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Abstract: Complete streets scheme makes seminal contributions to securing the basic public right-of-
way (ROW), improving road safety, and maintaining high traffic efficiency for all modes of commute.
However, such a popular street design paradigm also faces endogenous pressures like the appeal to a
more balanced ROW for non-vehicular users. In addition, the deployment of Autonomous Vehicle
(AV) mobility is likely to challenge the conventional use of the street space as well as this scheme.
Previous studies have invented automated control techniques for specific road management issues,
such as traffic light control and lane management. Whereas models and algorithms that dynamically
calibrate the ROW of road space corresponding to travel demands and place-making requirements
still represent a research gap. This study proposes a novel optimal control method that decides the
ROW of road space assigned to driveways and sidewalks in real-time. To solve this optimal control
task, a reinforcement learning method is introduced that employs a microscopic traffic simulator,
namely SUMO, as its environment. The model was trained for 150 episodes using a four-legged
intersection and joint AVs-pedestrian travel demands of a day. Results evidenced the effectiveness of
the model in both symmetric and asymmetric road settings. After being trained by 150 episodes, our
proposed model significantly increased its comprehensive reward of both pedestrians and vehicular
traffic efficiency and sidewalk ratio by 10.39%. Decisions on the balanced ROW are optimised as
90.16% of the edges decrease the driveways supply and raise sidewalk shares by approximately
9%. Moreover, during 18.22% of the tested time slots, a lane-width equivalent space is shifted from
driveways to sidewalks, minimising the travel costs for both an AV fleet and pedestrians. Our
study primarily contributes to the modelling architecture and algorithms concerning centralised and
real-time ROW management. Prospective applications out of this method are likely to facilitate AV
mobility-oriented road management and pedestrian-friendly street space design in the near future.

Keywords: intelligent road infrastructure; Intelligent Transport System; reinforcement learning; Deep
Deterministic Policy Gradient (DDPG); urban planning; street design; Autonomous Vehicles

1. Introduction

The complete streets scheme is a mainstream engineering solution to improve road
sharing for all road users [1,2]. It balances all users’ public right-of-way (ROW) and
canalises road proportions according to respective travel demands [3,4]. A balanced
ROW through the implementation of a complete street scheme could accommodate all
modes of travel with rational road shares, an efficient operational environment and safe
travel experiences [5,6].

Evidence shows that the complete streets scheme has considerably contributed to
reducing road hazards, especially inter-modes traffic accidents, while maintaining rela-
tively high transport efficiency [7,8]. However, their rigid and canalised thoroughfares
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have been criticised by a significant proportion of planners and geographers for the im-
balanced ROW assignment [9]. They have a strong belief that the complete streets scheme
particularly priorities motorised mobility while diminishing the shares for active travel
modes. They demand that active modes of transport and street events should be granted
larger road space shares compared with the status quo [10]. This appeal deeply roots
in humanitarian urbanism and profoundly underpins a storm of movements that shifts
supremacy from automobiles to non-motorised users within neighbourhoods or at crit-
ical public realms [11]. This reclaim of street space represents a force that is currently
reshaping complete streets through measurements like traffic calming [12], temporarily or
permanently occupying driveways [13,14].

Autonomous Vehicles (AVs) and Shared Autonomous Vehicles (SAVs) are emerging as
the next solution to urban mobility. A substantial number of studies have predicted their
potential to transform the conventions of travel patterns fundamentally [15]. Furthermore,
a significant proportion of them share concerns on such changes as exogenous challenges
faced with entire road networks and complete streets [16]. They fear that the induced
demand by AVs transport could overload the streets of city centres during morning and
evening commutes [17]. However, the positive effects include a considerable reduction
in the throughput pressure of neighbourhood roads [18], suggesting opportunities to re-
balance the ROW usage among road users. Simultaneously, Pick-Up and Drop-Off (PUDO)
practices of SAVs [19], fast electric charging services [20], deployment of Roadside Units
(RSUs) [21] and automated logistics [22] are likely to redefine the functions of streets in the
AVs era. These new street norms would foster a revolution of the ongoing complete street
schemes to be more inclusive, pedestrian-aware, and flexible.

The challenges, as mentioned earlier, call for a careful rethink of the state-of-the-art de-
sign protocols of streets and the development of novel techniques to manage the road space
usage in a more innovative way. With the advancement of intelligent and connected road
infrastructures, real-time control over the ROW could be considered as a new engineering
approach. Furthermore, assisted with artificial intelligence (AI), road traffic management
has experienced significant progress, particularly traffic signal control [23,24] and traffic
operations control [25]. Despite these advancements, the optimal control models focusing
on the assignment of ROW are seldom present in the literature. Thus, this research was
proposed to contribute to this area.

To solve this optimal control problem, we have introduced a Reinforcement Learning
(RL) method, namely a Deep Deterministic Policy Gradient (DDPG) algorithm for the
real-time road space assignment to corresponding road users. The goal is to realise a traffic
flow-responsive and pedestrian-friendly street layout by altering the ROW proportions as-
signed to driveways and sidewalks. A four-legged intersection and a 24-h AVs-pedestrians
combined travel plan constitute the basic modelling settings. This DDPG algorithm in-
corporates the open-source microscopic traffic simulator, Simulation of Urban Mobility
(SUMO), for retrieving the operational AVs’ and pedestrians’ dynamics, and the states
of the road environment. In addition, both symmetric and asymmetric road layouts are
simulated to measure the effectiveness of the proposed method.

The contribution of this study is four-folded. First, a novel RL-based approach is
proposed and validated to address the real-time ROW assignment problem, benefiting the
inclusiveness and efficiency of future streets. Second, the model coordinates the seemingly
conflicting objectives of place-making and transport efficiency, combining urban planning
and traffic engineering appeals. Third, our model is likely to be scalable concerning measur-
ing simple road geometries, which are generally defined by limited edges, but potentially
city-level road grids. Last, as a seminal building block of the Intelligent Transport System
(ITS), this proposed method could further incorporate peer controlling technologies to
accommodate potential challenges raised by the introduction of AVs mobility.
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2. Literature Review

This section provides a systematic review of peer studies concerning three seminal
aspects. First, we surveyed the complete streets scheme, which is the most widely im-
plemented guide for street design practices. Second, we reviewed challenges facing the
implementation of this scheme. Third, essential objectives concerning streets design and
management are summarised.

2.1. Public Right-of-Way of Complete Streets Scheme

In transportation, the public ROW, or the ROW of road space, defines the legal right or
the priority of specific types of road users to pass along a route through the street space [1].
These road users include not only motorised vehicles, but also vulnerable groups such as
pedestrians and cyclists [2]. The purposes of balancing the ROW include improving traffic
efficiency, engaging all modes of transport, and reducing potential inter-mode conflicts [6].

The complete streets scheme has risen as a mainstream engineering solution to balance
the ROW [3,4]. It satisfies the basic demands of accommodating all road users with
corresponding shares of space, but simultaneously canalise such space as per distinctive
modes of travel [5,6]. The complete streets scheme principally comprises a driveway zone
and a streetside zone. Figure 1 demonstrates four examples of its ROW plan.

Both the driveway and streetside can be further subdivided into different functional
sections [26]. For instance, a driveway zone comprises several driving and curb lanes (Z1),
and possibly a median (Z2). Meanwhile, a streetside sits between the driveway and private
lands, primarily serving non-vehicular mobility and providing accessibility to venues,
comprising cycle lanes (Z5) and sidewalks (Z3). It also includes a variety of road facilities
in facility belts (Z4), and lively street activities in the front zones (Z6) [9,27].

Figure 1. Examples of the Right-of-Way Plans. (a) A common complete street plan. (b) A pedestrians
prioritised plan. (c) A zero-driveway plan. (d) An automobile preferred plan. Note that White Cars
indicates cars in the driving mode and grey cars in the on-street parking mode.

Due to differences in street functions, locations and throughput capacities, the sectional
widths vary significantly [9]. On one hand, roads can be categorised into four types
according to their functions: commercial, residential (lanes, mews), landscape (boulevard,
parkway) and trafficking. On the other hand, concerning their serving capacity, the ROW
can be classed into four grades: main roads, secondary roads, branches, and laneways [28].
For instance, boulevards are landscape-functional main roads, and the commercial avenues
are commercial-oriented main roads [29].
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Based on a holistic survey of the state-of-the-art available complete streets scheme
worldwide, we compared and summarised the following underlying principles of design-
ing a street. First, the sidewalk should be planned no less than 1.5 m, and it is encouraged
to be between 2 m and 2.5 m for new development residential streets or downtown com-
mercial streets [27–30]. Second, the width of a driving lane is considered 3 m to 3.5 m for
passenger cars, freight vans and trucks in urban areas. Third, a curb lane is suggested to
bear a width of 3 m for on-street parking operations [27]. Fourth, the provision of cycle
lanes can be flexible as it could occupy an independent lane with a width between 1.5 m to
2.5 m; Alternatively, driving lanes could accommodate those cycling demands. Fifth, the
comprehensive facility belt should at least be assigned with 1.5 m to 2 m in width [27,28].
Finally, any street should secure a clear path in a width of 3.5 m to ensure the operations of
emergency vehicles.

2.2. Challenges Facing Complete Streets Scheme

It is widely acknowledged that the complete streets scheme has achieved seminal
contributions with regards to road safety and the operational efficiency of traffic flows [7,8].
However, these rigid and canalised patterns handicap their flexibility and resilience in
responding long term’s endogenous and exogenous challenges facing road space.

The endogenous challenges emerge from the priority of usage between vehicles and
the other modes of travel. A wide range of planners and geographers have criticised the
complete street as ’incomplete plans’ concerning streets as public space [10]. They claimed
that street events, pedestrians, e-scooter riders and cyclists should be granted more space
than and priority to cars [11]. Temporary measurements, such as closure of driveways in a
short period of time [13], and some permanent remedies, like traffic calming [12], shared
road surface [31] have firmly responded to such appeal. The recent Covid-19 pandemic also
fostered the reclaiming of driveways for non-vehicular traffic operations or as extensions of
indoor activities [14]. To take placemaking and urban design into account, such flexibility
of road space usage could potentially support diverse street activities and reinforce the
public recognition of streets as public space [32].

The prominent exogenous challenges could be the deployment of Autonomous Ve-
hicles (AVs) and Shared Autonomous Vehicles (SAVs) mobility [33]. It is expected that
the future urban mobility and goods logistics could be replaced almost entirely by these
disruptive modes of transport around 2040 to 2060 [34]. One of the early research jointly
conducted by the Boston Consulting Group (BCG) and the World Economic Forum (WEF)
found that with a moderate 60% of market penetration, AVs mobility might induce con-
siderable trips to downtown areas during the morning and evening commute peaks. This
could overload streets of city centres, raising travel costs by at least 5.5%, while broadly
alleviating traffic in suburban neighbourhoods by 12% [18].

An increasing proportion of studies on AV transport demonstrates the disruptive
impact of SAVs, which may transform our current transport into the Autonomous Mobility-
on-Demand (AMoD) system [35]. By adopting SAVs, it is estimated that 16% of current
vehicular fleet could suffice daily mobility [36]. While 85% of current off-street parking
space land can be liberated [37], while frequent Pick-Up and Drop-Off (PUDO) events
would require more curb parking areas to be installed and efficiently managed [19]. In
addition, some emerging new road infrastructures, including the rapid charging facilities,
may also disrupt the conventional street functions and demand for new spatial plans to
accommodate new ROW desires [20,33].

These potential changes signal the urgency to revisit the current design protocols and
renovate road management techniques. With the promising advancement of intelligent and
connected road infrastructures, real-time optimal control over ROW might present a novel
solution to this problem. Although new methods and algorithms have been developed,
with some even tested on roads [38,39], those pioneering practices are still confined within
limited road infrastructures, such as traffic signals and roadside units [21,40]. Moreover,
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the status-quo models and algorithms still fall far short in supporting the dynamic control
of public ROW.

2.3. Performance Metrics Regarding Street Design and Management

Good street space is underpinned by objectives from a broad spectrum of domains [9].
In other words, the design and management of streets usually correspond to a multi-
objective decision-making process given a collection of goals [41]. These domains include
place-making, health and environmental, connectivity and accessibility, traffic efficiency,
construction and maintenance, and safety [9,41], as summarised in Figure 2.

Regarding our study, we first treat users’ safety as the baseline. Namely, the re-
quirement of collision-free was encoded as a priority in our model. Then, among the
rest objectives, we approach to balance place-making and transport efficiency, hoping to
coordinate traffic engineering and urban planning appeals. On the one hand, evidence
proves that suffice the territory of sidewalks can effectively enhance the safety perception
of pedestrians, contributing to more comfortable walking experiences, and simultaneously
engaging street lives [9,10,12]. On the other hand, the operational efficiency represents a
significant indicator measuring the primary trafficking performance of roads [42].

Figure 2. Multi-objectives of Making Sustainable Road Space.

2.4. Summary of Literature Review

The essence of designing the road space is to engage all modes of transport and
ensure their travel safety and traffic efficiency. As a prevalent solution to this engineering
problem, the complete streets scheme canalises road space per distinctive modes of travel to
accommodate all road users. However, despite the ensured traffic safety and efficiency, the
complete streets scheme presents a lack of flexibility and resilience concerning challenges
introduced by AV mobility. In addition, such a solution is yet balanced enough to echo the
demands for truly pedestrian-friendly road space.

Traffic engineers, urban designers, and planners need to cooperate in upgrading the
current street design protocols and renovating road management techniques for a flexible,
human-oriented ROW control scheme. To the best of our knowledge, the status quo
literature probed into limited solutions to traffic signals control problem and roadside units
control problem while offering no clear methodology, either theoretically or practically, to
the ROW control problem concerned by our study.

3. Preliminaries of Reinforcement Learning
3.1. Reinforcement Learning and Markov Decision Process

Reinforcement Learning (RL) represents one of the cutting-edge branches in Artificial
Intelligence (AI) methods. It includes a wide range of popular algorithms that address
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optimal control problems via a trial-and-error procedure [43]. Concretely, intelligent agents
embedded with RL controllers learn optimal policies to interact with the environment
and take actions. They retrieve feedback and update their decision-making machinery for
higher scored movements in the subsequent attempts [44]. RL has been widely applied
in solving real-world problems such as robot control, dispatch management problem, the
Travel Salesman Problem (TSP) and production scheduling problem [45]. Furthermore, it
has been intensively practised in transportation studies for traffic signal control [23,24,38],
vehicles routing [46], movements control [47] and traffic operations control [48].

By convention, a control problem could be defined using a Markov Decision Process
(MDP), denoted as a tuple M = < N, S, A, P, R, γ >. N is the number of agents in the MDP,
and an agent is indexed by n = [1, 2, ...N]. Agents interact with the stochastic environment
and observe the states. Let S = S1 × S2 × ...Sn...SN define the joint state space, where
each state element indicates a high-dimensional state space. Let T be the time horizon,
the component state-space Sn comprises individual observation sn

t of agent n at time step
t = 1, 2...T, herein sn

t ∈ Sn. Similarly, A = A1 × A2 × ...An...AN defines the joint action
space. A state-action space τ describes a trajectory of agent-environment interaction, which
is expressed as s1 × a1 × s2 × a2...× sT × aT . Given a trajectory τ, P defines a stationary
transition probability of being in a state s given an action a at time t and transforming to
the next state s

′
at time t + 1. Let r = s× a → R defines the immediate reward from the

environment once the agent observed state s and take the action a. The controlling objective

is to maximise the cumulative reward of all agents R = ∑N
n=1 ∑T

t′=t
γt
′−trn,t′ from t

′
to the

temporal limitation. Here, γ → (0, 1) is a discounted factor representing the decaying
contribution of the expected immediate reward.

3.2. Deep Deterministic Policy Gradient (DDPG) Algorithm

Policy Gradient (PG) algorithms represent a vital branch of RL methods that address
optimisation problems characterised by a continuous action space [49,50]. Let π define
a stochastic policy that executes an action a observing a state s, and πθ(a|s) = P(a|s; θ)
represents the probabilistic distribution of taking this action under such policy.

The Stochastic Policy Gradient (SPG) algorithm is an early representative of PG algo-
rithms. The discounted future reward of SPG at time t with a discount factor γ is expressed
as Gt following Equation(1). Whereas Equations (2)–(4) present the state value function,
state-action function and advantage function of SPG respectively. SPG conducts a gradient
ascend approach to optimise the policy parameter θ, which is expressed in Equation (5).

Gt =
T

∑
t′=t

γt
′−tRt′ (1)

Vπ(st) = E[Gt|st = s] (2)

Qπ(s, a) = E[Gt|st = s, at = a] (3)

Aπ(s, a) = Qπ(s, a)−Vπ(s) (4)

∇θ J(θ) ≈ E[Aπ(s, a)∇θ logπθ
(a|s)] (5)

The deterministic policy gradient (DPG) method approximates the optimal policy
using a deterministic policy µ(s) = a rather than the random approach adopted by SPG.
In other words, DPG is a ’limiting analogue’ of the stochastic counterpart, according to its
theorem [51]. Let σ indicate the deviation corresponding to the probabilistic distribution
P(a|s; θ). As Equation (6) expresses, DPG is the condition where σ = 0. DPG can either
be modelled in an on-policy or off-policy way. An on-policy DPG usually requires a large
number of samples for learning [52]. Instead, an off-policy DPG is self-sufficient regarding
training samples because of the embedded perturbation mechanism.

πµθ ,σ=0(a|s) = a (6)
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The Deep Deterministic Policy Gradient (DDPG) algorithm is a model-free off-policy
DPG, which inherits features from both DPG and Deep Q-network (DQN) [53]. Namely,
it embeds deep neural networks to enable an end-to-end learning ability [54]. The DDPG
has improved significantly from three aspects in comparison with DPG and DQN. First,
an exploration policy that generates random noises is implemented in DDPG to suffice
exploration. Second, an experience replay buffer trains neural network parameters θ in an
off-policy manner. Third, conventional DQN updates the target action-value function Q̂
through periodically coping from the current action-value function Q. In contrast, DDPG
updates its parameters of both target networks at each iteration and proportionately at a
soft update rate η.

4. Methodology

In this section, we first formulate this dynamic ROW assignment problem as an optimal
control problem. Our proposed solution model combines the SUMO traffic simulator and
a DDPG algorithm. Then, a detailed explanation is provided covering the state, action,
reward, experience replay buffer and essential parameters of the actor-critic architecture
of DDPG.

4.1. Modelling Formulation

Consider a simple network represented by a bi-directed graph G = < N, E >, where
we denotes the width of an edge e ∈ E and be indicates the width of a facility belt. Let βe be
the proportion of a driveway. As such, the width of the driveway equals βewe, whereas the
counterpart streetside has a width of (1− βe)we. Figure 3 highlights the spatial relationship
among these variables, given a ROW plan of an edge. Provided a consecutive pair-wise
AV traffic demands NVt and pedestrian travel demand NTt at t ∈ [0, T], the problem is to
optimise the driveway ratio βe,t of discrete edge and at each time slot, to improve travel
efficiency of road users and a higher ratio of sidewalks.

Table 1 demonstrates the notation conventions applied for the formulation of this
optimal control problem. Following previous studies [55–58], we consider the following
physical parameters for the simulation: the maximum operational speed and maximum
acceleration of an AV are 13 m/s and 2.6 m/s2, respectively. The vehicular length is set at
4.5 m. Pedestrian walking speed is limited to under 1.2 m/s to ensure the testing scenario
for intersections.

Our objective function (7) is composed of three sub-objectives which are expressed
in Equations (8)–(13). Namely, at each time slot t, the objective maximises reward from
vehicular traffic efficiency Rveh

t , pedestrian traffic efficiency Rped
t and sidewalk ratio Rside

t .
Here, an amplifier φ is applied to scale the total objective Rt.

Equation (8) presents that Rveh
t equals the ratio between the free-flow travel time Hveh

and the actual travel cost Hveh + Dveh
t , where Dveh

t indicates the total traffic delay of the
fleet in time slot t. Equation (9) estimates that Hveh as a sum of travel costs of all AVs
operating at their respective maximum speed in the system. Equation (10) expresses that
the traffic delay Dveh

t equals the gap between the integral of the arrival rate and that of the
departure rate. In this equation, λ(t) and ζ(t) represent functions of the arrival rate and
the departure rate controlled by time t given od ∈ OD.
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Figure 3. A Right-of-Way Plan of An Intersection Comprised of Eight Edges.

The calculation of the pedestrian traffic efficiency Rped
t follows a similar rule as that

of Rveh
t , as described in Equation (11). The individual free-flow walking time Hped and

pedestrian traffic delay Dveh
t are acquired following Equations (12) and (13). Following

Equation (14), the third sub-objective component Rside
t maximises the cumulative sidewalk

ratio, namely 1− βe,t− be
we

, at time t of edge e. Here, be indicates the width of the facility belt.

maximise Rt = φ(Rveh
t + Rped

t + Rside
t ) ∀t ∈ [0, T] (7)

where Rveh
t =

Hveh

Hveh + Dveh
t

(8)

Hveh = ∑
od∈OD

∑
v∈Vod

DISod,v

vmv
(9)

Dveh
t = ∑

od∈OD

(∫ kt

k(t−1)
λ(t)dt−

∫ kt

k(t−1)
ζ(t)dt

)veh

od
(10)

Rped
t =

Hped

Hped + Dped
t

(11)

Hped = ∑
od∈OD

∑
p∈Pod

DISod,p

vmp
(12)

Dped
t = ∑

od∈OD

(∫ kt

k(t−1)
λ(t)dt−

∫ kt

k(t−1)
ζ(t)dt

)ped

od
(13)

Rside
t =

1
NE ∑

e∈E
(1− βe,t −

be
we

) (14)
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Table 1. Notations of Variables and Parameters.

Notation Specification Value

E Set of edges

V Set of vehicles

P Set of pedestrians

OD Set of origin-destination pairs

Sets Ve Set of vehicles on edge e Ve ⊂ V

Pe Set of pedestrians on edge e Pe ⊂ P

Vod Set of vehicles with od assignment Vod ⊂ V

Pod Set of pedestrians with od assignment Pod ⊂ P

CFv following cars of vehicle v v ∈ V

e an edge e ∈ E

v a vehicle v ∈ V

Indices p a pedestrian p ∈ P

t a time slot t ∈ [0, T]

od an origin-destination pair od ∈ OD

le number of lanes on edge e Z∗+
fod,v,t, fod,p,t unit travel demand of a vehicle/a pedestrian v ∈V, p ∈P

~χv, ~χp position of a vehicle/ a pedestrian v ∈V, p ∈P

~de direction of edge e -

hsu,v longitudinal distance between u, v u, v ∈ Ve

Variables cv,t, cp,t velocity of a vehicle/ a pedestrian v ∈V, p ∈P

ċv,t, ċp,t acceleration of a vehicle/ a pedestrian v ∈V, p ∈P

λ(t) arrival rate at t t ∈ [0, T]

ζ(t) departure rate at t t ∈ [0, T]

βe,t (Decision Variable) driving lane ratio of e at t R+

we edge width of edge e R+

be width of a facility belt of edge e R+

k length of a time slot 30 min

T Simulation time period 3600 s

NE number of edges 8

NVt vehicular travel demand at t Z+

NPt pedestrian travel demand at t Z+

gs minimal space gap between pedestrians 0.25 m

Parameters DISod distance between origin o and destination d R+

φ reward amplifier 1000

len vehicle length 4.5 m

vmax maximum speed of AV 13 m/s

pmax maximum speed of pedestrian 1.2 m/s

ψ speed deviation 0.05

h time headway 0.6s

accveh maximum acceleration of vehicles 2.6 m/s2

accped maximum acceleration of a pedestrian 0.3 m/s2

The problem is constrained by Equations (15)–(24). Constraint (15) requires that
the distribution of operational speed of the fleet to follow a normal distribution, which
has a mean of vmax = 13 m/s multiplying a speedFactor = 1.0, and a deviation ψ = 0.05.
Constraint (16) sets the upper bound of the real-time speed of an AV, expressed as cv,t,
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which should not exceed the designated operational rate. Let ċv,t indicate the acceleration
of an AV at t, Constraint (17) limits this acceleration as below accveh = 2.6 m/s2. Let (~χv)
and (~χp) denote the coordinates of an AV and pedestrian respectively, where v ∈ V and
p ∈ P. Constraint (18) demands the minimal longitudinal distance of the proceeding car
u ∈ CFv to suffice the clearance gap hs requirement. Constraint (19) further estimates such
clearance gap using time headway h, the mean velocity of the two vehicles and vehicle
length lenu.

where vmv ∼ N (vmax, ψ) ∀v ∈ V (15)

0 ≤ cv,t ≤ vmv ∀t ∈ [0, T] (16)

ċv,t ≤ accveh (17)

| ~χv − ~χu | cos[(~χv − ~χu), ~de] ≤ hs ∀v ∈ Ve, u ∈ CFv (18)

hs =
h
2
(cv,t + cu,t)− lenu ∀v ∈ Ve, u ∈ CFv (19)

We apply similar constraints on the simulation of pedestrian dynamics. Concretely,
Constraint (20) regulates that the real-time velocity of a pedestrian cp,t be bounded by
the maximum speed pmax = 1.2 m/s. Constraint (21) ensures that the acceleration of a
pedestrian at t should not exceed accped = 0.3 m/s2. In addition, Constraint (22) defines
a minimal inter-person space as the norm of the vector between two pedestrians p, q, in
which gs equals 0.25 m in this study.

0 ≤ cp,t ≤ pmax ∀p ∈ P, t ∈ [0, T] (20)

ċp,t ≤ accped ∀p ∈ Pe (21)

| ~χp − ~χq |≥ gs ∀p, q ∈ P, p 6= q (22)

The hourly flow rates of AV transport and pedestrians are generated in alignment with
the bimodal travel time distributions, following the description in [59]. A travel plan jointly
synthesises pedestrian trips and AVs trips at the OD-pair level in 48-time slots of a day. Let
NVt and NPt denote the vehicular and pedestrian travel demands per OD pair at time t.
The sizes of AV fleets ∑od ∑v fod,v,t and pedestrians ∑od ∑p fod,p,t subject to corresponding
travel plans, as expressed in Constraints (23) and (24).

∑
od∈OD

∑
v∈Vod

fod,v,t = NVt (23)

∑
od∈OD

∑
p∈Pod

fod,p,t = NPt (24)

Constraint (25) describes the boundaries assigned to the decision variable. Its lower
limit represents the edging case where only one emerging lane is reserved, and the upper
bound ensures the extra provision of at least 1.5 m sidewalk. Constraint (26) determines
the number of lanes le regarding βe and we. The final condition corresponds to the case of
the multi-driving lane.

3 ≤ βe ≤
we − be − 1.5

we
∀e ∈ E (25)

le =


0, i f βewe < 3
1, i f 3 ≤ βewe < 6.5
b(βewe − 3)/3.5c+ 1, otherwise

(26)
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4.2. SUMO Traffic Simulation Incorporated DDPG Modelling Framework

We proposed a SUMO-incorporated Deep Deterministic Policy Gradient model to
address this optimal control problem, namely the SUMO-DDPG. Figure 4 presents the
modelling framework, which essentially comprises two interactive components: a SUMO
traffic simulator and a DDPG controller. Initially, SUMO generates network configurations
using default ROW settings. It also generates discrete vehicular and pedestrian trips
according to the pre-defined travel plans. Then, we use the Traffic Control Interface (TraCI),
a SUMO built-in API, to calibrate road geometries at each time slot and acquire states of all
AVs, pedestrians and environments.

The DDPG algorithm comprises an actor-critic model and an experience replay buffer.
First, the actor-critic model consists of four neural networks: an actor online network µ(θ),
an actor target network µ

′
(θ
′
), a critic online network Q(ω) and a critic target network

Q
′
(ω
′
). Here, we use θ, θ

′
, ω and ω

′
to indicate the parameter sets of these four neural

networks, respectively.
This DDPG is trained in EP = 150 episodes and at the edges level, meaning discrete

edges make individual decisions. One training episode comprises a number of time slots
bounded by the starting time slot and T = 3600 s. Each time slot is equivalent to a length
of k = 30 min in the real world.

Meanwhile, the DDPG controller interacts with SUMO via TraCI at an interval of
I = 36 s, namely 50 visits in a single slot. During the interactions, a set of edges evaluates
the environment state (St), executes a collection of individual actions (At), receives a joint
reward (Rt), and observes a future environment state (St+1). This information is then
utilised to update the neural network parameters of the actor-critic model.

Figure 4. SUMO-DDPG Modelling Framework.

4.3. DDPG Algorithm Structure

The following subsection details the state, action, reward, experience replay buffer,
and parameters applied for both actor and critic networks. Table 2 lists the key hyper-
parameters concerned by our SUMO-DDPG model.
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Table 2. Hyperparameters of SUMO-DDPG Model.

Notation Specification Value

OU Ornstein–Uhlenbeck noise -

δ mean rate of noise regression 0.15

σ
standard deviation of noise

distribution 0.2

ε mean of noise distribution 0

η soft update parameter 0.005

γ discount factor 0.99

B replay buffer capacity 100,000

m mini-batch size 64

EP Episodes 150

I Intervals per Step 36 s

4.3.1. State

The observed state includes the number of operational AVs and pedestrians on each
edge. Let Se denote this two-dimensional state vector per edge, Se = sveh

e , sped
e , whereas

sveh
e and sped

e indicate the real-time operational numbers of AVs and pedestrians on edge e.
Thus, at a time slot t, the joint state space is defined as St = [S1,t, S2,t...Se,t...SNE,t].

4.3.2. Action

The action taken by an edge e at time step t is denoted as βe,t, representing the
proportion of the link occupied by the driveway. Note that the action space of βe,t is
continuous in a range of [3, we−be−1.5

we
]. Thus, the joint action space for the whole system

is expressed using a NE-dimensional vector At = [β1,t, β2,t...βe,t...βNE,t]. Equation (27)
expresses that the actor online network determines a deterministic action A

′
t following the

policy µθ .

A
′
t = µθ(St|δ) (27)

Equation (28) presents an Ornstein–Uhlenbeck process that generates a time-dependent
noise to sufficiently explore the action space. By convention, it usually comprises a
Gauss–Markov procedure and a white noise perturbation [60]. The Gauss–Markov noise
distribution is defined by its mean ε, the regression rate to its mean δ and a standard
deviation σ. The white noise is modelled as N (ε, 0), which describes a normal distribution
with a mean of ε and a standard deviation of 0. Following that, Equation (29) expresses the
eventual joint action At taken by edges, which equals the sum of the deterministic part and
the value of OU noise.

OUt = δ(ε−OUt−1) + σN (ε, 0) (28)

At = A
′
t + OUt (29)

Figure 5 presents a record of the obtained Ornstein–Uhlenbeck noises from eight
tested discrete edges (green dots) and their average value per episode (blue squares). The
horizontal red line highlights that mean noises OUt fluctuate around 0.
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Figure 5. Distribution of Generated Perturbation Noise. Note that green dots here represent discrete
noise values, blue squares highlight the average noise value per episode. Meanwhile, the red line
indicates the mean noise value throughout the noise generation procedure.

4.3.3. Reward

A reward quantifies the feedback from the environment to evaluate an executed
action [44]. In this current study, this reward is estimated using the value of Rt following
specific rules as explained in Formula (30). This formula regulates that this reward is 0 if
more than one of the following illegal occasions happens: (1) the value assigned for decision
variable βe,t exceeds either limit; (2) uncompleted trips due to disconnected routes. For
instance, if a person could not complete the assigned trip from o to d due to an unconnected
sidewalk-crossing system, then this reward equals 0.

Rt =


0, ∃βe 6∈ [3, we−be−1.5

we
], ∀e ∈ E

0, ∃ fod,v = 0, ∀od ∈ OD, v ∈ V, e ∈ E
φ(Rveh

t + Rped
t + Rside

t ), otherwise, ∀t ∈ [0, T]
(30)

4.3.4. Experience Replay Buffer

An experience replay buffer stores past transition tuples < St, At, Rt, St+1 > for
further off-line learning. A random m-sized mini-batch is randomly sampled from the
buffer to feed both target networks in the off-line learning process. Then a transition
trajectories for learning is denoted as < Si, Ai, Ri, Si+1 >, where i ∈ [0, M] index samples
of mini-batch.

4.3.5. Actor Networks

The actor online network approximates to the optimal policy µθ by minimising the
gradient loss of θ. The corresponding loss function J (θ) and the optimisation function for
updating the gradients ∇θJ are described in Equations (31) and (32) respectively.

J (θ) = − 1
M ∑

i∈[0,M]

Q(Si, Ai|θ) (31)

∇θJ ≈
1
M ∑

i∈[0,M]

∇aQ(Si, Ai|ω)∇θµ(Si|θ)) (32)
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The actor target network updates the network parameter θ
′
using a soft update strategy

controlled by a specific parameter eta, following Equation(33).

θ
′

:= ηθ + (1− η)θ
′

(33)

4.3.6. Critic Networks

The target part of critic networks estimates a target Q value yi. Then, following
the Bellman Equation [61], it sums the sampled reward Ri and a discounted future state-
action values using the network policy parameter ω

′
and a discount factor γ, as expressed

in Equation (34). In parallel, the critic online network first calculates the Q value and
then updates parameter ω by minimising the gradient loss between yi and this Q value.
Equations (35) and (36) express this loss function L(ω) and gradient update approximation
∇ωL respectively.

yi = Ri + γQ
′
(Si+1, Ai+1|ω

′
) ∀i ∈ [0, M] (34)

L(ω) =
1
M ∑

i∈[0,M]

[(yi −Q(Si, Ai|ω))]2 ∀i ∈ M (35)

∇ωL =
1
M ∑

i∈[0,M]

(yi −Q(Si, Ai|ω))∇ωQ(Si, Ai|ω) ∀i ∈ M (36)

The critic target network updates its parameter ω
′
controlled by η following Equation (37).

ω
′

:= ηω + (1− η)ω
′

(37)

4.3.7. Keras Neural Networks

Both actor and critic networks were implemented in Keras. An actor network com-
prises two hidden layers, which inputs a (NE, 2)-sized observed states layer and outputs
NE (1, 1)-dimensional actions. The rectified linear activation function (ReLU) and tangent
activation function (TanH) are implemented as calculation rules for the input and output
layers respectively.

A critic network has six hidden layers in total. Initially, a (NE, 2)-sized state layer and
NE (1, 1)-dimensional action layer are input as dual-sourced layers. Then, both layers are
activated using ReLU and later concatenated as a joint layer. Finally, the eventual output
layer is featured in the size of (1, 1) for the control task of each edge.

5. Model Training and Results
5.1. Specification of Travel Plans and Testing Case

Figure 6 demonstrates the OD-pair based travel demands at 48-time slots, with error
marks representing stochastic perturbations (±10 puc/h or person/h) based on their
respective mean demands.

The mean OD-pair level travel demands of AVs and pedestrians are 114 pcu/h
and 21 person/h respectively. Concretely, two peaks of AVs traffic flow appear at 07:30
(175 pcu/h) and 18:00 (140 pcu/h). Meanwhile, pedestrian flow rates reach the highest
demands at 07:30 (41 person/h) and 18:00 (40 person/h).

The prototypical road layout for testing originates from a four-legged intersection. This
road layout has four 100 m roads comprising eight connected edges, NE = 8. We have further
calibrated this prototype into one symmetric layout case and an asymmetric case to ensure
the usability of our proposed SUMO-DDPG model under varied geometric conditions.

The symmetric case has homogeneous edge widths, namely [16, 16, 16, 16, 16, 16, 16,
16 (m)], whereas their facility belt are in the widths of [1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5 (m)].
For the asymmetric case, the edge widths are [14, 14, 16, 16, 18, 18, 14, 14 (m)], which are
heterogeneously configured. The widths of their facility belts are [1.5, 1.5, 1.5, 1.5, 2, 2,
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1.5, 1.5 (m)]. Figure 7 demonstrates the configuration of two settings in SUMO simulation
environment.

Figure 6. OD-pair based Travel Demands of Pedestrians and AVs Flows at Each Time Slot. (a) Travel
demands of pedestrians. (b) Travel demands of AVs.

Figure 7. Configuration of Two Tested Cases. (a) Symmetric Setting. (b) Asymmetric Setting.
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Different geometric settings lead to distinctions in the upper and lower bounds of
βe,t. Despite the variations, a uniform randomness seed is shared throughout the training
course over two cases. This arrangement ensures that travel plans, perturbation noises, and
actor-critic models’ initial parameters are identical for both cases.

5.2. Training Performance of SUMO-DDPG

Figure 8 demonstrates the training performances of learning curves obtained from
the two tested cases. The X-axis index 150 training episodes, while Y-axis represents the
edge-level accumulative average reward. The blue and green curves log the generally
ascending trends of such rewards obtained from the symmetric and asymmetric cases.

The reward in the symmetric case has increased by 10.39% since the initial episode.
It reaches the peak of 1700.65 at an incremental rate of +1.07/ep. The learning curves of
three training stages–the early stage (Ep. 0–49), middle stage (Ep. 50–99) and later stage
(Ep. 100–149), present distinctive convergence patterns.

The early stage records a significant surge from 1540.61 to 1632.82, leaping a gap of
92.20 with an incremental rate of +1.84/ep. Its mean and standard deviation are 1599.26
and 22.45, indicating a rapid convergence process. In the middle stage, the reward gap
drops by 68.67, from 1624.97 to 1693.63, while its standard deviation slightly rises to
24.30. Additionally, the mean reward value situates at 1660.21, with the incremental rate
declines to +1.37/ep. In the last stage, the reward pattern reaches a plateau marked by the
lowest standard deviation (6.15), the even narrowest mean value (18.42) and the slowest
incremental rate +0.37/ep. This stage-wise declining tendency suggests the approximation
to the optima.

Figure 8. Training Performances of Two Tested Case.

Accordingly, the learning curve of the asymmetric case demonstrates similar con-
vergence patterns. It has a general 9.09% in reward surge at an average incremental rate
of +0.96/ep. The lowest reward (1590.73) is obtained at Ep.2, while the highest reward
(1735.33) at Ep. 100. Examined stage-wise, the corresponding average reward gaps of the
three stages are 95.60, 60.92 and 15.48, whereas the incremental rates are +1.91/ep, +1.22/ep
and +0.31/ep. Their standard deviations are 30.24, 22.61, and 4.5. These figures signal that
the obtained reward is approximate to the optima, which is consistent with that of the
symmetric case.

In general, both learning curves display synchronised and incremental patterns
throughout their independent training courses. These patterns evidence the effective-
ness of the model as input arbitrary road geometries.
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The training pattern of the symmetric case has a slightly lower episodic reward
(40.01/ep) than its asymmetric counterpart, indicating a moderately better convergence
performance of our model on optimising the asymmetric road layout. However, rewards of
the symmetric case outperform the asymmetric ones concerning the overall reward growth
rate (+1.30% higher) and the stage-wise incremental rate (+0.11/ep higher). Furthermore,
despite the differences, the rewards gap of the two cases narrows down from 69.57 at
Ep.0 to 38.89 at the last episode, with a mean gap of 40.01. These facts evidence that our
proposed SUMO-DDPG model could effectively optimise ROW plans under symmetric
and asymmetric road layout conditions.

5.3. Improved ROW Assignment Strategies

As another performance metric of our model, we would like to understand to what ex-
tent has our proposed model optimised the executed actions throughout the training course.

Figure 9 contains eight graphs to demonstrate the transformations of ROW decisions
for each edge between their early stage and later stage. The X-axis indicates the time slots
of a day, and the Y-axis shows the action values, namely the road proportion assigned for
driveways (βe, t). The early-stage actions are highlighted in grey dots, while their later
counterparts are in black. We use blue and red vertical bars to indicate the tendency of
declining or rising in action values.

Consequently, a majority (90.16%) in action values decline, with only 9.84% showing a
slight increase. The time slot-wise differences are not apparent due to these principal trends
of reduction. Combined with the rising patterns of learning curves, the declination in
action values suggests that our model can effectively alter the road proportions assigned to
driveways to sidewalks. Such efforts in re-balancing the ROW between the driveways and
sidewalks reinforce as controllers receive higher rewards from the environment feedback.

We further examined detailed transformation in distributions of actions. Figure 10
demonstrates the density distributions and their corresponding Gaussian Probability Den-
sity Functions (PDF). Optimised by our model, the actions’ density distributions get flat-
tened throughout the training course. Their mean value transforms from 0.78 in the early
stage to 0.69, shifting away from the upper limit and approaching towards the lower bound.

The road space assigned to the driveway reduces by 9% on average, namely 1.26 m,
1.44 m or 1.62 m corresponding to edges in widths of 14 m, 16 m or 18 m respectively.
Additional space assigned to sidewalks is beneficial to relieve the pressure of pedestrian
traffic while potentially encouraging street activities. More street activities are likely to
induce demand for pedestrian flows at certain levels, requiring control models, like ours,
to be deployed to manage road space assignment dynamically.

Another critical change is the notable increase in standard deviations, which has
increased by 1.75 times from 0.04 during the early stage to 0.07 at the last stage. This
shift indicates an even wider spread of actions after optimisation. Moreover, it provides a
larger strategy pool of optimal actions to realise a more flexible, responsive and pedestrian-
friendly mode road layout.

Compared with the conventional complete streets scheme, both the early and later
phases liberates road space assigned for the driveways to sidewalks. At the early stage,
approximately a standard lane-width (3.5 m) equivalent space is re-assigned to the sidewalk
in one out of 48 time slots, of which the probability estimates 2.08%. By optimisation, this
ratio significantly rises to 9 out of 48 (18.22%) in the later stage. This improvement demon-
strates that our SUMO-DDPG model has effectively learnt to allocate fewer proportions to
AVs trafficking while increasing the share of sidewalks under different traffic conditions of
a day.
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Figure 9. Comparison over Edge-level Actions (βe) between Early Stages (Ep. 0–49) and Later Stages
(Ep. 100–149).

Figure 10. Density Distributions of Action Values for Early Episodes and Later Episodes.
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6. Conclusions

In this current study, we proposed a SUMO traffic simulator-incorporated Deep
Deterministic Policy Gradient Algorithm (SUMO-DDPG) to realise the optimal control of
the ROW plan. The modelling objective maximises the edge-based traffic efficiency of both
AVs fleet and pedestrians while maximising the ratio of sidewalks.

This proposed model has been trained in 150 episodes using a four-legged intersection.
The synthesised travel plans include OD pair-based travel demands of AVs and pedestrians.
Training results demonstrate that our model is efficient in convergence to optima under
both the symmetric road geometries and the asymmetric settings.

Throughout the training course, episodic rewards increase by 10.39%. Meanwhile,
90.16% of the edges reduce the driveways supply and raise their sidewalk ratios. During
18.22% of all simulated time slots, additional lane-width space is shifted from driveways to
sidewalks while maintaining high standard traffic efficiency. The ROW layout solutions
expand 1.75 times given arbitrary traffic patterns, contributing to more flexible, responsive,
and active mode friendly road layout strategies.

A key strength of this research lies within the fact that our model coordinates the
multi-objectives from both fields of traffic engineering and urban planning. This SUMO-
DDPG modelling framework successfully resolved the synchronical ROW assignment
optimisation problem facing multiple roads conditions in real-time. Furthermore, the
centralised training and distributive actions execution accelerate the learning process while
decreasing computational cost, which seems quite promising to be applied to address such
ROW optimal control problem on a city-level network scale.

However, some limitations of this initial study should also be acknowledged. On the
one hand, the presented testing samples could only represent a limited range of traffic
conditions, whereas more testing scenarios are expected. On the other hand, the efficacy of
using a centralised training machine compared to a distributed one is yet to be answered.
We also acknowledge that a wide range of urban design concerns could be measured
and quantified as our training objectives, targeting a sustainable street space. Despite
these limitations, the methodology is original and proved effective to solve the public
ROW assignment problem. Meanwhile, findings present essential insights to both road
infrastructure management and urban design.

Following this preliminary study, our further research plan will focus on (1) Real urban
setting-based experiments using this model. (2) Comparison among a broad spectrum
of reinforcement learning algorithms that can be implemented into the control model,
including distributively architect DDPG, Q-learning and Asynchronous Advantage Actor-
Critic (A3C). (3) Incorporate this ROW optimal control method with other intelligent
transport control techniques such as traffic signal control and roadside unit management.
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Abbreviations
The following abbreviations are used in this manuscript:

ROW Right-of-Way
AV Autonomous Vehicles
RL Reinforcement Learning
MDP Markov Decision Process
DPG Deterministic Policy Gradient method
DDPG Deep Deterministic Policy Gradient algorithm
SUMO Simulation of Urban Mobility software
OU Ornstein–Uhlenbeck
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