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Abstract: To prove the important role of battery electric buses (BEBs) in reducing carbon dioxide
(CO2) emissions, we propose a framework to compare CO2 emissions between BEBs and conventional
diesel buses (CDBs) based on low sampling frequency BEBs data at the city scale in Shenzhen. We
applied the VT-Micro model to improve the estimation of CDBs’ CO2 emissions. A modal-activity-
based method was implemented to reconstruct the second-by-second trajectories from the dataset as
the input of the VT-Micro model. We updated the data of the Guangdong power generation mix to
improve the estimation of BEBs’ CO2 emissions. The experiments showed that BEBs could reduce
CO2 emissions by 18.0–23.9% in comparison with CDBs when the frequency of air-conditioning
usage was low. In addition, BEBs tended to achieve more CO2 emission reduction benefits when the
transit buses traveled at a low speed. Improving the traffic efficiency of road networks and promoting
inter-provincial electricity trading are important to promote the adoption of BEBs.

Keywords: battery electric buses; the VT-Micro model; modal-activity-based method; power genera-
tion mix

1. Introduction

With the development of the automobile industry, automobile ownership has in-
creased year by year, resulting in higher fuel consumption and CO2 emissions, as well
as global warming. The U.S. Environmental Protection Agency reported that transport
traffic accounted for 28% of the total fuel consumption in 2016 worldwide [1]. One-third
of the world’s CO2 emissions come from road transportation [2]. Therefore, reducing
automobile emissions plays a critical role in reducing greenhouse gases and improving
air quality. This requirement promotes the automobile industry technology evolution and
renewable energy development. In this sense, the adoption of electric vehicles (EVs) is a
good alternative that contributes to reducing CO2 emissions.

Compared with internal combustion engine vehicles (ICEVs), EVs have zero exhaust
emissions during the operation period [3]. They require less motor maintenance and have
higher operation efficiency [4]. These advantages motivate governments and enterprises to
promote the adoption of EV. Specifically, the Chinese government has launched numerous
policies, including license plate privileges and EV purchase subsidies [5,6] to accelerate the
electrification process of vehicles. Consequently, the amount of EVs reached 1.53 million
in 2017 [7], and battery electric vehicles (BEVs) occupied over 80% of the EV market
share [8]. Therefore, it is critical to analyze the impact of the promotion of electric vehicles
on CO2 emissions.

There exists extensive research on compared CO2 emissions between EVs and ICEVs.
These studies can be roughly classified into three categories [9]: the statistic method [10–12],
the well-to-wheel (WTW) method [13,14], and the life cycle assessment (LCA) method [15].
However, most previous studies were based on laboratory testing [10–12], small sample
vehicle data [13,14], or statistical data [15]. Increasing criticism has accumulated against
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the conclusions’ generalization of these studies, since there exist deviations between the
real driving conditions of a large number of vehicles and the above situations [14].

Existing research generally implemented on-board sensors to collect second-by-second
instantaneous CO2 emissions data or power consumption data [16], which is intractable in
real-world applications owing to the expense. In practice, we can only obtain low sampling
frequency trajectory data for public transit vehicles, and low sampling frequency Controller
Area Network (CAN) data recording the time, State of Charge (SoC), voltage, and current
for public transit electric vehicles [9]. Consequently, it is necessary to build a framework
to compare the CO2 emissions between EVs and conventional fuel vehicles based on low
sampling frequency data.

There are two types of methods to estimate the vehicle emissions of conventional
fuel vehicles based on trajectory data: macroscopic emissions models and microscopic
emissions models. Wang et al. [17] indicated that the macroscopic emissions models
may be inferior regarding estimation accuracy because they cannot capture the dynamic
characteristics of vehicles. Thus, the scholars proposed microscopic vehicle emissions
models, such as CMEM [18], MOVES [19,20], PHEM [21,22], and VT-Micro models [23] to
estimate the vehicle emissions accurately.

However, only a few of the above emissions models apply to transit buses. The CMEM
and PHEM models suffer from bang-bang control, which means that drivers need to brake
and accelerate at full speed to minimize their fuel consumption levels. The MOVES model
avoids the bang-bang control problem, as well as provides robust estimates for vehicle
emissions. However, it is time-consuming to update numerous input profiles when users
apply this model. As for the VT-Micro model, this can achieve superior performance over
the PHEM model on emissions estimation [24], as well as circumvent the bang-bang control.

Therefore, we implemented the VT-Micro model to estimate CO2 emissions in this
study. This presents a new challenge for applying the microscopic emissions models,
because these models commonly use the second-by-second vehicle trajectories as input.
However, the sampling frequency of most vehicle trajectory data ranges from 10 to 60 s.
Therefore, it is significant to reconstruct the vehicle trajectories to second-by-second profiles,
so that we can use the low sampling trajectory data in microscopic vehicle emissions models.

Numerous studies [25–27] have been conducted to reconstruct second-by-second
vehicle trajectories under low sample frequency situations. Wang et al. [25] applied a
hidden Markov model to reconstruct the trajectory; however, this was time-consuming in
the computing process. Wang et al. [26] applied an optimization model given temporal
constraints to reconstruct the trajectory and used an approximation method to solve the
problem; however, this may be inferior in accuracy. In this paper, we applied a modal
activity-based method as proposed in [27], because this method is interpretable as well
as time-efficient. The model is comprised of two parts: to determine the modal activity
sequence and to allocate the travel time/distance to each mode.

Another issue is how to estimate the CO2 emissions of electric vehicles based on
trajectory data. The use of electric vehicles provokes increased emissions from electric
power generation. In comparison with conventional fuel buses, we can consider that the
CO2 emissions of EVs mainly come from electricity generation. We adopted the integration
method in [13,14] to calculate the power consumption of electric vehicles. Then, the
challenge lies in estimating the CO2 emissions factor for electricity generation.

Previous research generally adopted the national power generation mix to estimate
EVs CO2 emissions. A recent study [28] indicated that this will result in overestimat-
ing/underestimating the CO2 emissions by about 120% using the national power genera-
tion mix. In this paper, we updated the data of the Guangdong power generation mix from
extensive reviews of research papers, yearbooks, government announcements, and so on.

To conclude, we focused on building a framework to compare the WTW CO2 emissions
between battery electric buses (BEBs) and conventional diesel buses (CDBs) based on BEB
sensor data in Shenzhen city. As the WTW CO2 emissions accounted for about 70–90% of
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the full life cycle CO2 emissions [13,14]. In addition, we obtained limited data of vehicle
material for CDBs and vehicle recycling process data for both BEBS and CDBs [14].

Specifically, we reconstructed the second-by-second CDB trajectories with a modal
activity-based method [27] and then estimated the CO2 emissions of CDBs with the VT-
Micro model. To improve the estimation accuracy of BEB CO2 emissions, we updated
the data of the Guangdong power generation mix. We compared the WTW CO2 emis-
sions between BEBs and CDBs traveling at different speed horizons to understand the
characteristics and influencing factors of CO2 emissions.

WTW CO2 emission estimation in the four provinces with the largest electric vehicle
sales is presented to illustrate the importance of inter-provincial electricity transactions. We
focus on the low frequency of air-conditioning usage due to the limitations of the BEB data.

The remainder of this work is organized as follows. Section 2 describes the CO2
emission estimation methods of BEBs and CDBs. In Section 3, we present the trajectory
reconstruction result, and the CO2 emission comparisons between BEBs and CDBs traveling
at different speed horizons. Section 4 discusses the limits of this work. Finally, we conclude
the study in Section 5.

2. Methodology
2.1. Study Area and Data Description

We collected mobile sensor data from over 5000 BEBs whose sampling frequency
was about 30 s. In this paper, we selected BEB data ranging from 2–8 January 2019, with
more than 100 million valid records, each of which included the bus ID, log time, position
information, speed, travel distance, and battery information. The battery information
included the vehicle state (1: driving and 0: stall), vehicle charge state, current, voltage,
SoC, and temperature.

In the data washing process, we filtered out some BEB data with abnormal traction
battery data and travel mileage. For instance, it was unreasonable if the SoC of a BEB
jumped over 3% in consecutive sampling intervals. Furthermore, we excluded BEBs
whose travel mileage was less than 50 km/day because some running data were lost for
these BEBs.

2.2. Well-to-Wheel Approach

The well-to-wheel (WTW) approach [29] has been extensively applied to evaluate the
life cycle fuel consumption and environmental impact of a vehicle. The WTW approach
divides the full life cycle into two processes: the fuel production process (well-to-tank,
WTT) and the fuel combustion process (tank-to-well, TTW). The former process usually
comprises feedstock production, transportation, fuel production, and fuel distribution. The
later stage mainly represents the fuel combustion during vehicle running periods.

Referring to a previous study [9], the WTT CO2 emissions of a BEB include coal pro-
duction, coal transportation, electricity production, and electricity transmission. The former
two processes only contribute about 0.04% of the WTW CO2 emissions [9]. Therefore, the
WTT CO2 emissions can be estimated by the greenhouse gases, regulated emissions, and
energy use in the transportation (GREET) model [30] with the updated Guangdong power
generation mix and electricity transmission efficiency. For the TTW process, the CO2
emissions mainly come from the charging loss of BEBs.

We determined the value of the charging loss of BEBs by referring to research papers.
For CDBs, the WTT CO2 emissions come from the crude oil production and transportation,
diesel production, and diesel distribution. We used the GREET model to estimate the WTT
CO2 emissions. The WTT CO2 emissions contributed only 20% of the total WTW CO2
emissions; thus, we adopted the default values of the parameters in the GREET model.
We applied the VT-Micro model to estimate the TTW CO2 emissions. The details of the
framework for comparing CO2 emissions between BEBs and CDBs were illustrated in
Figure 1.
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Figure 1. The framework of comparing CO2 emissions between BEBs and CDBs based on low
sampling frequency data.

2.3. CO2 Emission Estimation of BEBs

The use of electric vehicles provokes increased CO2 emissions from electric power
generation. Due to the structures of the power grids, the CO2 emission factors vary in
the different provinces in China. To estimate the WTW CO2 emissions of a BEB, it is
necessary to determine the WTT CO2 emissions factor fWTT (kg/kWh) and electricity
consumption Qk.

To obtain the electricity consumption Qk during the driving process, we calculate
the electricity that the BEB was charged with because the losses within the BEB system
over time will not be accounted for in a precise way. During the charging process of the
electric bus, the value of the state of charge (SoC) increases from a to b, and the value of the
SoC decreases from b to c during the driving period. Then, we can obtain the electricity
consumption of electric buses as follows:

Qk =
b− c
b− a

×
∫ T

0
Uk Ikdt (1)

where Qk (KWh) denotes the electricity consumption, and Uk (V) and Ik (A) denote the
charging voltage and current, respectively. The time of the charging process is T. The
output voltage of the battery varies nonlinearly with the SoC value; however, the errors
can be ignored for a long period.

After obtaining the electricity consumption, the CO2 emissions factor of BEB k can be
calculated as:

eBEB,k =
fWTTQk

Dk
× 100 (2)

where eBEB,k (kg/km) represents the CO2 emissions factor of BEB k, and Dk (km) is the
travel distance of BEB k.

For the WTT CO2 emissions factor fWTT , we can estimate it with the well-to-wheel
approach [29] by updating the data of the power structure in the GREET model [30].

2.4. CO2 Emission Estimation of CDBs

Public transport needs to arrive at the bus stops on schedule. In this sense, although
BEBs and CDBs have different power systems, it can be considered that a CDB has approxi-
mate trajectories with a BEB of the same bus line. Thus, the TTW CO2 emissions of CDBs
can be estimated based on the BEB trajectories.
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In this paper, we estimated the WTT CO2 emissions with the default parameters in
the GREET model. We applied the VT-Micro model proposed in [31] to estimate the TTW
CO2 emissions of conventional buses. The required second-by-second trajectories in the
VT-Micro model were estimated by the modal activity-based method [27].

The CO2 emission factor of a CDB k was estimated by Equation (3).

eCDB,k = eWTT + eTTW,k = eWTT +

∫ T
0 rtdt

1000Dk
(3)

where eCDB,k (kg/km) denotes the CO2 emission factor of CDB k, and eWTT (kg/km) and
eTTW,k (kg/km) denote the WTT and TTW CO2 emission factors, respectively. As we
implemented the default values of the parameters in the GREET model, the WTT CO2
emission factors for all CDBs are the same. rt (g/s) is the instantaneous CO2 emission rate,
which can be estimated by the VT-Micro model.

2.4.1. VT-Micro Model

The micro vehicle carbon dioxide emissions estimation model is characterized by
Equations (4) and (5) [31]:

ln(rt) =
3

∑
i=0

3

∑
j=0

(
Li,j × (vt)

i × (at)
j
)

, at ≥ 0 (4)

ln(rt) =
3

∑
i=0

3

∑
j=0

(
Mi,j × (vt)

i × (at)
j
)

, at < 0 (5)

where vt is the instantaneous speed of the sampling time t; at is the instantaneous accel-
eration of the sampling time t; rt is the instantaneous carbon dioxide emission rate; Li,j
and Mi,j are the model coefficients for rt at the speed power i and acceleration power j for
positive accelerations and negative accelerations, respectively.

We used the reconstructed second-by-second vehicle trajectories to estimate the vari-
ables vt and at.

2.4.2. Vehicle Trajectory Reconstruction

In this subsection, we adopt the modal-activity-based method proposed in [27] to
reconstruct the vehicle trajectories. The model is comprised of two parts: the identification
of the modal activity sequence and the allocation of the travel time/distance to each mode.

Modal Activity Sequence

When a public transport bus is traveling on urban roads, it experiences frequent speed
reductions and stop-and-go behaviors at bus stops and traffic light intersections. The most
prevalent modal activities include idling, acceleration, cruising, and deceleration.

We can extract a sequence of data pairs from a certain mobile electric bus data. The
data pair includes: the start speed vs, the end speed ve, time interval ∆t, and total travel
distance ∆s. A four tuple [vs, ve, ∆t, ∆s] is used to denote the data pair. Given a data
pair, the modal activity sequence can be identified based on the relationships among vs,
ve and the average speed V̄. In this paper, we define idling, acceleration, cruising, and
deceleration as M1,M2,M3, and M4, respectively. We use the vector S to denote the modal
activity sequence. For a certain data pair [vs, ve, ∆t, ∆s], the probability of different modal
activity sequences is shown in Table 1.

• If the value of V̄ is between vs and ve, and vs < ve, the modal activity sequence S1 can
be shown as Figure 2.

• If the value of V̄ is between vs and ve, and vs > ve, , the modal activity sequence S2
can be shown as Figure 3.
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• If the value of V̄ > max(vs, ve), the modal activity sequence S3 can be shown as
Figure 4. A bus will not change its modal activity frequently when traveling on urban
roads [32]. We presume that there exists one inflection speed point v̂ between a data
pair of S3.

• If the value of V̄ < max(vs, ve)), the modal activity sequence S4 can be shown as
Figure 5.

(a) (b)

Figure 2. Modal activity sequence of S1.

(a) (b)

Figure 3. Modal activity sequence of S2.

Figure 4. Modal activity sequence of S3.

Figure 5. Modal activity sequence of S4.
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Table 1. The probabilities of different modal activity sequences.

Modal Activity Sequence v̄ > vs v̄ < ve v̄ < vs v̄ < vs v̄ ∈ [vmin, vmax]

S1 = [M3, M2, M3] 1 0 0 1 1
S2 = [M3, M4, M3] 0 1 1 0 1

S3 = [M3, M2, M3, M1, M3] 1 1 0 0 0
S4 = [M3, M4, M3, M2, M3] 0 0 1 1 0

Note: vmax = max(vs, ve), vmin = min(vs, ve).

According to [32], we ignored certain modal activity sequences, because these se-
quences occur rarely in the real world. For example, when the value of V̄ is between vs and
ve, the sequences S3 = [M3, M2, M3, M2, M3] and S3 = [M3, M4, M3, M4, M3] are ignored.

Given a data pair, we can identify the modal activity sequence based on the relation-
ship among vs, ve, and the average speed V̄. Another challenge was to allocate the travel
time and distance for each mode of the vehicle trajectories.

Assignment of Travel Time and Distance for Each Mode

According to [27], the acceleration pace (t/∆v) followed a Gaussian distribution.

ζ =
t

∆v
∼ N

(
µt, σ2

t

)
. (6)

To simplify the model, we assumed a constant acceleration/deceleration rate during
the acceleration/deceleration period. Then, we identified the value of a when the travel time
of the acceleration/deceleration period was determined. For models S1 = [M3, M2, M3]
and S1 = [M3, M4, M3], we determined the travel time and distance for each mod using
Equations (7) and (8):

(vs × t1) +
(

vs × t2 + 0.5× a× t2
2

)
+ (ve × t3) = ∆s (7)

3

∑
i=1

ti = ∆t (8)

For the models S3 = [M3, M2, M3, M1, M3] and S4 = [M3, M4, M3, M2, M3], we
needed to identify the inflection speed v̂, travel time, and distance for each mode. Referring
to [27], the speed gap v̄− v̂ (denoted as η) follows a mixed Gaussian distribution.

P(η) =
2

∑
i=1

wiP
(

ηi|µi, σ2
i

)
(9)

where wi is the weighting factor associated with the i-th Gaussian distribution N
(
µi, σ2

i
)

and ∑2
i=1 wi = 1.

In terms of the idling and cruising modes, we adopted the assumption in the study [27],
this work assumed the travel time of the idling and cruising modes following a uniform
distribution U(0, ∆t), ranging from zero to the sampling time interval. Then, we deter-
mined the travel time and distance of the other two cruising models based on the time and
distance constraints ∑3

i=1 ti = ∆t and ∑3
i=1 si = ∆s.

2.5. Parameter Setting

To estimate the WTW CO2 emissions of BEBs and CDBs, we had to determine the pa-
rameters of the power generation mix in Guangdong, the electricity transmission efficiency,
and the charging efficiency. We needed to identify the parameters in the VT-Micro model
and the modal-activity-based model.

2.5.1. Parameter Setting of Electricity Mix

The Guangdong province generated 469.4 billion kwh of power and purchased
193.0 billion kwh of power in 2018 [9]. Specifically, the West–East electricity transmis-
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sion project transmitted approximately 169.8 billion of power to Guangdong. Among them,
Yunnan and Guizhou province transmitted about 133.6 billion kwh and 36.2 billion kwh of
power to Guangdong [9], and the remaining 23.2 billion kwh of power were purchased
from the State Grid of China [9]. Figure 6 presents the detailed electricity mix [33] of
Guangdong, Yunnan, Guizhou, and the State Grid of China in 2018. The transmission
efficiency of electricity was 93.3% according to a recent study [9]. The charging efficiency
of BEBs was estimated to be 69% [14]. We used the default values in the GREET model to
determine the other parameters.

Figure 6. Power generation mix of: (a) Guangdong, (b) Yunnan, (c) Guizhou, and (d) the State Grid
of China.

2.5.2. Parameter Settings of the VT-Micro Model

The developer of the VT-Micro model provided software to estimate the coefficient
Li,j and Mi,j for CO2 emission [34], the results are presented in Tables 2 and 3.

Table 2. Coefficient Li,j for the CO2 emissions of the VT-Micro model.

j = 0 j = 1 j = 2 j = 3

i = 0 6.916 0.217 2.354× 10−4 −3.639× 10−4

i = 1 −0.02754 −0.968× 10−2 −0.175× 10−2 8.35× 10−5

i = 2 −2.070× 10−4 −1.0138× 10−4 1.966× 10−5 −1.02× 10−6

i = 3 9.80× 10−7 3.66× 10−7 −1.08× 10−7 8.50× 10−9

Table 3. Coefficient Mi,j for the CO2 emissions of the VT-Micro model.

j = 0 j = 1 j = 2 j = 3

i = 0 6.915 −0.032 9.17× 10−3 −2.88× 10−4

i = 1 0.0284 8.53× 10−3 1.15× 10−3 −3.06× 10−6

i = 2 −2.26× 10−4 −6.594× 10−5 −1.289× 10−5 −2.68× 10−7

i = 3 1.11× 10−6 3.20× 10−7 7.56× 10−8 2.95× 10−9

2.5.3. Parameter Settings of the Modal-Activity-Based Model

A recent study [32] applied the maximum likelihood estimation method to estimate
the µt and σ2

t of the Gaussian distribution ζ ∼ N
(
µt, σ2

t
)
. Table 4 presents the calibrated

parameters of the acceleration/deceleration process. We adopted the EM algorithm to
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learn the parameters η of the Gaussian Mixture Model (GMM) based on the NGSIM U.S.
101 dataset. Table 5 shows the parameters of the GMM models on the arterial road.

Table 4. The calibrated parameters of the acceleration/deceleration process.

Mode Variable µt σ2
t

Acceleration ζ 0.814 0.311
Deceleration ζ 1.099 0.582

Table 5. Parameters of GMM models on the arterial road.

Variable wi µi σ2
i

η1 0.471 −4.439 5.482
η2 0.529 5.418 3.249

3. Experiments Results
3.1. Trajectory Reconstruction

We applied the modal activity-based method to reconstruct the second-by-second
trajectories from low-resolution mobile sensor data.

Figure 7 presents the reconstruction trajectories results of all sampling electric buses.
As a result, the modal activity-based method can reconstruct the second-by-second trajec-
tories for all sampling BEBs with small estimated errors. Particularly, we show the results
for a particular electric bus whose ID was “LC06S24K7G1004875” in Figure 7. The specific
electric bus data was collected from 4 January 2019, with a travel distance of 91.399 km.
The distance error between the estimated trajectory and true trajectory was 2.271 km. The
trajectory reconstructed by the modal-activity-based vehicle estimation method was ap-
proximate to the actual trajectory. The results demonstrate the good performance of the
modal-activity-based vehicle estimation method for trajectory reconstruction.

Table 6 showed the trajectory reconstruction results for sampling BEBs. The table
revealed that the average estimated distance error and the maximum estimated distance
error were 4.649 and 9.123 km, respectively. The reasons are from the following two aspects:

1. In the modal activity-based vehicle trajectory estimation method, we assumed three
distributions to reconstruct the trajectory, the parameters were calibrated from NGSIM
U.S. 101 dataset. The values of these parameters may be different for our mobile
electric bus data.

2. In the acceleration and deceleration periods, we presumed the value of accelera-
tion/deceleration rate was constant. As we aimed to compare the CO2 emissions of
electric buses and conventional buses in large-scale areas, the distance errors of the
modal-activity-based estimation method are acceptable.

Table 6. Probability of different modal activity sequence.

Ltotal (km) Laver (km) εmin (km) εmax (km) εaver (km)

774,782.100 192.924 0.016 9.123 4.649
Note: Ltotal and Laver are the total travel distance and the average travel distance; εmin, εmax , εaver are the minimal,
maximum, and average estimated distance error, respectively.
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Figure 7. Reconstruction trajectories results of BEBs.

3.2. Impacts of Speed on CO2 Emissions

As we estimated the CO2 emissions of CDBs with a microscopic model, we can
evaluate the CO2 emission between BEBs and CDBs under different horizons of speed.
The average speed of the sampled buses ranged from 7 to 20 km/h. Referring to [13], we
divided the three-speed horizons as <10, 10–15, and 15–20 km/h.

Figure 8 illustrates the WTW CO2 emissions between BEBs and CDBs on different
speed horizons. The WTW CO2 emissions factors on three speed horizons for BEBs were
1.023, 0.943, and 0.918 kg/km, respectively. While the CO2 emissions factors for CDBs were
1.341, 1.192, and 1.109 kg/km on these speed horizons. As a result, a BEB reduced CO2
emissions by 17.2–23.7% compared with a CDB. The CO2 reduction benefits were similar to
those shown in prior research [13,14], which reported that BEBs can reduce CO2 emissions
by 19–35%.

The WTW CO2 emission factors for BEBs ranged from 0.9 to 1.014 kg/km, and this
value was slightly lower than those shown in prior works [13,14], which showed that the
tested BEBs emitted 1.1 kg CO2/km on average. The average speed of the sampled BEBs
was 17.6 km/h, while the BEBs tested in prior studies [13,14] ran at a speed of 15 km/h.
The thermal power occupied a lower proportion in the power generation mix in our study
compared with that in the previous studies [13,14]. Hence, the estimated CO2 emission
factor of BEBs was reasonable.

Figure 8. The WTW CO2 emissions on different speed horizons.
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BEBs reduced more CO2 emissions in comparison with CDB when the transit bus
operated at a low speed. The reason was that, when the bus traveled in rush-hour traffic, it
experienced frequent stop-and-go behaviors, and the brake energy cycling system of BEB
can restore energy to the battery package. When the average speed increased, such benefits
against CDB became less important.

The default WTT CO2 emissions factor for CDBs was 0.32 kg/km, and the TTW CO2
emissions contributed more than 73.1% of the WTW CO2 emissions. Specifically, CDBs
emitted CO2 with 1.009–1.341 kg/km, while the average WTW CO2 emissions factor for
the tested CDBs in 2014 was 1.4 kg/km [13,14]. The estimation result was acceptable
because various technologies have been developed to reduce CO2 emissions for CDBs in
recent years.

As diesel buses still occupy the largest market share in China’s bus market, the
government and private enterprises need to continuously improve the diesel-driven system
to reduce the real-world CO2 emissions of diesel. The reduction rate of BEB on WTW
CO2 emissions was nonlinear and could achieve a more marginal CO2 reduction under a
lower average speed. Such a phenomenon was more obvious with CDB. This circumstance
implies that BEBs were supposed to have obvious CO2 emission reductions over CDBs,
because public transit buses travel at low speeds on urban roads.

The average speed plays an important part in WTW CO2 emissions, especially for
public transit buses. As they need to arrive at the bus stops on schedule, the ratio of buses
traveling at low speeds is commonly high. Figure 9 presents the ratio of driving speed for
three different speed horizons of buses in real operational scenarios. The ratio represents
the proportion of travel time at this speed to the total travel time of the vehicle.

The light blue bar denotes the average value of the ratio, while the length of the orange
line denotes the standard value of the ratio. A bus with higher average speed owned a
larger proportion of the travel time operated at high speed. Specifically, a bus with an
average of 15–20 km/h traveled half of the time with a speed over 20 km/h.

Three different speed horizons buses had similar ratios of travel time operated at
speeds of 10–15 and 15–20 km/h, and the values of these two ratios were stable for all
buses. The average speed of bus travel slower than 15 km/h accounted for about 97% of
the sampled buses, and the bus traveled at a speed lower than 10 km/h nearly half of the
time. In this sense, it is critical for the traffic manager to improve the efficiency of the road
networks. For example, the green wave control on arterial roads.

(a) (b) (c)

Figure 9. The ratio of driving speed for different speed horizon buses: (a) <10 km/h, (b) 10–15 km/h,
and (c) 15–20 km/h.

3.3. CO2 Emissions Comparisons in Different Regions

Intuitively, the reduction rates of CO2 emissions vary with the CO2 emission intensities
of the power grid. Existing studies demonstrated that the power structures have great
impacts on the CO2 emission reduction benefits of electric vehicles [35]. Therefore, it is
crucial to evaluate the WTW CO2 emissions in different regions in China.

Base on the China National Bureau of Statistics data [33], we evaluated CO2 emissions
in the four provinces with the largest electric vehicle sales, the thermal power share
and total electricity generation of these four provinces are presented in Table 7. In the
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GREET model, the CO2 emissions of electricity generation had an approximately linear
relationship with the thermal power share. Without considering the inter-provincial
electricity transactions, we can easily calculate the CO2 emissions for four provinces given
the electricity transmission efficiency and charging efficiency of BEBs.

Table 7. The power generation mix in the four provinces with the largest electric vehicle sales
in China.

Province Beijing Shanghai Guangdong Zhejiang

Thermal power (billion kwh) 422.8 813.7 3260.1 2583.4
Total (billion kwh) 437 824.7 4369.6 3352.8
Thermal power share 96.7% 98.6% 74.6% 77.1%

Due to the lack of operation data of transit buses in other provinces, we assumed
the transit buses in other provinces had similar operation data. The CO2 emissions of
BEBs in different cities are shown in Figure 10. Without considering the inter-provincial
electricity transactions, the BEB could achieve a CO2 emission reduction benefit only in
Guangdong. The above section indicated that a BEB could achieve about 18.0–23.9% CO2
emission reduction benefits compared with a CDB.

In practice, the BEBs had better real-world CO2 emissions performances in Beijing,
Shanghai, and Zhejiang similarly, since a major part of their electricity consumption was
transmitted from other provinces with high hydropower shares. Therefore, it is critical for
the provincial government to pay more attention to inter-provincial electricity transactions.
The inter-provincial electricity transactions are efficient measures to improve the energy
structure of the power mix, so that more CO2 reduction benefits can be achieved by
BEB adoption.

Figure 10. The CO2 emissions of BEBs in different provinces.

4. Discussion

The CO2 emissions of a public transit bus are dependent on the ambient tempera-
ture. Prior studies [13,14] claimed that the CO2 emissions of CDBs and BEBs with air-
conditioning use increased 48% and 23% compared to the operation conditions without
air-conditioning use. At this time, we could only obtain the BEB data in January for Shen-
zhen; we will investigate the CO2 emissions across different seasons after we obtain the
BEB data of a whole year.

Fortunately, a study [13] demonstrated that BEB provides significant CO2 emission re-
duction benefits compared with CDB when operating in hot weather with air-conditioning
use. Therefore, we conclude that the CO2 emission reduction benefit estimation was reason-
able and even slightly conservative in our paper due to the frequency of air-conditioning
usage being the lowest in January in Shenzhen.

Due to the unavailability of the city-scale CDBs data in Shenzhen, we utilized the
BEB trajectories to estimate the WTW CO2 emissions for CDBs. A previous study [36]
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indicated that BEBs are driven more aggressively than CDBs. Fortunately, the experimental
results indicated that the estimated errors were acceptable. The CDBs emitted CO2 with
1.009–1.341 kg/km in our paper, while the average WTW CO2 emissions factor for the
tested CDBs in previous studies [13,14] was 1.4 kg/km. Considering that various technolo-
gies have been developed to reduce CO2 emissions for CDBs in recent years, the estimated
CO2 emission factor for CDBs is acceptable. The experiments showed that BEBs could
reduce CO2 emissions by 18.0–23.9% compared with CDBs. The CO2 reduction benefits are
similar to those shown in prior research [13,14], which reported that BEBs could reduce
CO2 emissions by 19–35%.

Some factors that may influence the CO2 emissions for CDBs are ignored in
Equations (4) and (5), such as auxiliary power (power steering, air compressor, and so
on), which is independent of the trajectory. However, auxiliary power is included in the
calculation of the BEB power consumption in Equation (1). Though the experimental
results validated the effectiveness of our proposed method, we hope to design a more
delicate model that can consider more factors to estimate CO2 emissions in future work.

We aimed to compare CO2 emissions between BEBs and CDBs in this paper. To further
validate the advantage of BEB adoption, more greenhouse gases are required to compare
between BEBs and CDBs, and we plan to utilize CO2 emissions to evaluate multiple
greenhouse gas emissions between BEBs and CDBs in our future work.

5. Conclusions

The electrification of public transit buses plays an important role in reducing CO2
emissions. To evaluate the CO2 emission effects with the adoption of BEBs at the city level,
we compared the CO2 emissions between BEBs and CDBs based on the low sampling
frequency BEB data in Shenzhen city for the low frequency of air-conditioning usage
conditions. We applied the VT-Micro model to estimate the real-world CO2 emissions of
CDBs, and a modal activity-based method was used to reconstruct the second-by-second
transit bus trajectories as the input of the VT-Micro model. We updated the data of the
Guangdong power generation mix from an extensive review of papers. We draw the
following conclusions from this paper:

• A BEB achieved approximately an 18.0–23.9% CO2 emission reduction benefit in
comparison with a CDB when the frequency of air-conditioning usage was low.

• A BEB tended to reduce more CO2 emissions compared with a CDB when the transit
bus traveled at a low speed.

• During the operation process of BEB, nearly half of the time, the bus traveled at a
speed lower than 10 km/h.

• The inter-provincial electricity transactions were efficient measures to promote the
adoption of BEBs, as they helped to improve the energy structure of the electricity mix.

The above observations can help to plan and dispatch public transport vehicles based
on the CO2 emission intensity in different cities. However, there are still some limitations
to this work. We only considered transit buses in this paper, the CO2 emission impacts
of substituting electric vehicles for light-duty vehicles must be studied with more data.
In future work, we will explore the life cycle CO2 emissions between electric buses and
conventional buses.
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Abbreviations
BEB battery electric bus
CAN controller area network
CMEM comprehensive modal emissions model
EV electric vehicle
ICEV internal combustion engine vehicle
MOVES motor vehicle emission simulator
SoC state of charge
WTT well-to-tank
BEV battery electric vehicle
CDB convention diesel bus
CO2 carbon dioxide
GREET the greenhouse gases, regulated emissions, and energy use in transportation Model
LCA life cycle assessment
PHEM passenger car and heavy duty emission model
TTW tank-to-wheel
WTW well-to-wheel
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