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Abstract: Radar measurements are inherently affected by various meteorological and non-
meteorological factors that may lead to a degradation of their quality, and the unwanted effects are
also transferred into composites, i.e., overlapping images from different radars. The paper was aimed
at answering the research question whether we could create ‘cleaner’ radar composites without
disturbing features, and if yes, how the operational practice could take advantage of the improved
results. To achieve these goals, the qRad and qPrec software packages, based on the concept of quality
indices, were used. The qRad package estimates the true quality of the C-band radar volume data
using various quality indices and attempts to correct some of the adverse effects on the measure-
ments. The qPrec package uses a probabilistic approach to estimate precipitation intensity, based
on heterogeneous input data and quality-based outputs of the qRad software. The advantages of
the qRad software are improved radar composites, which offer benefits, among others, for aviation
meteorology. At the same time, the advantages of the qPrec software are manifested through im-
proved quantitative precipitation estimation, which can be translated into hydrological modeling or
climatological precipitation mapping. Beyond this, the developed software indirectly contributes
to sustainability and environmental protection—for instance, by enabling fuel savings due to the
more effective planning of flight routes or avoiding runway excursions due to information on the
increased risk of aquaplaning.

Keywords: radar meteorology; radar composite; quality index; quantitative precipitation estimation;
aviation safety

1. Introduction

Meteorological radars are an important part of the everyday practice of weather and
aviation professionals and have a direct impact on public welfare. They provide valuable
information on the hydrometeor-related atmospheric processes and cover various spatial
and temporal scales: the movement of weather systems, genesis/evolution/decomposition
of cloud systems, rainfall rates, form and phase of hydrometeors, etc. [1–3], and all of these
are essential inputs in forecasting/nowcasting models [4]. One of the most significant
drawbacks of radar-based observations is the questionable precision of the rainfall amount
estimation, in comparison with the true amounts measured by a ground-based network of
rain gauges [5]. Practically, one of the most essential goals of radar meteorology is adjusting
the inherently imprecise radar measurements to the spatially relatively sparse gauge-based
information on rainfall [6].

More radars (i.e., an increase in quantity) do not necessarily imply better rainfall
estimates (i.e., an increase in quality). Nevertheless, with correctly chosen approaches to
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creating radar composites (i.e., overlapping images from different radars), one can also
enhance the quality of the radar information [7–9]. Homogeneous radar composites over
larger areas or locally in complex terrain, created from a heterogeneous radar network,
provide up-to-date information on meteorological processes in the lower air-space. Ob-
servations and, more importantly, nowcasting of thunderstorms allow for the strategic
planning of airport operations and flight routes. Increased situational awareness con-
tributes to safety, particularly during landing or take-off, for instance in minimizing the risk
of runway excursions. These are the most frequent type of runway safety accidents—they
add up to 25% of all accidents over the 2015–2019 period according to 2019 Safety Report of
the International Air Transport Association [10]. Additionally, preparedness and ability to
cope with unexpected situations and/or adverse weather events [11] results in optimized
operating schedules, which save fuel, reduce delays, minimize diversions (e.g., [12]), and,
thus, reduce costs and decrease the greenhouse gas emissions. The improved radar com-
posites may, therefore, indirectly increase efficiency and enhance sustainability of the air
traffic management.

High quality radar information is particularly preferred in aviation; thus, aircraft
are currently compulsorily equipped with airborne radars. These instruments, however,
have limited power, and therefore, are only able to cover a shorter range ahead of the
aircraft. Radar composites, on the other hand, offer more detailed information regarding
the meteorological conditions within a much wider range along the flight route and in the
vicinity of the target airport.

There are a number of verified and approved methods for constructing radar com-
posites in the scientific literature, either on the level of cases studies or in the form of
implemented algorithms from the operative practice of hydrometeorological services. Nev-
ertheless, radar manufacturers generally do not devote dedicated attention to the issue of
compositing, as they primarily focus on the single-radar algorithms. This is, on one hand,
logical, since well-functioning single radars are the necessary condition of any radar net-
working. On the other hand, this is a topic that requires a more elaborate approach mainly
in the light of increased demands for radar data within pan-European data exchange and
co-operation [7–9].

One of the basic dilemmas when evaluating data from more than one radars
(N > 1) at a given point (pixel, bin) is how to treat the multiplicity of the reflectivity
information Zi, i = 1, . . . , N. There are different, generally accepted methods: to take the
maximum value of the available reflectivity Zi, to estimate the mean reflectivity, or to
compute some weighted average of the Zi values. In the latter case, the definition of the
appropriate weights offers plenty of further alternatives to cope with the problem: for
instance, with the weighting factors being inversely proportional to the distance of the
given pixel from each radar, with the inclusion of the actual height of the radar beam above
the ground within the target pixel, or with the combination of these or further variables.
Jurczyk et al. [13] presented a substantial overview of the pros and cons of different com-
positing methods and emphasized that the weights might also express the quality of the
data from the contributing radars.

The quality of the radar measurements may be expressed through quality information
or quality indices (QI, [14]). Beyond the meteorological targets and its effects (e.g., bright
band), the radar signal is affected by a number of further factors stemming from the techno-
logical construction of the radar itself, the geomorphological character of the surrounding
area (e.g., ground clutter, beam blocking), different non-meteorological targets (e.g., birds,
insects, interfering wi-fi signals), the parameter settings of the particular radar scan (height
of the radar beam above the target points, the age of the reflectivity information within a
given scan), etc. The effect of all these factors may be converted into mathematical form as
quality indices, and the combination of these phenomena-related, particular QIs might be
understood as the overall quality index of the given radar [15]. There is no general conven-
tion regarding how to define and/or how to use the different QIs—their usage depends on
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the goals of the research teams or the operational requirements of the hydrometeorological
services [13,16–23].

A common measure of the quality of the QI-based estimation is some visual improve-
ment in the layout of the radar composites. Visual impressions are subjective, and they
are hard to quantify; thus, the benefits of the QI-based approaches are usually evaluated
indirectly, through the improvement of the performance of various statistical, weather
forecasting, or hydrological models. Such a category of statistical models is quantitative
precipitation estimation (QPE). It is beyond the goals of the current study to present an
overview of the methods of radar-based QPE [4]; however, we can mention a couple of
works especially devoted to QI-based QPE. Szturc et al. [20,21] developed a method of QPE
in a probabilistic framework. Their concept assumes that the probability density function
(PDF) of the rainfall amounts (rates) can be approximated by the two-parameter gamma
distribution, where the parameters of the PDF are functions of the radar deterministic
measurement R and the quality index QI. With the estimated PDF parameters for each
pixel, ensembles of precipitation fields can be generated, which further serve as inputs for
hydrological modeling [21]. Zhang et al. [24] developed QI-based QPE for the national
network of polarimetric radars in China with QIs based mostly on polarimetric parameters.

The current paper was motivated by the development of two inter-related software
packages, qRad and qPrec, that were built to take advantage of the quality information
from the available C-band radar measurements. The software packages follow the recent
trends in the development of radar applications and are in line with the recommendations
of the OPERA program (Operational Programme for the Exchange of Weather Radar
Information) of the EUMETNET (Network of European Meteorological Services) [9]. The
developed software can indicate noticeable results in the fields of operative meteorological
or hydrological practice, with the potential for use in aviation meteorology. The benefits of
the qRad software are represented by improved radar composites to better aid air navigation
and safety, whereas those of the qPrec software are manifested through enhanced QPE,
which than can be translated into more realistic hydrographs as outputs from hydrological
models, and the estimation/forecast of runway conditions in air traffic management.

2. Methods

The development of the qRad radar data processing and the qPrec precipitation esti-
mating software started in 2015 at the Slovak Hydrometeorological Institute (SHMU). Both
packages are based on a network-centered concept where the data from different radars
are not processed independently, but simultaneously, together with further data sources.
The data from the available radar network are inter-compared, controlled, and combined
with each other. The software is written in the C++ language in a modular way that allows
for easy portability, and uses parallel processing techniques to reduce the computing time.

The qRad software assesses the actual quality of the radar volume data by means
of various quality indices and aims to correct some undesirable effects of the measure-
ment (e.g., beam-blockage, ground-clutter, and non-meteorological echoes). The corrected
radar volume data are then directly processed to composite radar products and qual-
ity maps. Sections 2.1 and 2.2 below provide a description of the concept of the radar
quality assessment.

The qPrec package adopts estimation theory and a probabilistic approach to estimate
the rainfall intensity as accurately as possible, based on heterogeneous input data (rain-
gauges, radars, satellites, the potential of using lightning detection in the future, etc.). The
calibrated input data fields are combined according to their precision and quality, resulting
from the analysis of the qRad software. In other words, the quality indices of the radar
measurements represent the link that couples the qPrec and the qRad software. The concept
of the qPrec software will be presented in more detail in Section 2.3.
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2.1. Specific Measures of the Radar Data Quality

Any measurement of a meteorological radar is influenced by a variety of factors.
Some of these originate from the radar hardware and the settings of the measurement
parameters (e.g., the power, polarity, beam-width, noise, detection range, and various
filters on the hardware side). Other factors are caused by the surrounding environment
(e.g., beam height above the terrain, beam-blockage, sea-clutter, and interference with other
electronic devices) or by the actual meteorological situation (e.g., beam propagation, partial
beam-filling, bright-band, overshooting of the low clouds, and second-trip echoes). The
effect of the majority of these quality factors can be expressed in a mathematical form, or
we can estimate their probability. The most convenient way of using the quality factors
(quality indices, QI) is in a form of dimensionless numbers between 0.0 and 1.0, where
the value 0.0 (1.0) stands for the lowest (highest) quality. The qRad software estimates the
quality of each measured bin in the radar volume data using different quality indices.

The current version of the qRad software is based on a combination of nine quality
indices. These evaluate the following factors:

• The distance from the radar;
• The beam height above the terrain;
• The beam blockage by the terrain;
• The similarity of the target bin to the surrounding ones;
• The time quality;
• The cloud type quality;
• The cloud top height;
• The average quality;
• The constant quality.

The listed QIs can be divided into two groups based on the principle of whether the
same or a similar concept of the given QI has already appeared relatively frequently in
previous studies (the first five QIs above), or the use of the particular QI is less frequent
and/or it represents a novel concept of the authors (the last four QIs). The definition, the
mathematical formulation (if extant) and the conceptual background of the particular QIs
together with the references to formerly published studies are summarized in Appendix A.
Here, we provide a formal definition of the individual QIs in the form of shadowed masks
in Figure 1 with short comments to them in the following paragraph.

An example of a PPI scan (plan position indicator) made by the radar located in
Brzuchania (south of Poland) is shown (Figure 1a) along with the masks of all the QIs
discussed herein (Figure 1b–j). The distance QI that expresses the degradation of the radar
signal quality with the distance is clearly radially symmetrical (Figure 1b). The beam
height above the terrain has an important role in rainfall estimation: the closer the target
bin to the surface, the more precise the estimation. In Figure 1c, the beam height QI is
of an acceptable quality only within a radius of about 100 km from the radar. The beam
blockage QI (Figure 1d) apparently reflects the roughness of the surrounding terrain that
is characteristic for the particular radar. The similarity QI evaluates the similarity of the
target bin with those within a 3 ×3 window centered on it. As demonstrated by Figure 1e,
the similarity QI practically copies the edges of the objects detected by the radar.

The time QI expresses the temporal degradation of the radar signal within a sin-
gle antenna rotation. Figure 1f indicates that the most recent information on the scan
(i.e., higher values of the time QI) comes from the north-to-north-eastern sector, while the
largest time differences (i.e., lower time QI) are assigned to the bins in the north-west-
to-northern sector. The dark spots on the mask of the cloud type QI (Figure 1g) indicate
echoes where no clouds were identified by the NWC SAF product (Nowcasting Satellite
Application Facilities, [25]); however, radar detected some backscattered signal, perhaps
due to non-meteorological targets, electromagnetic disturbance, or ground clutter. The
cloud top height QI (Figure 1h) conveys similar information but with the focus on the
altitudes over the clouds. The average QI (Figure 1i) shows the average value of the
two previous cloud-based QIs for the past 1-h interval, indicating the locations that are



Sustainability 2021, 13, 5285 5 of 24

permanently affected by non-meteorological echoes. Finally, the value of the constant QI
(Figure 1j) is chosen based on consideration on the degree of other disturbances affecting
the radar signal, on the temporal and spatial resolution of the given radar, or on its scanning
regime. For instance, the first elevation of the Polish radars are generally high (0.5◦); thus,
their beams are relatively high over the territory of Slovakia, and therefore they are less
valuable for the Slovakia-focused radar composites.
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Figure 1. A selected PPI (plan position indicator) scan (a) of the radar located at Brzuchania, south of Poland (50◦23′10′ ′ N
20◦5′41′ ′ E) from 7 June 2020, 22:00 UTC, and the corresponding masks of the individual quality indices: (b) distance QI,
(c) beam height QI, (d) beam blockage QI, (e) similarity QI, (f) time QI, (g) cloud type QI, (h) cloud top height QI, (i) average
QI, and (j) constant QI. The white color of the masks indicates perfect quality (qi = 1.0), whereas the black color indicates
poor quality (qi = 0.0). The range of the radar is 250 km.

The complexity of the quality assessment of the radar measurements is also illustrated
by the fact that, beyond the discussed nine QIs herein, there is a wide variety of further ef-
fects that can be (and have been) quantified via different QIs. Friedrich et al. [19] attempted
to approximate the vertical reflectivity profile with an enhanced focus on the bright band.
Unique QIs that appeared only in the study of Fornasiero et al. [16] were those related to
vertical continuity and the antenna pointing error. Szturc et al. [20,21] made use of QIs
related to the number and quality of the precipitation rate products that were utilized
within the process of the quantitative precipitation estimation.

More generally, one may practically quantify any phenomena that affects the propaga-
tion of the radar beam, and express it in the form of a corresponding QI. The only limitation
is the meaningfulness of the defined QIs and their practical usability. The topic of QIs is
also being intensively discussed within the OPERA program of the EUMETNET, where the
first author of the current paper is also involved as a correspondent for the SHMU [26–28].
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2.2. The Overall Measure of the Radar Data Quality

The overall QI of each radar bin is estimated in a multiplicative form, using the
individual specific QIs (Appendix A):

qii =
n

∏
j=1

qij,i (1)

where qii is the overall QI of the target bin from the i-th radar, qij,i is the j-th specific QI of
the target bin from the i-th radar, and n is the total number of the specific QIs. The final
value of the radar product is then estimated as a QI-weighted average from all available
radars at the given point:

z =
∑N

i=1 qiizi

∑N
i=1 qii

(2)

where z is the value of the resulting radar product, zi is the corresponding value from the
i-th radar, and N is the number of radars.

Using a probabilistic approach, one can estimate the overall QI of all radars at the
given point. This is simply expressed as 1.0 minus the probability of a bad measurement at
the given point:

qi = 1.0− P′ = 1.0−
N

∏
i=1

P′ i = 1.0−
N

∏
i=1

(1.0− qii) (3)

where P′ and P′ i are the probabilities of bad measurement for the resulting product and for
the i-th radar, respectively.

The method of using the resulting QI also depends on the target radar product.
Currently, no volume filtering is adopted, i.e., the individual specific QIs are combined into
the overall QI according to Equations (1) and (3). We could, in principle, introduce volume
filtering by defining “no-data” in the case of QI not exceeding a pre-defined threshold.
Nevertheless, different methods of combination of the specific QIs and the volume filtration
methods have not been studied so far and need to be tested in the light of the chosen target
radar product.

2.3. The QI-Based Estimation of Precipitation

The design and development of the qPrec precipitation estimation software was started
from the scratch. The governing idea was to combine probabilistic and variational ap-
proaches. The schematic of the processing chain of the qPrec software is sketched in
Figure 2.
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Figure 2. The processing chain of the qPrec software. “dBz” indicates the radar reflectivity products,
qi stands for quality indices, and H-SAF is the EUMETSAT Satellite Application Facility on Support to
Operational Hydrology and Water Management. K—the total number of the rainfall-related products,
P—the probability of precipitation, RR—the rainfall rate, σ2—the variance of the rainfall rate.

The qPrec processing chain (Figure 2) consists of four blocks. The first one is the
calibration step. At the very beginning, the precipitation-related variables are selected.
This may be, for instance, the radar reflectivity in terms of the CMAX (column max,
i.e., the highest reflectivity in the corresponding column above the Earth’s surface), CAPPI
(constant altitude PPI, i.e., a slice through a multitude of different PPI scans at a pre-
defined altitude above the Earth’s surface), etc.; further qi, H-SAF (EUMETSAT Satellite
Application Facility on Support to Operational Hydrology and Water Management [29]; for
instance, the H-SAF product P-IN-SEVIRI (H03B)—instantaneous maps by infrared images
from operational geostationary satellites “calibrated” by precipitation measurements from
satellite sensors in sun-synchronous orbits); or any other variable that is directly associated
with the precipitation, such as the lightning density.

Let us denote the selected precipitation-related variables as yk, k = 1, . . . K, where
K = N + M, N is the total number of radars at the given point, and M is the number of
additional, rainfall-related fields (such as an H-SAF product as mentioned above). It is not
advised to select different radar reflectivity products at the same time (such as CAPPI and
CMAX), due to their cross-correlation.
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The input fields of yk are calibrated by the rain-gauge data to obtain an unbiased
estimate of the rainfall-rate derived from the given input variable. The calibration is
carried out on the basis of pairs of the rain gauge measurements and the corresponding
radar-based rainfall estimation within the range of the given radar (usually approximately
for 100–200 rain gauges) and for a long-term period lasting for several weeks (which, for
instance, allows retaining the seasonal or intra-annual variability of the precipitation).

The outputs of the first processing block are four functions that describe the actual
relationship between the input field yk on one hand, and the probability of precipitation P,
the mean rainfall rate RR, the variance of the rainfall rate σ2, and the mean quality index qi
of the inputs on the other ( fP, fRR, fσ and fqi, respectively). Figure 3 presents an example
of these four relationships for CMAX as the precipitation-related input field.
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The second processing block is the conversion. In this step, the input maps are
converted by the calibration functions to maps of the mean rainfall rate, variance of the
rainfall rate, probability of precipitation, and quality index.

The processing Blocks #1 and #2 are repeated K times with each circle corresponding
to a different input field yk, k = 1, . . . , K.

The third block is the combination of the K converted input maps into a common
map of the mean rainfall rate, variance of the rainfall rate, probability of precipitation, and
quality index. The second and third block can be characterized by Equations (4)–(7):

Pc =
∑K

k=1 qik fP(yk)

∑K
k=1 qik

(4)

RRc =
∑K

k=1 fRR(yk)/σ2
k

∑K
k=1 1/σ2

k

(5)

σ2
c =

1

∑K
k=1 1/σ2

k

(6)
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σk =
qi
qik

fσ(yk) (7)

where Pc, RRc, and σ2
c are the resulting combined (or ‘composite’, hence the index ‘c’) prob-

ability of the precipitation, mean rainfall rate, and variance of the rainfall rate, respectively.
yk is the k-th input value at the given point, and qik is the quality of the k-th input value at
the given point (i.e., overall or combined quality index, Equation (1). fP, fRR, and fσ are
the calibration functions for the probability of the precipitation, the mean rainfall rate and
the variance of the rainfall rate, and qi is the mean quality index of the inputs used in the
calibration step. As Equation (7) indicates, the actual QI is used to scale the variance of the
actual input value, which is then used as the weighting factor in Equations (5) and (6).

The last processing block is the product generation. Given the probability of zero
precipitation (1-Pc) and the parameters of the non-zero rainfall rate distribution (RRc,
σ2

c ), the probability density function of the rainfall rate at the given point is known, and
several products can be generated—for instance, the actual rainfall rate (Pc·RRc), and the
probability of rainfall rate levels, percentiles, sums, etc.

3. Results

It is generally not straightforward to quantify the degree of improvement of the radar
composites objectively, in light of the novel QI algorithms. Beyond the visual analysis of
the radar composites, it is difficult to find any method that can directly evaluate the effect
of the innovative methods in their preparation. Obviously, there is a number of indirect
evaluation methods, for instance through the outputs of numerical weather prediction
models or hydrological models—these will be discussed in the upcoming sub-sections.

3.1. Visually Improved Radar Composites

Two examples of radar composites with and without the quality information are
presented in Figure 4. The panel shows the composite of seven (nine) radars in the left
(right) column (each corresponding to a different weather event), first without the quality
information (top), then with the QI algorithm described within this paper (center), and
finally, a composite field of QI (bottom) is presented. The difference between the first
two pairs of radar composites is clear. The disturbing, non-meteorological echoes, mostly
caused due to local wi-fi routers with their frequencies interfering with the radar signals,
were removed. Consequently, the radar composite with the quality information is evidently
cleaner and offers a more reliable overview of the current meteorological situation.

In the examples presented in Figure 4, the overall QI was constructed on the basis
of all specific QIs but the one based on the beam height above the terrain since its usage
contradicts with the concept of the radar product CAPPI 2 km.

The visual improvement of the radar composites is particularly appreciated in aviation.
Pilots, dispatchers, and air traffic specialists put value on being able to make decisions on
the basis of ‘clean’, QI-based radar maps and not being forced to mentally filter out the
unwanted information from the old radar composites with no quality information included.
Thus, cleaner radar images enhance aviation safety; they allow for the more convenient and
precise planning of flight routes as well as the necessary maneuvering of air traffic in real
time operations in situations of the quick development of dangerous weather phenomena.

A QI-based radar composite that is updated in real time is an excellent tool as a
separate layer on the air traffic management radar display at an ATC (air traffic control)
workplace. A radar display that has the ability to measure distances by mouse and
integrated radar data as a background represent invaluable support compared to separate
radar displays at an ATC workplace, for instance to meet the regulations that an aircraft
should fly at least 10 km from a cumulonimbus cloud, etc. In addition to this, clean radar
composites do not purely offer visual advantages: a higher quality radar image has the
potential to produce fewer false alarms by automatic warning systems.
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The qPrec software for quantitative precipitation estimation was developed in an it-
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Figure 4. Examples of visual improvements in a composite of several radars from the Central Europe (Slovakia, Hungary,
Poland and Czech Republic). The column on the right (left) demonstrates a weather event from 5 August 2015, 13:10 UTC
(19 August 2015, 12:30 UTC), by means of a composite of seven (nine) radars. The composites at the top are without quality
information, whereas in the center, the quality information is incorporated in the process of compositing. The bottom line
presents the corresponding fields of the final QIs. The CAPPI 2 km radar product was used: constant altitude PPI, i.e., a
cross-section across a number of different PPI scans at the pre-defined altitude of 2 km above the ground.

3.2. QPE Improvement
3.2.1. Rainfall Mapping

The qPrec software for quantitative precipitation estimation was developed in an iter-
ative approach. Each upgrade or change of the software (e.g., incorporation of an additional
QI, new input field, and modified algorithm) was validated against the
24-h precipitation amount from the network of about 600 climatological and pluviometric
stations of the SHMU. A gradual expansion of the set of QIs in the qRad software is mani-
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fested in the enhanced precision of the 24-h precipitation estimation by the qPrec software.
This fact is illustrated in Figure 5.

Sustainability 2021, 13, x FOR PEER REVIEW 11 of 24 

enhanced precision of the 24-h precipitation estimation by the qPrec software. This fact is 
illustrated in Figure 5.  

Here, a traditional method of precipitation estimation based on the simple Marshall–
Palmer relationship with no quality information (Figure 5 top) is compared with that de-
rived by the qPrec software, making use of the QIs (Figure 5 bottom), whereas the ‘true’ 
information on the precipitation amounts from the pluviometric stations are shown in 
both figures. The Marshall–Palmer conversion relationship between the reflectivity factor 
Z [mm6/m3] and the rainfall rate R [mm/h] was used in its simplest form:  𝑍 = 200𝑅ଵ.଺ (8)

There were significant differences in the radar-based estimation of the precipitation 
field (based on a composite of four radars located in Slovakia), mostly at the southern 
borders of Central and Eastern Slovakia, and in the Eastern parts of the country where the 
traditional Marshall–Palmer-based approach clearly overestimated the observed precipi-
tation amounts. The QI-based estimation of the precipitation field, on the other hand, was 
much smoother, and successfully removed the majority of the non-meteorological signals 
as well as non-realistic estimates due to the bright band.  

Figure 5. A comparison of the 24-h rainfall measured with the network of ~600 climatological and pluviometric stations in
Slovakia (octagons) on 30 June 2017, with the estimation of those based on the radar data by means of a simple Marshall–
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Here, a traditional method of precipitation estimation based on the simple Marshall–
Palmer relationship with no quality information (Figure 5 top) is compared with that
derived by the qPrec software, making use of the QIs (Figure 5 bottom), whereas the ‘true’
information on the precipitation amounts from the pluviometric stations are shown in both
figures. The Marshall–Palmer conversion relationship between the reflectivity factor Z
[mm6/m3] and the rainfall rate R [mm/h] was used in its simplest form:

Z = 200R1.6 (8)
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There were significant differences in the radar-based estimation of the precipitation
field (based on a composite of four radars located in Slovakia), mostly at the southern
borders of Central and Eastern Slovakia, and in the Eastern parts of the country where the
traditional Marshall–Palmer-based approach clearly overestimated the observed precipita-
tion amounts. The QI-based estimation of the precipitation field, on the other hand, was
much smoother, and successfully removed the majority of the non-meteorological signals
as well as non-realistic estimates due to the bright band.

A similar analysis is presented in Figure 6; however, instead of a 24-h accumulation, the
focus is set on a long-term period, showing the comparison of the observed vs. estimated
rainfall amounts for a 5-month period (1 May 2017–30 September 2017). The colored dots
in the maps indicate the ratio rRG of the radar-based estimation of rainfall amounts and the
observed ones for three different approaches. A summary information on the frequencies
of occurrence of the given values of rRG is presented in Table 1.
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Figure 6. Ratios of the radar-based precipitation and the observed precipitation amounts for a
long-term period (5 months, May to September, 2017) in Slovakia. The radar-based precipitation
was estimated (a) using the Marshall–Palmer relationship, (b) by means of a calibration, but with no
quality information, and (c) by means of a calibration, and with the quality information included.
The analysis was based on 570 stations.
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Table 1. Summary of the frequency of the occurrence of sites (in %) with a given radar/gauge ratio
rRG in three maps of Figure 6. Based on the network of 570 pluviometric stations.

Radar/Gauge Ratio
rRG [–]

Marshall–Palmer
[%]

Calibration,
no QI [%]

Calibration,
with QI [%]

rRG < 0.5 0.0 17.1 0.5
0.5 < rRG ≤ 0.8 1.9 38.5 22.4
0.8 < rRG ≤ 1.2 14.9 40.2 71.6
1.2 < rRG ≤ 1.5 27.9 3.7 5.1
1.5 < rRG ≤ 2.0 42.5 0.5 0.4

rRG > 2.0 12.8 0.0 0.0

In the first map (Figure 6a), the rainfall amounts were estimated on the basis of the
Marshall–Palmer relationship (Equation (8)) The map indicates that the simple Marshall–
Palmer-based approach resulted in overestimation of the true precipitation amounts,
at approximately 85% of the stations. The highest rates of the overestimation (with
the radar/gauge ratio rRG exceeding 2.0) can be found in the southern parts of the
country where lowland character dominates. Ratios with the most acceptable values
(0.8 < rRG ≤ 1.2) as well as underestimation can be found at a considerably smaller number
of sites (Table 1).

A completely different picture of the radar/gauge ratios can be found in the second
map (Figure 6b), where the radar-based rainfall was estimated by means of a calibration
using the true rainfall measurements from the rain gauge network, but with no quality
information included. For the calibration, a completely different data set was used. Here,
40% of the sites are associated with an acceptable radar/gauge ratio. The most remarkable
drawback of this figure is that, at more than half of the sites (predominantly in the NW, N,
and NE, i.e., generally in the hilly and mountainous parts of the country), the true rainfall
is underestimated. The number of cases with overestimation is practically negligible.

Finally, the third map (Figure 6c) shows the results of a similar analysis where both
the calibration and the quality information were used in the procedure of the radar-based
rainfall estimation. The dominance of the green color indicating the most acceptable
radar/gauge ratios (~72% of all cases) justifies the added value of the QIs in the QPE
(Table 1). The percentage of sites with over- and under-estimated rainfall is the lowest
among the three different approaches.

3.2.2. Hydrological Modelling

As mentioned before, one of the most effective ways to evaluate the performance of an
improved QI-based QPE is to verify it through different weather forecasting, nowcasting,
or hydrological models. We also carried out such a test, by feeding the outputs of the qPrec
software as inputs in the hydrological model HBV (Hydrologiska Byråns Vattenbalans,
Hydrological Bureau’s Water Balance [30]), which is, among others, operationally used
by the hydrological forecasters of the SHMU and hydrological experts of MicroStep-MIS.
Figure 7 presents a comparison of three series of daily discharges for a selected 12-month
period (1 November 2016 to 1 November 2017) for the Hron River at the gauging station
Polomka (630 m a.s.l., Central Slovakia; the area of the upstream basin 329.54 km2) as
the observed one, and two further series as a result of hydrological modelling on the
precipitation estimation by the qPrec software and the INCA model (Integrated Nowcasting
through Comprehensive Analysis [31]), respectively.
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Figure 7. Course of the discharge values with an hourly time step for the Hron River at Polomka (Central Slovakia) from 1
November 2016 to 1 November 2017. The observed values are displayed in green, whereas the red (blue) color indicates the
estimated discharge from the qPrec software (model INCA—Integrated Nowcasting through Comprehensive Analysis [31]).

In the hilly and mountainous regions of Slovakia (such as the Hron River at Polomka),
the largest discharges are observed either due to snowmelt during the late spring months
(April–May) or due to convective rainfall or stratiform precipitation during the summer or
autumn months. Both effects are clearly discernible in Figure 7: (i) the increased discharge
values due to the heavy snowmelt around May 1 where the corresponding flood wave
attenuated slowly and lasted for a couple of weeks, and (ii) the shorter and quicker flood
events in the warm half year. Figure 7 further shows that the outputs of the hydrological
model reflect these phenomena in a different way. Both the qPrec- and the INCA-based
results were able to follow the course of the observed discharge (also with the influence
of partial snowmelt) during the cold half year acceptably well. Significant differences in
the model behavior appeared in the warm half year where the connection between the
precipitation and the discharge was more straightforward. The qPrec-based hydrograph
copied the behavior of the observed discharges both in terms of timing and magnitude (with
minor underestimation), whereas the INCA-based outputs constantly and significantly
overestimated the real-world values.

The bar plot in Figure 8 explains the findings derived from the hydrographs. The
differences in the outputs of hydrological modelling stem in discernible differences in the
time series of 1-h area-averaged rainfall in the upstream basin: the INCA-based rainfall
estimates generally exceed the qPrec values, particularly in the period starting from May.
Due to the fact that there is only a single meteorological observatory in the given basin, a
comparison of the INCA and qPrec estimates with the gauge data is omitted.
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It is beyond the scope of this paper, to find the reason for this behavior of the INCA
model. However, that the hydrological model based on the qPrec product results in a more
precise estimation of the observed discharge than that based on the INCA precipitation
analyses is important.

3.2.3. Runway Condition

Section 3.1 demonstrated the practical applicability of the qRad-based radar composites
for pilots and air traffic managers. In addition to the qRad software, the qPrec package
also offers clear benefits for aviation, namely, through an estimation of the precipitation
amounts (QPE) directly on the runways.

Assessment of the runway condition and optimization of the airport operation man-
agement are key issues in the research of air traffic management, particularly in the SESAR
(Single Europe Sky Air Traffic Management Research) program [32]. The amount of wa-
ter, regardless of its phase, is a crucial factor for the safety of aircraft landing. On a wet
or contaminated runway, the risk of adverse effects on the plane’s braking performance
increases. During the cold season, snow cover and/or ice may significantly decrease the
plane’s braking performance, whereas, during the warm season, the thickness of the water
film on the runway affects the risk of aquaplaning.

In our experiment, we focused on the observation of the height of the water film on
the runway surface and attempted to estimate this on the basis of radar measurements.
The mini-experiment was only performed for the warm season (more precisely, the sum-
mer period of June/July/August), mostly for the following reasons. First, to perform a
distant estimation of the amount of precipitation in a solid phase is a complicated task
mostly due to the effect of a number of further physical and thermodynamic processes
(e.g., melting, freezing, snow compacting, and wind effects). Second, climate change sce-
narios for the Central Europe generally foresee changes in the intra-annual distribution of
the precipitation: one can expect more frequent and more intensive precipitation events in
all seasons, whereas the mean precipitation is supposed to increase (decrease) in winter (in
summer) [33–35].

The experiment was performed at the International Airport Poprad-Tatry (Slovakia;
ICAO: LZTT; IATA: TAT). The location of the airport, with respect to the network of four
meteorological radars of SHMU is depicted in Figure 9. This reveals that the coverage of
the target area by meteorological radars is sufficient: the height of the layer that remains
invisible for radars is approximately 300 m, which is acceptable from the point of view of
detection of storms.

The height of the water film on the runway surface is measured at three locations of
the runway (with a length of 2600 m and oriented in the 09/27 direction): near its both
ends, and approximately in the middle of the runway. The intelligent road sensors Lufft
IRS31Pro-UMB provide measurement of the water film height with a temporal resolution
of 1 min.

On the other hand, the amount of precipitation on the runway was also estimated by
means of two methods of QPE on the basis of the CMAX radar product: in a traditional
way, using a simple Marshall–Palmer relationship (Equation (8)) with no QI included
(termed simply as CMAX), and using the qPrec package with the QI included (termed as
qPrec). Corresponding to the location of each sensor, the maximum precipitation amount
was estimated approximately within a 1-km radius and within an X-minute time window
(where X ≥ 4). Finally, for each datum, the maximum of the three maximum values was
selected for the analysis. We propose that the selected options (the spatial and temporal
resolution and the method of maxima) ensures that the QPE can capture the rainfall even
in the case when the core of the rainstorm does not hit exactly the runway.
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Figure 9. Coverage of the territory of Slovakia by the network of four meteorological radars of SHMU, expressed in terms of
the height of the lowest visible radar beam at the given point (in m above the ground). The location of the Poprad Airport
is denoted by the icon of a plane. The radar icons denote the locations of Malý Javorník (West), Kubínska hol’a (North),
Kojšovská hol’a (East), and Španí laz (South).

The results of the analysis are demonstrated in Figure 10. This presents the scatter
plots of the measured water film heights vs. the estimated rainfall amounts at the runway
for the summer months of the years 2019 and 2020 for both of the QPE methods considered
and for the rainfall accumulation time of 4 min.

The linear relationships between the water film heights and the rainfall amounts
corresponding to the particular QPE method were weak in both cases. The traditional
approach with no QI was characterized by poorly estimated rainfall amounts that often
appeared as evident outliers—in some cases exceeding values of 10 mm. These are striking
mostly in the right bottom regions of the plot, where they are related to very low values
of the measured water film heights. The large spread of the QPE estimates was, therefore,
reflected in a very low coefficient of determination (R2 = 0.18). On the other hand, the
cloud of points for the qPrec estimates was more compact. This was underpinned by the
fact that the estimated 4-min rainfall amounts did not exceed 3 mm. While the coefficient
of determination (R2 = 0.36) of the qPrec method was still relatively low, it was sufficient to
derive the overall conclusion of the experiment, i.e., the added value of the novel, QI-based
approach to QPE.

The results clearly depended on the settings of the experiment, particularly on the
time window of the accumulation of the qPrec amounts. The qPrec-based scatter plot
indicated that the estimates of the 4-min amounts underestimated the observed heights
of the water film. The 5- and 6-min time windows yielded similar scatter plots (with the
R2 practically with the same magnitude); however, the corresponding linear regressions
generally indicated overestimation of the observed values (not shown).
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tically with the same magnitude); however, the corresponding linear regressions gener-
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Figure 10. Scatter plots of the measured water film height on the runway (RWY) and the 4-min QPE for two summer
periods (June/July/August) of the years 2019 and 2020 at the Poprad Airport, Slovakia. Top: traditional QPE, based on a
simple Marshall–Palmer relationship, with no quality information included (CMAX). Bottom: novel QPE, based on the
qPrec package. The logarithmic color scale indicates the frequency of occurrence (10 × log10(N)) of the pairs of the values in
the bins with a width of 0.1.

4. Discussion

Radar composites of high quality are not only needed in the international exchange
of radar data but also locally in geographically complex terrain. In such cases, a locally
installed smaller meteorological radar (such as an X-band radar, [36–38]) could supplement
the information on the lower layers of the atmosphere that remain invisible for other
radars. Moreover, with their higher temporal and spatial resolution, these can contribute
to a more detailed characterization of precipitation systems, particularly in the case of
detection and nowcasting of severe weather phenomena [38]. One of the most important
drawbacks of the X-band radars is their limited maximum range (80–100 km); however,
this disadvantage is balanced by the network of C-band radars with a much wider spatial
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coverage. Therefore, developing correct methodologies for creating composites based on a
hybrid network of X-band and C-band radars is of a great importance [39,40].

The quality-based approach to the correction of the radar data offers a high de-
gree of flexibility for the researchers. The selection of individual QIs, their definition
(e.g., whether one uses linear or exponential relationships, as well as the selection thresh-
olds and constants), the method of scaling, and the technique of combination are rather
subjective. There is not a unique, objective, and standardized way of making use the QIs
themselves. Their benefits depends on the user’s application and on the particular method
of their implementation (weighting, thresholding, using the maximum of the QIs, etc.).

The effect of various QI algorithms are usually evaluated through different use-cases.
For example, when the radar data are used for QPE, the benefits of the QI algorithm should
be evaluated as the improvement of the QPE performance. Similarly, when the radar data
are used in numerical weather prediction models, the QI algorithm should be evaluated
by its influence on the model outputs. Nowcasting based on cleaner radar images should
be more reliable, as the non-meteorological echoes—which can cause unrealistic motion
vector patterns and subsequently wrong extrapolation of the rainfall field—are suppressed
or filtered out.

As soon as the first versions of the qRad software became available for internal use,
we experienced positive feedback from the forecasters and internal users of SHMU. They
emphasized the quality of our visualization where the majority of non-meteorological
and false echoes were removed or at least minimized by using the quality information.
Therefore, when presenting interesting meteorological situations to the official channels of
SHMU, they clearly preferred the qRad outputs over the products from the official software
of the radar manufacturer.

The software qPrec offers a wide range of benefits from the point of view of climatology.
The ground-based network of pluviographs can never be sufficiently dense to catch the
high temporal and spatial variability of the local intensive thunderstorms. qPrec is able to
detect these phenomena and allows for a more precise reconstruction of the meteorological
conditions of their occurrence, evolution and decay. This is particularly important in the
case of the evaluation of insurance issues and other expert opinions.

Hydrological validation is also a part of the iterative development process of the
qPrec software. The help of hydrologists of SHMU is kindly appreciated in this way. In
the operational forecasting of river discharges, the catchment precipitation was originally
estimated on the basis of the outputs from the INCA model. This routine has been changed
during the past couple of years as the catchment precipitation estimated by means of the
qPrec software was found to yield more realistic results than when based on the original
concept of INCA.

The results of the presented experiment with the water amount on the runway cannot
be generalized at this stage. To do so, a more elaborate study is necessary, based on
longer periods of observation and on a more complex (possibly non-linear) model with
more predictors and with assumptions on the runoff of the water from the runway, the
accumulation of the water on the runway from previous rainfalls, its evaporation, etc.
The experiment indicated the potential for utilization of the QI-based QPE in aviation
meteorology. Water levels on the runway can be practically estimated by the QI-based
method at a multitude of airports within a given region, and consequently the pilot may
have the chance of choosing to land at the airport with the least risky runway conditions.
An even more elaborated model would, in principle, be able to cope with nowcasting of
the runway conditions.

Both software packages are under development, with a many potentially useful
ideas for their further improvement in the near future. In qRad, a fine tuning of the
parametrization of the individual QIs is an ongoing process. Clearly, there is a possibility
of extending the range of the involved QIs—currently, QIs based on bright-band detection
and the radial components of wind data are in the testing phase. A further option to
improve the qRad software is in taking advantage of specific characteristics of the dual
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polarization radars [24]. We also plan to test the possibility of the incorporation of X-band
radars into the composites of C-band radars, which is a challenging task.

We further intend to improve the qPrec software, particularly regarding its statistical
background. First, the probability of precipitation should be calculated on the basis of
the Bayesian approach. Secondly, the current version of the qPrec package is based on the
hypothesis of normally distributed errors. This simplification should be revised in the
future, and a more sophisticated model of error distribution should be implemented. More
generally, the performance of the qPrec software will be tested using a wider spectrum
of precipitation-related characteristics. Beyond the CMAX product that has formed the
basis of the calibration of the precipitation field so far, further radar products (e.g., CAPPI)
and/or precipitation-related variables (satellite data, lightning characteristics, etc.) will be
involved and tested.

Both software packages are primarily intended for internal use at the SHMU. The qRad
software is also being used by the Hungarian Meteorological Service in the framework of
an H-SAF product validation. Beyond this, no commercial distribution of the products
is expected.

5. Conclusions

In this paper, an attempt was made to present the philosophy and specific features
of two software packages developed at the Radar Department of the Slovak Hydrom-
eteorological Institute. Both the qRad and qPrec packages are based on the concept of
quality information (QI) of the radar measurements. Different QIs express different factors
(environmental, meteorological, technological, etc.) that influence the radar data and their
quality. The overall quality of the individual radars can then be considered in the construc-
tion of radar composites, and consequently a wide spectrum of unwanted features can be
suppressed or completely eliminated in the new, clean radar composites. The qPrec package
also takes advantage of the radar quality information in the quantitative estimation of
precipitation amounts and intensities.

We demonstrated the value of the software packages via different use-cases. These
involved clean radar composites that may directly contribute to increased flight safety, high
quality estimation and mapping of long-term precipitation, and improved performance of
hydrological modelling as a result of the QI-based estimation of catchment precipitation.

Improved radar composites also offer indirect benefits in accordance with sustain-
ability and environmental protection. These are, for instance, fuel savings in the case of
effective planning or modification of flight routes based on the clean (QI-based) radar
composites. A further, sustainability-compatible benefit of the QI-based QPE is the estima-
tion of the risk of aquaplaning on runways. Having information on the runway surface
conditions, pilots may avoid runway excursions and, thus, reduce the risk of ecological or
other forms of disasters.

The results of this study present a positive answer to the research question, which is
reflected in the created software tools qRad and qPrec, verified on various praxeological
examples from various fields of hydrology and meteorology. The presented solutions
provide innovative contributions for academic discussion and practice, particularly the
strengthening of situational awareness to increase flight safety and to support sustainable
and environmentally friendly aviation activities.
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Appendix A. Specific Measures of the Radar Data Quality

Appendix A.1. Distance from the Radar

Each radar bin was evaluated according to its distance from the radar. The radar beam
broadens and its volume grows as it propagates in the atmosphere. The resulting measure-
ment, then, represents an average of a larger volume. In this case, a linear relationship
is used:

qi1,i =


1.0; r < rmin

1.0− r−rmin
rmax−rmin

; rmin ≤ r ≤
0.0; r > rmax

rmax (A1)

where r is the distance from the radar and rmin and rmax are parameters of the computation
(with default values of 0.0 and the maximum range of the radar, respectively). The index
i indicates that the quality index is estimated for the i-th available radar (the same holds
true for the upcoming equations).

This quality index (QI) belongs to the most elementary ones in assessing the radar
signal quality: it appeared in the same [19–21] or in a similar form with most studies
(such as using the exponential relationship [16]). There may be sophisticated methods
in defining the minimum or the maximum ranges of the radar [19–21]. Beyond this,
Fornasiero et al. [16] incorporated a correction factor that depended on the distance of the
target bin from the nearest radar.

Appendix A.2. Beam Height above the Terrain

Some quality factors only influence certain types of radar products. The beam height
above the terrain should be useful especially for rainfall estimating products—the estimated
rainfall is expected to be more precise when the target bin is near the surface of the terrain.
The related QI is computed as follows:

qi2,i =


0; h < 0
1− h

hmax
; 0 ≤ h ≤ hmax

0; h > hmax

(A2)

where h is the bin height above the terrain and hmax is the user defined maximum height
above the terrain. Note that the case h < 0 occurs when the radar beam hits the ground,
i.e., the projected radar beam is under the surface.

The quality index qi2,i also belongs to the fundamental ones, implemented for instance
by Tabary et al. [18]. Szturc et al. [20,21] adopted this concept in a slightly different way:
they preferred working with the height of the lowest radar scan, which, for a given radar
represents a constant value, depending on the actual altitudes of the surrounding terrain.

Appendix A.3. Beam Blockage by the Terrain

The percentage of the transmitted energy blocked by the terrain was computed accord-
ing to the energy distribution along across the radar beam. The 10-m resolution ASTER
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GDEM (Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital
Elevation Model) digital terrain model was used in the computation. The resulting QI
is then:

qi3,i =

{
1− B; B ≤ Bmax

0; B > Bmax
(A3)

where B is the actual blockage and Bmax is a user-defined threshold of blocking, both from
the interval 0 to 1. The software offers the possibility to correct the blockage by dividing
the measured energy by the blockage.

The issue of blocking the radar beam is rather complex, as there are a number of
objects (beyond clouds and hydrometeors, there is the relief, birds, insects, etc.) that
interact with the radar signal in different ways. Therefore, different authors presented
different approaches to the mathematical quantification of these effects. For instance,
Friedrich et al. [19] defined a single empirical form for the effect of beam shielding
that incorporated the ground clutter. On the other hand, both Tabary et al. [18] and
Fornasiero et al. [16] treated the beam blocking and the ground clutter as two indepen-
dent effects, defining the latter one in a binary way: 0 if ground clutter was present, and
1 otherwise. The weakening character of the radar signal along the radar beam was fur-
ther described, for instance, by the attenuation by the hydrometeors [19], the occultation
rate [18], and so-called path integrated attenuation [17].

Appendix A.4. Similarity to the Surrounding Bins

In the qRad software, two bins are considered similar when their values differ by
less than a given threshold. The similarity QI is, then, the percentage of the similar bins
within a defined window around the given bin. The default setting is a 3 × 3 window
centered on the target radar bin; thus, its value is compared with those from the other eight
surrounding bins (this setting is customizable by the user). This QI is aimed at finding
spikes or smaller holes and to evaluate the bins on the borders of the detected clouds.
The software enables replacement of the value of the bin with a QI lower than a defined
threshold with a QI-weighted average of the surrounding values.

A similar philosophy was applied by Szturc et al. [20,21] who assessed the spatial
variability of the rain field by estimating the variance of the rainfall rate within a window
of 3 × 3 or 5 × 5 centered on the target radar bin.

Appendix A.5. Time Quality Index

The time of the measurement is evaluated in this QI. More precisely, this QI evaluates
the temporal degradation of the radar signal within a single antenna rotation. This is
computed as a linear relationship of the difference ∆T between the time of the measurement
and the given product validity time:

qi5,i =

{
1− ∆T

∆Tmax
; ∆T ≤ ∆Tmax

0; ∆T > ∆Tmax
(A4)

where ∆Tmax is a user-defined maximum allowed time difference.
This QI aims at quantifying the time interval that is needed to carry out a full PPI scan

(plan position indicator: a complete 360◦ scan where the elevation angle of the radar beam
is set to a constant value). The larger the ∆T (i.e., the slower the radar revolves), the more
significant the observed change in the rainfall field may be at the start of the rotation and at
the same position of the radar after a full 360◦ circle, respectively.

The temporal degradation of the radar signal is also considered in [17]. Szturc et al. [20,21]
aimed to catch the temporal dimension of the rainfall field in a different way. They expressed
the temporal variability of the rainfall by applying an n-hour moving window method both
backward (i.e., on the past estimates of the rainfall field) and forward (i.e., on its forecasts).
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Appendix A.6. Cloud Type Quality Index

The Cloud-Type product of the NWC SAF (Nowcasting Satellite Application Facili-
ties [25]) is used in this QI. Non-undetected bins are evaluated according to the cloud type
in their position. The QI is associated according to Table A1.

Table A1. Quality index (QI) according to cloud type.

Cloud Type QI

Cloud-free (land, sea, snow, . . . ) 0.01
Fractional 0.1

High semi-transparent thin 0.1
Other clouds 1.0

The qRad software enables replacement of the low QI bins with an undetected value
according to the user settings.

The incorporation of the cloud-type QI was motivated by the goal to identify the
cloud-related radar echoes, and on the basis of this information, to exclude or significantly
reduce the non-meteorological clear sky echoes, particularly the R-LAN (radio local area
network) or wi-fi interferences, ground clutter, and biological echoes. The QI uses the
Cloud Type product from the NWC SAF software package computed from the Rapid Scan
Service data every 5 min at the SHMU. A parallax-correction algorithm was applied to
geographically match the satellite and radar products.

Appendix A.7. Cloud Top Height Index

This index uses the Cloud Top Temperature and Height product of the NWC SAF [25]
to assign a low QI (0.01) to the non-undetected bins found above the cloud tops. The
software enables the replacement of suspicious bins with an undetected value.

Similarly to the Cloud type QI, this QI enables the detection, monitoring, and filtering
of non-meteorological clear sky echoes, particularly in cases when a given area is covered
by low clouds and the Cloud type QI is not able to distinguish the false echoes above the
cloud top. The NWC SAF Cloud Top Height was computed from the same 5-min Rapid
Scan Service data, and the parallax correction algorithm was also applied the same way as
for the Cloud type QI.

Appendix A.8. Average Quality Index

This QI is computed as an average of the user-selected QIs from a couple of last
measurements. This is supposed to be useful to detect ground-clutter or other permanent
error sources that may only be discernible by means of an analysis of a longer sequence of
radar measurements. In our application, the combination of the cloud type QI and cloud
top height QI was used to define the average QI.

Appendix A.9. Constant Quality Index

The quality factor in this case is the radar’s position itself, its hardware, and set-
tings. Measurements of reliable and properly set radars are evaluated as good quality
(qi9,i = 1.0), while the data of less reliable or less precise radar sites are labelled with lower
QI values. This quality index is also useful when other quality indices are not computed
(due to missing data, etc.). In this case, the missing quality index (indices) can be replaced
with a constant number.

The definition of constant QI was motivated by the experience where the radars of a
given composite are of a different overall quality; for instance, some are more influenced
by wi-fi signals than others, or radars from a given country are set to generally lower
temporal resolution than those from the neighboring country. Constant QI is, therefore,
aimed at expressing the degree of the relative quality of the individual radars contributing
to a composite, and is often assessed on the basis of subjective experience.
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20. Szturc, J.; Ośródka, K.; Jurczyk, A.; Jelonek, L. Concept of dealing with uncertainty in radar-based data for hydrological purpose.
Nat. Hazards Earth Syst. Sci. 2008, 8, 267–279. [CrossRef]
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