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Abstract: This study goals to develop a model for predicting financial loss at construction sites using a
deep learning algorithm to reduce and prevent the risk of financial loss at construction sites. Lately, as
the construction of high-rise buildings and complex buildings increases and the scale of construction
sites surges, the severity and frequency of accidents occurring at construction sites are swelling, and
financial losses are also snowballing. Singularly, as natural disasters rise and construction projects in
urban areas increase, the risk of financial loss for construction sites is mounting. Thus, a financial loss
prediction model is desired to mitigate and manage the risk of such financial loss for maintainable
and effective construction project management. This study reflects the financial loss incurred at
the actual construction sites by collecting claim payout data from a major South Korean insurance
company. A deep learning algorithm was presented in order to develop an objective and scientific
prediction model. The results and framework of this study provide critical guidance on financial loss
management necessary for sustainable and successful construction project management and can be
used as a reference for various other construction project management studies.

Keywords: loss prediction model; construction project management; construction site; deep learning
algorithm; deep neural network

1. Introduction

Recently, as the scale and complexity of construction works are increasing, variation of
construction methods, and aggressive introduction of new construction methods are being
made. As a result, various new risk factors for fiscal loss are occurring, and uncertainty in
the financial risk prediction is increasing rapidly [1]. Therefore, the requirement for more
dependable and scientific financial risk management in the complete construction project
process is constantly being highlighted. However, current construction project risk manage-
ment techniques are not adequately responding to these demands [2]. Most construction
project risk assessments rely on individual and qualitative assessment grounded on views
and knowledge of the orderer, individual contractor, and construction manager rather than
on scientific analysis and substantiation [2,3].

In particular, on construction sites, various types of accidents occur and are exposed to
the outside, and they are greatly affected by geographical and environmental factors, result-
ing in large and small personal injuries and physical losses [4]. For example, construction
work near coastal, mountainous, and river areas, which is increasing with high preference,
is greatly affected by geographic requirements. High-rise construction in a metropolitan
city may inflict third-party losses on nearby buildings or pedestrians due to vibration and

Sustainability 2021, 13, 5304. https://doi.org/10.3390/su13095304 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-1907-4291
https://orcid.org/0000-0002-4311-5233
https://orcid.org/0000-0003-1349-5586
https://orcid.org/0000-0002-5592-7458
https://doi.org/10.3390/su13095304
https://doi.org/10.3390/su13095304
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su13095304
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su13095304?type=check_update&version=1


Sustainability 2021, 13, 5304 2 of 12

noise generated at the construction site, falling objects, and flying objects. In addition,
the increase in construction scale is causing an upsurge in fall accidents due to work at
high places and safety accidents due to the use of heavy equipment. These factors are
causing enormous economic losses despite the rapid development of new technologies and
construction technologies of the fourth revolution such as Internet of Things, unmanned
transportation, robot engineering, and 3D printing [5].

Nevertheless, the risk assessment and management of construction sites relies on
subjective judgment or experience, and despite government and private sector policies,
promotions, and investments to lower the high industrial accident rate in the construction
industry, the construction industry remains the most dangerous industrial group [1,6,7].
Therefore, in order to prepare in advance for possible accidents and losses in construction
sites, reduce risks, and establish strategies for transferring specific financial loss risks,
analysis and prediction through scientific and empirical research should be carried out.
In order to estimate the loss amount and loss range through this analysis and prediction,
various and comprehensive risk factors are identified in advance throughout the entire
construction process and quantified data that can be rationally collected is required [8–11].

Consequently, the purpose of this study is to develop a model that scientifically
predicts the financial loss of construction sites based on more objective data. In other
words, this study is to develop a model for predicting financial loss of a construction site
by using a deep learning algorithm based on actual loss data generated at construction
sites. These models and their framework are expected to contribute to the sustainable risk
management of construction projects in the future.

2. Literature Review

The risk analysis of construction works is to create a strategy for proficiently invest-
ing limited financial resources of construction projects by managing potential risks in
the construction site through prevention and reduction in advance [12]. In spite of this
importance, risk analysis has a lower weight of research compared to topics such as cost
management, quality management, and schedule management, which are the management
elements of a construction project. Moreover, in research methods, qualitative methodology
has conventionally been centered on qualitative methodology rather than quantitative
methodology. Considering that the ultimate goal of risk analysis is the efficient allocation
and input of defined resources, quantitative methodology is more suitable for risk analysis.
In addition, the quantitative methodology enables a more realistic and accurate analysis
of the potential risks of construction sites and enables higher generalization [13]. Further-
more, through the introduction of a quantitative risk analysis methodology, potential risk
factors can be identified, factors indexed, and quantified models can be developed. For
this reason, many risk analysis studies have begun to adopt a quantitative methodology.
The construction industry has traditionally been classified as a high-risk industry. The
reason is due to the specificity and complexity of construction works. In addition, there
is also a synchronicity because several construction participants have to complete work
within a fixed period [6]. For this reason, the risk analysis of construction works has a lot
of uncertainty [14]. Thus, qualitative methods are inadequate for sophisticated predictions
of risk, including risk uncertainty. Therefore, in order to reduce this uncertainty, quan-
titative data for a statistical and scientific approach and risk assessment and prediction
through quantitative analysis methods are required [15]. However, qualitative research
methods related to risk assessment in many construction projects are mainly used [16]. For
example, Dikmen et al. identified risk factors using subjective assessment factors such as
expert knowledge and experience in a construction risk assessment study [3]. Wood and
Ellis also conducted risk assessments based on expert experience and judgment through
surveys and checklists [17]. Baker et al. found that the opinions and experiences of experts,
orderers, and engineers in the study of construction risk assessment techniques are the
most frequently used techniques for assessment [18]. Warszawski and Sacks [19] found
that sensitivity analysis is often used in construction project risk analysis due to the one-off
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of construction projects and lack of data for analysis. They also argued that more advanced
and efficient analysis methods are required. However, in many risk analysis studies, due
to the lack of data and limitations in data collection, most risk assessments are performed
using risk scales [20–23]. This demonstrates that the accuracy and reliability of the risk
assessment can be increased when the actual loss amount is used in the risk assessment.
As described above, past studies have suggested several categories of methods to risk
assessment at construction sites, but subjective assessments based on personal judgment or
expert opinions are the main focus. Therefore, quantitative evaluation through quantitative
and reliable data is necessary for objective and scientific evaluation of construction site risk.
Consequently, this study collected and analyzed the amount of insurance claim payouts
that occurred at the actual construction sites of an insurance company. The insurance claim
payouts are highly dependable. The reason is that the payment procedure is standardized
and the amount is calculated through objective analysis by a certified loss assessor [5].
Furthermore, in this study, deep learning algorithms were used for objective and scientific
analysis of data and model development, resulting in quantitative and reliable results.

Furthermore, it is difficult to predict the occurrence and extent of damage of a natural
disaster. To cope with unexpected extreme events, several companies and nations have
developed risk assessment tools. For example, the New Multi-Hazards and Multi-Risk
Assessment Method for Europe (MATRIX) and the Probabilistic Risk Assessment have
been developed for use in South America to mitigate damages from natural disasters. The
United States is also leading nation in developing risk assessment models such as HAZUS-
MH for multi-hazard risk assessment developed by the Federal Emergency Management
Agency (FEMA) [24]. Florida, a hurricane-prone area in the United States, has developed
Florida Public Hurricane Loss Prediction Model (FPHLM) to assess damages caused by
hurricanes and to predict financial losses and casualties [25].

These tools can be utilized to assess potential damages to buildings and other infras-
tructures when extreme events such as earthquakes, floods, and so on occur. Moreover,
Geographic Information System (GIS) can be supplemented to these risk assessment tools
for more reliable data regarding estimating social and spatial damages caused by natural
hazards. Various factors such as geospatial data, demographics, and revenues have been
included in these models for evaluating possible extents of damages [26].

Many studies have been conducted to find valuable factors for estimating damages
caused by natural hazards. Yum et al. [13] have proposed a methodology to find the most
critical factors affecting tunnel construction projects. They utilized various atmosphere
factors such as wind speed, rainfall, and so on to compare the actual amount of loss
provided by insurance companies. Moreover, damage ratio for calculating the actual
amount of damage and claim payout has been utilized to estimate maintenance and repair
cost for accommodation facilities. One study has determined the maintenance cost of an
international hotel chain caused by natural hazards such as floods, hurricanes, power
outage, and so on using multiple regression analysis and damage ratio to determine the
most influential risk factors for future repair costs [27].

Risk in construction projects cannot be determined by a single factor [28]. Therefore,
many possible factors should be considered when estimating accurate damages such as
financial losses and schedule delays. According to Hastak and Baim [29], the quality of
workers meaning the extent of their training for specific construction projects is the main
risk factor affecting construction projects. Safety and built environments are also key
risk factors affecting construction projects. One study has used multiple linear regression
method and neural network analysis to find the most influential risk factors [30].

Hashemi et al. [31] have found that failed project management is due to schedule
delays, relationship issues among stakeholders, labor, and materials issues, and so on.
Supporting findings of Hasemi wet al. [31], Li et al. [32] have proposed an economic build-
ing technology and reported that dispute issue is a critical construction risk factor. Many
studies have been conducted regarding risk assessment for construction projects. However,
most risk management tools have focused on developed countries where enough loss data



Sustainability 2021, 13, 5304 4 of 12

are available. More universe advance risk assessment method is required to be utilized in
developing countries where data are insufficient. Moreover, unexpected events such as
natural hazards should be considered simultaneously with project management factors
since these two (i.e., natural hazards and project management) could be complementary
factors to mitigate the potential risk at construction sites.

Artificial intelligence, unmanned transportation, big data, robotics, IoT, etc., which
are emerging recently, have been applied in various fields and have been recognized
for their effects [33,34]. The introduction of a new paradigm is indispensable for the
improvement of the construction industry, which is classified as a dangerous industry
group, and for the reduction of financial losses. Moreover, the demand for deep learning
technology for analyzing vast amounts of big data generated from sensor information and
various IoT devices that are widely used in recent construction sites is expected to increase
exponentially. Therefore, in this study, for the introduction of a new paradigm for risk
assessment in the construction industry and the development of deep learning technology
for big data related to construction, a prediction model was developed using deep learning
algorithms. This prediction model will contribute to improving the accuracy of prediction
of losses occurring in future construction sites.

3. Research Goals and Methodology

The aim of this study is to generate a model that predicts the financial loss of a
construction site using a deep learning algorithm founded on the financial loss data
occurred at the construction site. As shown in Figure 1, the detailed aim is (1) to gather data
on financial loss incurred at actual construction sites. (2) Based on the collected data, a loss
prediction model is generated through a deep learning algorithm. (3) Validate the model
through comparison with other model results. In the model verification, the results of the
deep learning algorithm model and the results of commonly used a statistical model were
compared. The detailed steps of the study are as follows: First, input variable and an output
variable related to the cost of financial loss at the construction site are collected. Second,
a deep learning algorithm model and a statistical model were established, individually.
The two models calculated MAE (mean absolute error) and RMSE (square mean square
error) values, respectively, and compared the two results. The deep learning model utilized
Python 3.7, and the statistical model was generated using IBM Statistical Package for the
Social Sciences (SPSS) V23.

Figure 1. General approach and work flow of a prediction model.
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4. Data Collection and Input Variables

This study accepts a record of claim payouts from an insurance company’s Contractors’
all-risks insurance (CAR). CAR is intended to comprehensively cover losses incurred at
all stages of a construction project for contractors. The construction targets for CAR
application are broad, including buildings, roads, ports, railways, bridges, tunnels, and
plants, and include all periods related to construction from the start of construction to the
commissioning period after construction is completed. The scope of application includes
the construction of new construction and additional buildings, and it compensates for
the contractor’s economic losses incurred by the object of construction, materials and
equipment, life, and third parties. The collected claim payout records target financial
losses incurred at construction sites from 1999 to 2018, and the total number was 1930. The
collected information does not include personal information. Only pure loss amount was
used to exclude the difference in the amount of loss according to the insurance conditions
of each individual subscriber. The record of claim payouts received from the insurance
company included information on the amount of loss, details of the loss, the contractor, the
date of the accident, the construction period, the construction amount, and the location.
The scope of this study is restricted to South Korea.

Based on the collected data, information on loss amount and basic construction-
related information (Engineering News Record rank, total days, progress rate, and total
construction cost) and natural disaster risk (site location, altitude, precipitation, flood, and
strong wind) was gathered. The natural disaster risk at the site was produced based on
the location information of the collected data. A description of each indicator is shown in
Table 1. The dependent variable is the loss ratio obtained by dividing the loss incurred
in the construction project by the total construction cost. The Engineering News Record
(ENR) Rank, total days, progress rate, total construction cost, and altitude were entered as
numeric variables, correspondingly.

Table 1. Description of variables.

Variables Explanation Unit

Loss ratio Value obtained by dividing the amount of loss incurred in construction
projects by each total construction cost Number

ENR rank Engineering News Record rank Number

Total days Total number of construction days Number

Progress rate Construction progress rate in case of loss Number

Total construction cost Total amount of construction cost (million KRW) Number

Site location Classification of the location of the construction site

Nominal
1.Suburban

2.Urban
3.Metropolitan

Altitude Altitude above sea level (m) Number

Precipitation Risk rank of amount of precipitation at the site Nominal
- Rank 1-5: 1-5

Flood Risk rank of flood ground on the anticipated annually occurrence of flood
at the site

Nominal
- Rank 1-6: 1-6

Strong wind Risk rank of strong wind for maximum wind speed at the site (100-year
return period)

Nominal
- Rank 1-5: 1-5

The location was a nominal variables which is divided into three groups as suburban,
urban, and metropolitan. The precipitation, flood, and strong wind were entered as
nominal variables, individually, utilizing natural disaster risk ratings. Natural disaster
risk ratings were evaluated using the risk levels for each natural disaster in Munich
Reinsurance Company’s Natural Risk Assessment Network (NATHAN) for an impartial
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and dependable assessment. NATHAN is an online natural disaster risk map system
created to estimate the risk of various natural disasters around the world. Through this
system, it is possible to check the scientific and objective level of various natural disaster
risk levels based on location information. Natural disaster risk level is scientific and has
high reliability because it is the result of comprehensively utilizing the past severity and
frequency of natural disasters, data from public organizations or institutions, and analysis
results using analysis tools [CURIE 23]. The risk of each natural disaster was used as a
nominal variable. The loss ratio, total construction cost was converted to natural logarithm
for normal distribution of the data. Descriptive statistics of each variable are revealed in
Table 2.

Table 2. Descriptive statistics of variables.

Variables N Minimum Maximum Mean Std. Deviation

Loss ratio 1930 −12.72 3.02 −7.28 1.99

ENR rank 1930 1.00 100.00 37.97 41.14

Total Days 1930 121.00 4749.00 1338.93 889.76

Progress rate 1930 0.00 20.44 0.02 0.52

Total construction cost 1930 0.69 18.20 11.19 1.75

Site location 1930 1.00 3.00 1.88 0.84

Altitude 1930 −3.00 910.00 84.25 148.62

Precipitation 1930 2.00 5.00 4.63 0.69

Flood 1930 0.00 5.00 1.75 1.71

Strong wind 1930 1.00 5.00 1.37 0.53

5. Deep-Learning Algorithm Model

Deep learning is a technology that implements type classification or regression through
machine learning of input data and is broadly accepted in forecast and recognition areas.
The deep learning model is composed of the input layer, output layer, and hidden layer,
activation function, weight, and neuron, and can be applied to various data because it can
have a neural network composed of various structures and layers [35,36]. Deep learning
is classified according to its structure and processing method, and representatively, there
are Generative Adversarial Network (GAN), Convolutional Neural Network (CNN), Auto
Encoder (AE), Deep Neural Network (DNN), and Recurrent Neural Network (RNN). For
example, DNN is a typical neural network with varied numbers of hidden layers, which
trains to model compound nonlinear interactions [37,38]. Owing to the features, DNNs
can be demonstrated in various types of artificial neural networks and are extensively
used in forecast and labeling in various businesses and educational fields [39]. This study
developed a model for predicting financial loss of construction sites using DNN in respect
of input data, output format, and universality of the model.

The developed model was verified by calculating RMSE (root mean square error) and
MAE (mean absolute error). The RMSE and MAE values represent the errors between
the predicted and actual results and are key indicators for evaluating the artificial neural
network model [40]. MAE is an absolute value estimated and averaged the alteration
between the predicted value and the actual value. The smaller the MAE value, the smaller
the prediction error. RMSE is expressed as a solitary measure of the variance between the
predicted and actual values of the model, and the smaller the RMSE value, the smaller the
prediction error. The input data was preprocessed using the z-score normalization method
in order to control different units and quantities between variables. Of the total data, 70%
was used as learning data (30% of the data was used as validation data), and 30% was
utilized as test data.
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5.1. Network Structure Scenario and Hyper-Parameter Tuning

Since the DNN model adjusts the model using a backpropagation algorithm, the
optimal combination may differ depending on the input and output variables. In order
to find the optimal model, it is necessary to find the optimal model arrangement through
trial and error through network structure scenario and hyper-parameter tuning [41]. The
network architecture scenario will determine the number of layers and nodes. The hyper
parameters decide the dropout, optimizer, batch size, epoch, and activation function. For
example, dropout is a normalization penalty to prevent overfitting, which degrades the
performance of deep learning models. The optimizer is concerned with the speed and
stability of learning, and the batch defines the unit of learning for efficient learning. Epoch
specifies the number of learning. The activation function specifies how to adjust the weights
of the nodes to find the least cost function [41,42].

In this study, considering the amount of data, the network structure scenario is set
to have three hidden layers, and the dropout is determined to be 0 or 0.2. The optimal
combination was simulated with trial and error. The batch was designated 5 and the
epoch was assigned 1000. Adaptive Moment Estimation (Adam) was used as the optimizer,
the ReLu (Rectified Linear Unit) function was accepted as the activation function. Adam
Method is a generally widely used optimization algorithm due to its efficiency of calculation
and versatility. It is a first-order gradient algorithm with the concept of a moment in a
stochastic objective function [43]. ReLu was developed to solve the shortcomings of the
existing Sigmoid function as an activation function that changes the output according to
the input value greater than or equal to zero [44].

Table 3 represents the MAE and RMSE value for the learning results for each network
structure scenario and dropout (0, 0.2). A scenario in which MAE and RMSE have minimum
values was selected as the final model. As a result of learning, when the dropout value is
0.2, the loss function is commonly greater than when the dropout value is zero. In addition,
as the number of hidden layer nodes growths, the MAE and RMSE values incline to growth,
and in the scenario where the number of hidden layer nodes is 700-700-700, both MAE and
RMSE have minimum values, and the MAE and RMSE values have a tendency to increase
again. Consequently, the Network Structure Scenario of the final model was determined to
be 700-700-700, and the dropout was zero.

Table 3. Result of learning.

Network Structure Scenario
Dropout (0) Dropout (0.2)

MAE RMSE MAE RMSE

100-100-100 1.016 1.281 1.442 1.818
200-200-200 0.935 1.175 1.476 1.874
300-300-300 1.009 1.308 1.439 1.789
400-400-400 0.986 1.237 1.479 1.864
500-500-500 0.924 1.159 1.355 1.698
600-600-600 0.918 1.222 1.417 1.796
700-700-700 0.855 1.072 1.341 1.684
800-800-800 0.911 1.133 1.373 1.772
900-900-900 0.897 1.131 1.299 1.657

1000-1000-1000 0.978 1.253 1.282 1.620

5.2. Final Model and Validation

Table 4 shows the firmed network structure and hyper parameters. The MAE and
RMSE values were calculated and compared, individually, using verification data and test
data for the validation of the DNN model. In addition, the Multiple Regression Analysis
(MRA) model was established utilizing the Multiple Regression Analysis Method, which is
commonly adopted in the generation of the current prediction model. MAE and RMSE
values were estimated, separately, and the values of the two models were matched. The
IBM Statistical Package for the Social Sciences (SPSS) V23 was accepted to create for MRA
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model. The results and comparison results of each model as shown in Table 5. The results
of verification data were MAE 0.707 and RMSE 0.844, and the results of test data were
MAE 0.774 and RMSE 0.975 in the DNN model. As a result of comparing the values of
the two data, the overfitting problem of the model is considered to be insignificant since
the difference concerning the two values is not great. Furthermore, the DNN model had a
minor prediction error rate of 11.2% in MAE and 42.2% in RMSE than in MRA as a result
of comparing the two models.

Table 4. Configuration of network structure and hyper-parameter.

Group Composition Detail

Network
structure

Layer 3

Node 700-700-700

Hyper Parameter

Optimizer Adaptive Moment Estimation Method

Activation Function Rectified Linear Unit function

Dropout 0.0

Batch Size 10

Epoch 1000

Table 5. Model comparison result.

Model
Validation Test

MAE RMSE MAE RMSE

DNN 0.707 0.844 0.774 0.975
MRA - - 0.861 1.386

DNN/MRA (%) 11.2% 42.2%

6. Discussion

In this study, a model for predicting financial loss of construction sites was developed
using the DNN algorithm, one of the deep learning algorithms. For model development,
an insurance company’s claim payout record was recorded to collect data on the cost of
financial losses incurred at the actual construction site. A deep learning model was trained
based on the collected data. Moreover, the proposed model was compared with other
models to validate its effectiveness. Moreover, in order to derive an optimal model, a trial-
and-error method was adopted to find the network scenario and hyper-parameters. As a
result of model comparison, the DNN model was 11.2% minor in MAE and 42.2% in RMSE
than the MRA model (0.861, 1.386), correspondingly. Consequently, it can be seen that
the non-parametric model DNN is more suitable than the parametric model MRA for the
analysis of financial loss data of construction sites with nonlinear characteristics. Further-
more, in the comparison of the ratio of the two indicators, RMSE showed a prediction error
rate of 30% or more lower than that of MAE, which is due to the calculation characteristic
of RMSE, i.e., giving a large penalty to a large error value. This result indicates that the
non-parametric model DNN is more reliable than other models for identifying the extent
of financial risk for construction projects. Owing to the nature of the construction industry,
the size of the project varies widely, so this error value may occur more frequently. It can
be seen that the learning of the DNN model reflects these singular values well.

Using the methodology and development model of this study, the manager of a
construction site can predict the financial loss cost of their construction sit, or can develop
an optimal deep learning prediction model according to the needs and conditions of
managers at other construction sites. Moreover, in terms of the precision of prediction, the
DNN model has a lower prediction error rate than the current model, so it will be more
reliable and capable of precise cost prediction. Based on these sophisticated financial loss
predictions, it is possible to reinforce the management of the construction site through
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active investment to reduce the amount of loss by grasping the amount of risk in advance.
For instance, it is possible to estimate the amount of financial loss before the start of
construction, prepare countermeasures for losses, and establish preventive strategies for
facility investments in advance. In addition, it will be helpful in the stages of financial
planning such as project budget preparation and emergency reserves based on sophisticated
loss cost forecasting. For case, project owners will set a guideline on risk that fits their risk
appetite and capital assets and help manage business continuity. Through the established
guideline, it is likely to prepare strategies for avoidance and transfer of losses, such as
expanding insurance coverage and purchasing special contracts according to the expected
loss. This could reduce the risk of possible financial losses in the future. Moreover, it will
provide a standard for thinking about the rate level for the currently subscribed insurance
rate or the insurance rate to be subscribed.

The established model is able to be useful to the financial loss cost analysis and pre-
diction model development of other industrial sites in the future. Therefore, it can be
used for the development of models or systems in the private or public sector of other
industrial sites. Moreover, natural disasters such as earthquakes, hurricanes, and so on have
been well recognized as game changers with negative effects on societies, economics, and
environments at national levels recently due to the rapid climate change [45–48]. Previous
studies have insisted that natural hazards have effects on construction projects and actual
sites. For example, Kim et al. [49,50] have revealed that typhoon-induced heavy wind and
distance from shorelines have close relationships with significant damages to residential
and commercial buildings at the region where hurricanes occur. Moreover, movement and
direction of hurricanes can have significant effects on the extent of damage for buildings.
In this study, natural disasters such as flood, precipitation, and maximum wind speed have
been considered as variables that can affect financial loss at the construction site addition-
ally. The DNN model revealed that natural disasters could be associated with financial
losses. This finding can be utilized for mitigating unexpected risks such as financial losses
since natural disasters would be the strongest influential factors for losses at construction
projects [13]. Future construction projects can utilize findings of this study to cope with var-
ious possible natural hazards for preventing unexpected financial losses while considering
additional more specific construction site-oriented variables such as geographical and local
weather. Although these factors could not be easily estimate quantitatively, if they could be
incorporated into risk assessment models, future construction projects could be protected,
thus preventing unexpected financial losses and casualties at actual construction sites.

In addition, it will be a basic study to analyze the vast amount of big data gener-
ated from various IoT devices, sensor devices, CCTVs, etc., which are widely spread in
recent construction sites. However, this study adopted a record of claim payouts from an
insurance company in South Korea. Further research is desired to collect, compare, and
prove claim payout records from diverse countries or different insurance companies in
the future. Additional research is preferred through the amount of data and additional
input variables through data collection of additional loss data and additional variables
for the advancement of the developed model. This research was not performed to find
out the relationship between the main valuable and the type of construction projects due
to inherent limitations of the model used in this study. If additional future studies could
accumulate more loss data on various types of construction projects, it could be possible
to match specific causes for financial losses with different kinds of construction projects
and prepare well-customized plans to cope with unexpected situations associated with
financial losses.

Furthermore, future research should consider both aleatory and epistemic uncertain-
ties for random variables to have more reliable predictions for financial losses. For example,
the epistemic uncertainty can occur due to the lack of available data or knowledge. How-
ever, such uncertainty can be reduced by applying high-quality data such as empirical data
(i.e., insurance claim payout) regarding specific construction projects. Therefore, future
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research that applies more reliable probabilistic methodologies and reliable data is strongly
recommended to obtain robust results regarding prediction of financial losses.

7. Conclusions

In recent years, the scale of construction sites has increased, and high-rise buildings
and complex building construction projects are increasing. In addition, the recent increase
in natural disasters and urbanization caused by global warming pose a risk of construction
projects. Therefore, both the severity and frequency of accidents occurring at construction
sites are increasing, and accordingly, financial losses are increasing rapidly. Consequently,
for effective and sustainable construction project management, a model for predicting
financial losses to reduce and manage the risk of such financial losses is inevitable. In this
study, a financial loss model of a construction site was developed using a deep learning
algorithm based on the financial loss data of a construction site.

In this study, a model was developed by applying a deep learning algorithm to predict
the financial loss cost of a construction site and verified through comparison of the results
of other models. As a result of the validation, the model established in this study can
increase the reliability of the prediction of the cost of financial loss at the construction
site, and the prediction method can be improved. Hence, a model for predicting financial
loss of a construction site utilizing deep learning technology can be a key to effective
construction project management and reduction of the risk of financial loss. Since the
results and framework of this study can be applied to other types of industrial sites and
related studies, it will eventually help to reduce the cost of financial losses in the industrial
sites. In addition, the model developed in this study can be advanced into a more reliable
model through continuous data acquisition and additional verification with other models
in the future.

Furthermore, the developed model in this study could be used for developing coun-
tries where historic loss data might be unavailable or insufficient to obtain reliable results
for financial losses. Various factors such as natural hazards, built environments, insur-
ance data, and project characteristics handled in this research provide a vital reference
to government agencies to prepare guideline for coping with unexpected financial losses
caused by various factors that can be found at construction sites. In particular, insurance
companies could utilize results from this study such as applying risk variables that can
affect their business plans in an area that is prone to natural hazards to reduce financial
losses by setting various insurance techniques such as premium price and maximum loss,
event limiting their asset under management (AUM). The insurer also can benefit from the
premium price since they would have the opportunity to be paid for damages caused by
unexpected natural hazards at construction sites. Such advantages can help both insurance
companies and insurers to reduce their financial losses, reflecting risk variables revealed
in this paper. Moreover, governments can apply results of the present study to prepare
safety guideline and regulations to mitigate potential damages at construction sites. By
doing so, they can enhance the resilience against potential numerous risks caused by the
natural hazards.

Advanced risk assessment and management for construction sites could help the gov-
ernment to prepare unexpected extreme events such as natural hazards by providing more
structured and reasonable risk mitigation plans for their whole communities. Moreover,
developing countries where reliable data are unavailable may be able to utilize techniques
and results presented in this study to prepare their own emergency and business plans to
enhance safety and mitigate potential financial losses.
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