota in subarea i
Hlift Pumping lift head
Hn Nominal operating pressure
Hlossess Head loss
µp Pump efficiency
µm Motor efficiency
HDi Subarea i drainage head
µdrai Subarea i drainage efficiency
DMp Drainage crop p modulus
Tp Drainage crop p days in subarea i
δpfer Cost of fertilizer of crop p
δppes Cost of pesticide of crop p
δpmac Crop p-incurred cost of agricultural diesel machinery
δpfilm Cost of agricultural crop p film
δpseed Cost of seed of crop p
δplabor Labor cost of crop p
WPswi Surface water price
WPgwi Groundwater price
CEF Fertilizer carbon emission factor
Fi Fertilizer utilization of subarea i
CEP Pesticide carbon emission factor
Pi Pesticide utilization of subarea i
CED Carbon emission factor of agricultural diesel machinery
AMi Utilization of agricultural diesel machinery in subarea i
CEAF Agricultural film carbon emission factor
AFi Agricultural film utilization in subarea i
CEPL Plough carbon emission factor
CEI Irrigation carbon emission factor
PEICODcr CODcr pollution emission intensity
PEINH3-N NH3−N pollution emission intensity
PEITN Total pollution nitrogen emission intensity
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PEITP Total pollution phosphorus emission intensity
LNi Nitrogen leaching in subarea i
LPi Phosphorus leaching in subarea i
ηswpf Surface-water utilization for paddy field efficiency
ηswdl Surface-water utilization for dry land efficiency
r Water diversion ratio to rivers
Q Runoff volume
ηgwpf Groundwater utilization for paddy field efficiency
ηgwdl Groundwater utilization for dry land efficiency
GWIAi Groundwater availability for irrigated subarea i agriculture
GWLi Utilization of groundwater for living in subarea i
GWIi Groundwater industry utilization in subarea i
TGWA Total groundwater availability
EWA Total water energy availability
POi Subarea i pollution
FD Food demand
ER Effective rainfall
θ Equity threshold
Aipmin Lower land availability limits of crop p in subarea i
Aipmax Upper land availability limits of crop p in subarea i
Aip Irrigation crop p area in subarea i
SWAi Surface-water availability for subarea i
GWAIi Groundwater availability for irrigated subarea i agriculture
EWi Water energy availability for subarea i
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