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Abstract: The assessment of economic and environmental sustainability of agricultural systems
represents a critical issue, which has been addressed in this work with a multi-objective programming
model to explore the abatement costs (AC) of CO2 for a set of representative contexts of Italian
arable land agriculture. The study was based on the FADN-compliant Italian database RICA and
estimates the abatement costs of CO2 emissions in a short time horizon, using linear multi-objective
programming and compromise programming. RICA data were used to quantify technical parameters
of the model, adopting an innovative concept of a cropping scheme to simulate land-use adaptation.
The study shows a quite diversified situation regarding income and emission levels per hectare across
the Italian region and farm classes. A reduction of CO2 emissions higher than 5 kg/ha at an AC
lower than 1 EUR/kg is affordable only in seven regions, among which Abruzzo, Lombardy, and
Puglia show the highest potential. Comparing the estimated abatement costs for CO2 emissions with
the corresponding European Trade System prices highlights a difference of 1 order of magnitude,
proving that emission reductions for Italian arable crops still require research and innovation to lower
adaptation costs.

Keywords: sustainability; agriculture; CO2 emissions; FADN; multi-objective programming

1. Introduction

Sustainability is a complex multi-dimensional concept that includes economic, social,
and environmental dimensions. According to Ikerd [1], sustainable agriculture must pre-
serve its productivity and usefulness to society in the long term. This implies that farm
activities have to learn to become environmentally sound, resource-conserving, economi-
cally viable, and socially supportive [2]. Recently, interest has grown toward evaluating
the effect of human activities on global climate change due to greenhouse gases (GHGs),
most of them being ascribed to carbon dioxide (CO2) emissions.

Since 2005, the European Union has set up the Emission Trading System (ETS) for
GHG emissions to face climate change by reducing greenhouse gas emissions, which is
a cornerstone of the EU’s policy to combat climate change and its key tool for reducing
greenhouse gas emissions cost-effectively. In 2015, the European Commission presented a
legislative proposal to revise the ETS after 2020 [3]. The ETS is based on the “cap and trade”
principle. To reduce emissions from industrial sectors, the EU has set a cap on greenhouse
gas emissions generated by various industries. The cap is measured in European Union
Allowance (EUA) emission units, where each EUA allows the emission of one MT of CO2
equivalent in a calendar year. Thus, companies have a fixed amount of CO2 emissions
available, expressed in tradable EUA. Companies that pollute less than their total allowance
can offer the units left on the market, while companies that pollute more can do so if they
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buy EUAs on the market. Over the years, the ceiling has been progressively lowered to
reduce greenhouse gas emissions in the atmosphere. It will be gradually further reduced
by increasing the pace of annual reductions in allowances to 2.2%, forcing industries to
pollute less.

The ETS covers the sectors and gases, focusing on emissions that can be measured,
reported, and verified with a high accuracy level. Even if this is not the case of agriculture,
one challenging issue is represented by assessing the abatement of CO2 emissions in the
primary sector [4] to explore how agricultural practices could change, and the consequential
costs for farmers.

This study focuses on arable crops, including cereals, oleaginous, proteinic, industrial,
and horticultural crops. For these crops, CO2 emissions can be mainly due to machinery, the
usage of which varies considerably across cropping systems and areas. Farming systems
based on arable crops have a higher capacity to quickly adapt to external stimuli than
permanent crops and the livestock sector, which require high investments and a long
time to change. Instead, arable crops can be easily converted to more environmentally
friendly options, for instance, by shifting from irrigated maize or industrial tomatoes to
rainfed cultivations in a fast land-use adaptation process, or growing more extensively
and reducing input use and operations via technological change. All adaptations have
environmental and economic impacts, which are generally conflicting; in the current market
conditions, more environment-friendly solutions are usually less profitable.

Several frameworks have been developed [5,6] to figure out the relations between
agriculture, the environment, and society. One of the most used conceptual frameworks
is the Driver–Pressure–State–Impact–Response (DPSIR) framework [7]. DPSIR interprets
agriculture as a “driving force” of the main environmental “pressures” (e.g., pollution,
waste disposal), that in turn affects the “state” of the environment (i.e., physical, biological,
chemical conditions), which impacts society (i.e., health, ecosystem, economy). Finally,
impacts typically claim for “responses” from public policy and the market, producing
rules affecting farmers’ businesses, choices, and adopted techniques. Understanding how
such responses may affect economic, social, and environmental sustainability has been
previously investigated, as summarised in several review papers [8–11].

In Italy, the Institute for Environmental Protection and Research (ISPRA) provides the
estimation and reporting of the National Inventory of greenhouse gas emissions, prepared
using the Intergovernmental Panel on Climate Change (IPCC) Guidelines. According to
the 2021 report on agriculture, GHG emissions’ trend “from 1990 to 2019 shows a decrease
of 17.3% due to the reduction of the activity data, such as the number of animals, the culti-
vated surface/crop production, the amount of synthetic nitrogen fertiliser applied, and the
changes in manure management systems” [12]. Coderoni et al. [13] developed a methodol-
ogy based on an adaptation of the IPCC approach at the farm level, using Italian FADN
data to estimate a farm’s agricultural greenhouse gas emissions. In a follow-up application,
Baldoni et al. compared the Total Factor Productivity (TFP) with greenhouse gas (GHG)
emissions at the farm level, focusing on a 2008–2013 panel of Lombardy farms [14,15].

CO2 is the main greenhouse gas, and even though the agricultural sector is not the
main producer due to its relevant role among GHGs, the analysis of agricultural sources of
CO2 and the related abatement costs is paramount.

This work aims to estimate the abatement costs of CO2 emissions in a short time
horizon, considering different arable systems in Italy and using a simulation model based
on official data collected and maintained in the Rete di Informazione Contabile Agricola
(RICA) database. RICA is the Italian database of farm accountancy data, compliant with
the EU-wide Farm Accountancy Data Network (FADN) requirements.

FADN data have been applied in agro-environmental studies on how agriculture is
related to GHGs, as reported in a review of farm-level sustainability indicators, focusing
on CAP and FADN [16]. Such data have been used to assess a grassland strategy for
farming systems in Europe to mitigate GHG emissions [17] and the impact of an EU-
wide policy to expand grassland areas and promote carbon sequestration in soils [18]; the
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economic model of the Common Agricultural Policy Regionalized Impact (CAPRI) was
applied in both of these studies. Another study applied data envelopment analysis (DEA)
methodology to analyse the environmental performance of English arable and livestock
holdings [19]. An empirical analysis applying multinomial logit models analysed Italian
agriculture throughout 2003–2007 [20]. Other approaches using FADN data focused on the
eco-efficiency of arable farms in rural areas [21], on agricultural eco-efficiency in Italian
Regions [22], and on greenhouse gas emissions from conventional farms [23].

Multicriteria methods have been commonly applied to support energy and environ-
mental policies [24–26] and agricultural resource management [27]. In this study, linear
multi-objective programming (LMP) [28,29] and compromise programming [30] have been
adopted since the requested quantitative data were available and the methodology is
well established and widely applied. Todman and al. used a multi-objective optimisation
algorithm with a crop production model that simulates environmental effects to identify
trade-off frontiers and associated possibilities for agricultural management [31]. Zander
et al. developed the MODAM, an instrument that can help mediate conflicts among
competing groups of land users by generating information about the economic and eco-
logical effects of particular decisions [32]. Pacini et al. applied a holistically designed
ecological–economic model to different policy scenarios [33]. Estes et al. designed a model
to explore the potential for targeting agricultural expansion in ways that achieve quantita-
tively optimal trade-offs between competing economic and environmental objectives to
find potential compromises [34]. Coleman et al. adopted a model framework that simulates
spatial and temporal interactions in agricultural landscapes and can explore trade-offs
between production and the environment [35]. Ditzler et al. coupled a bio-economical
farm model, evaluating the productive, economic, and environmental farm performance,
with a multi-objective optimisation algorithm that generates a large set of Pareto-optimal
alternative farm configurations [36].

The analysis of the previous literature highlighted the need to quantify the emission
abatement costs at the local and farm scales since most of the studies dealt with aggregate
estimations. To fill this gap, this study used a tool previously designed to assess sustain-
ability in organic and conventional farming with a multi-criteria approach [37]. The tool
has been further developed to estimate economic and environmental performance at the
farm level, using real farm data in specific contexts. This approach allowed for analysing
both farm-level decisions and policy scenarios. To the best of our knowledge, this approach
has not been adopted in any other similar studies.

The paper is organised as follows. Section 2 explains the data used and provides
essential information on the research strategy and the model. Section 3 presents the results
of the analysis. Finally, a discussion and conclusions are drawn in Section 4.

2. Materials and Methods
2.1. Data: The RICA Database

This analysis method has been tailored around the RICA database, the Italian section
of FADN, one of the major EU-wide data sets and a fundamental information tool used in
the decisional processes dealing with the design of the EU Common Agricultural Policy.
FADN collects accountancy information from a representative sample of EU farms. In Italy,
data collection and maintenance are carried out by CREA-MIPAAF (National Council for
Agriculture Research and Agricultural Economics of the Ministry of Agricultural, Food and
Forest Policies). The collected information is structural (e.g., cropped surface, workforce,
etc.) and economical (e.g., producing value, goods and services purchased and sold,
subsidies, etc.).

In 2003, the principle that the farm sample should represent a country farm universe
was introduced, and farm selection has been in agreement with the results of the investiga-
tion of economic performances of farm holdings (REA) managed by the Italian National
Institute for Statistics (Istat). Such innovation allows for obtaining an integrated survey
structured unit that is able to considerably increase record reliability. Such a methodology
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has also allowed, since 2003, to give each farm a weight, estimating its representation on a
national basis, which is obtained from three data: location (NUTS2), economic size (since
2009, expressed in euros), and type of farming (following the Neyman methodology) [38].

Even though CREA preliminarily checks data, they require further verification to
detect and correct anomalies of values (e.g., numbers including characters) and labels (e.g.,
non-uniform ASCII coding). Successively, a filtering procedure was applied, aiming to
restrict the farm universe. In fact, for this study, a preselection of farms was performed,
and we retained only farms with arable land-use located in flat and steep areas (Figure 1).
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Data from the RICA database were used for the following specific purposes:

• to obtain technical parameters for the model;
• to extrapolate the cropping schemes;
• to select farms for simulations;
• to validate the results.

A schematic representation of the procedure is presented in Figure 1.

2.2. Multi-objective Analysis

Available RICA data supported the identification of different criteria and the related
indicators: income (IN—€), family labour (LAF—h), external labour (LAE—h), emissions
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(CO2—kg), distributed nitrogen fertilisers (N—kg). All the criteria were to be minimised,
except income.

When more conflicting criteria are simultaneously considered, no optimal solution
exists since one criterion may improve only by worsening others.

The RICA dataset allows for describing each criterion as a function of production pro-
cesses at the farm level. A process describes how a specific crop is cultivated, considering
input and output both in quantity and economic terms. Therefore, the multi-objectives
approach could be adopted.

The LMP, also known as vectorial optimisation, is based on linear functions and
preserves the optimisation approach, characterising basic linear programming. The method
is suitable when all alternatives can be identified, and the objectives are functions to be
minimised or maximised. In this case, the problem was reduced to the identification of the
set of feasible, non-dominated solutions, as in Equation (1):

Eff f(x) = [f1(x) . . . fj(x) . . . fm(x)] (1)

where Eff is the efficient solution set and represents the Pareto or efficient frontier, fj is
the objective function of criterion j ∈ [1:m], and x is a decision variable array. Solutions
are constrained by available resources and technologies and any other relevant aspect of
the problem. The problem has a representation in the alternatives’ space (X), showing
which production process should be activated, and a complementary representation in the
objective space fj(x), quantifying the effects for all the criteria by the selected indicators.

Solutions are found in a common approach, maximising a variable Z, which is the
weighted sum of the normalised objectives (Equation (2)):

Z = ∑j wj · |fj − f* | / | fmax − fmin| (2)

where Z is the objective value, representing the aggregated weighted value of the nor-
malised criteria, and wj ∈ [0:1] is the weight of indicator fj, and the sum of all the wj has a
value of 1. It should be clarified that wj is a technical coefficient quantifying the relative
importance of criteria. Since Z is a linear combination of the objective values, it requires
that the selected criteria are independent.

This optimisation approach was based only on technical information derived from
RICA, and decision-makers’ preferences were not requested. Normalisation was needed
since the criteria were measured in different scales and units. In Equation (2), f* represents
the minimum or the maximum, depending on whether the criterion has to be maximised
or minimised. In all cases, normalised values of 0 correspond to the worst case, and 1 to the
best case. In the first stage, estimations of maximum and minimum for each criterion were
performed, which implied solving a number of problems equal to the number of criteria
under the same constraints.

As weight values affect results, different weight combinations can be adopted to
explore the feasible space. When two solutions are compared, it is possible to identify
the conflict between the criteria to move from one solution to another and the existing
trade-off. When one of the criteria is expressed in monetary terms, the trade-off represents
the cost implied by the other criterion’s optimisation. In our case, reducing CO2 emissions
(criterion 1) corresponded to decreasing income (criterion 2), and the monetary loss suffered
by the farmer was the estimated CO2 reduction cost.

A parametric analysis of the weights allows for estimating efficient frontiers. The
existing variability in the alternatives space affects the number of feasible solutions, which
is not necessarily equal to the number of weighted combinations since more combinations
can generate the same solution.
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2.3. The Tool: MAD 2.0

MAD 2.0 is a multi-farm model based on mathematical programming techniques and
designed to work with the RICA database. The model was written and solved in GAMS
(General Algebraic Modelling System) software [39].

The model assumes that a farm may have only one regime—conventional or organic;
splitting or transient conditions are not considered. Technical coefficients, including re-
source use, production and related costs and revenues, are estimated annually from the
RICA database. In the short time horizon, new investments are not considered, and every
component that is not related directly to arable land is assumed to be constant.

Seven indices identify each farm:

• farm code (fc), which identifies the farm in the RICA database;
• year (y), relevant because of climate trends and price variations over time—available

years are 2008–2018;
• administrative region (re), as defined by RICA, represents a relevant aggregate level

for analysis;
• land size class (cs), considering only the arable surface, defined by the limiting values:

5, 15 and 40 ha (RICA); such classes create more homogeneous groups of farms within
the total sample;

• farming system (fs): conventional (c) or organic (o);
• slope (sl), a class of slope following RICA, assigned to the farm on the basis of the

prevalence of that of arable surfaces: G1—flat (slope 0%), G2—mild (0% < slope < 10%),
G3—steep (slope > 10%);

• climate (cl), a piece of information missing in RICA; classification has been done using
a national phyto-climatic mapping developed by Tomasselli [40] and Pedrotti [41],
defining five classes: Z1—Lauretum, Z2—Quercetum, Z3—Castanetum, Z4—Fagetum
and Z5—Picetum; the choice revealed to be a good compromise in terms of resolution
and complexity. The climate map has been used to assign a climate class to each
municipality by a prevalence criterion, then further assigned to the farmer.

Each combination of the previous indices identifies a “context” in equations, repre-
sented as “az”.

2.3.1. Cropping Schemes

Land use is articulated in crops (cc), which are split into arable (cr) and permanent
crops (e.g., pastures). As only the first ones are responsive to short time farm decisions,
arable land-related activities are the only ones optimised by the model. However, to
compare model accounting estimates with the standard RICA budget, all the other activities
were included in the analysis but kept fixed to the observed farm values.

A novel approach, able to obtain flexibility and representativeness of the farm territo-
rial context, was adopted to model land use and the associated production techniques. It
was based on the introduction of “cropping schemes” (sc), that is, land-use combinations
characterising a certain context. A cropping scheme is defined based on observed data
considering both crops and crop groups. A group includes crops similar in terms of agro-
nomic aspects and technique in a certain context and requires similar equipment at a farm
scale. Observed groups included cereal, industrial, and horticultural crops. Elements of
the groups were only the crops observed in the RICA data by context, which implies that
the same group could include different crops by region, climatic zone, and farm class [42].
The model assumes that a farm can grow any crops of the same group in the given crop-
ping scheme. A cropping scheme, by construction, includes actual land use, while crop
substitution within a group entails flexibility while preserving the current type of farming.

In the first phase, statistical analysis quantified the observed surface by context. In
a second phase, shifts from such values were calculated, quantifying the minimum and
maximum crop size by crop and group based on the available information on farmer
behaviour and the market.
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Three constraints were therefore adopted:

saaz = ∑cr|sc Saz,cr (3)

saaz = ∑gr|sc SGaz,gr (4)

STcr = ∑az Saz,cr (5)

Equation (3) imposes that land allocation (S) based on available cropping schemes (sc)
reproduces the current arable surface (sa) at a farm level (az), allowing for crop substitution
within a group within the limits of the cropping schemes.

Equation (4) quantifies the surface by group (SG) at the farm level.
Equation (5) is a territorial constraint that quantifies the aggregate surface by crop at a

territorial level (ST).
The variables S, SG and ST have boundaries that limit land-use allocation at a farm

level; the first two being based on current land use, and the latter on markets.

2.3.2. Production Factors and Resource Usage

The crop data include information on different production factors, among which
labour (LA), articulated by labour provided by the farmers’ family (LAF), external labour
(LAE), and machinery use with a farmer component and an external one represented by a
third party’s services are particularly relevant.

Constraints related to labour are calculated over all crops, and not only the arable
ones; Equation (6) introduces the labour balance between the components, and Equation
(7) quantifies the labour requirement at a farm scale from a crop scale:

LAaz = LFaz + LEaz (6)

LAaz = ∑az,cc lacc · Saz,cc (7)

where ‘la’ represents the labour requirement of a given crop (cc) and S represents the
crop surface.

As mentioned above, machinery use is assumed to be the major source of emissions
(CO2). Emissions can be calculated from the working time multiplied by a coefficient
quantifying an average engine fuel hourly consumption (CO2). RICA provides information
on the time spent by farm machinery by crop (tm), but only the cost of third party services
(se); in the latter case, time employed can be estimated by dividing the cost by an hourly
tariff (tt), as shown in Equation (8):

CO2az = ∑cc Saz,cc · [tmcc + secc /tt] · co2 (8)

Distributed nitrogen fertiliser (N) is quantified considering the sum by crop (cc) of the
amount distributed per surface unit (nf), multiplied by the surface (S), as in Equation (9):

Naz = ∑cc Saz,cc · nfcc (9)

2.3.3. The Economic Component

Because the model is focused on the short term, farm income (IN, Equation (10)) is a
gross value given by the value of products sold, plus subsidies (SU, Equation (11)), minus
the total variable costs (VC, Equation (12)). The model follows the RICA classification
of outputs into raw, transformed, and by-products, assuming that they could all be sold.
Therefore, the first component in Equation (10) equals the sum by crops (cc) and products
(pp) of unitary yields (q) and price (p), multiplied by the cultivated surface (S):

INaz = ∑cc|az [Scc ·∑pp|cc qpp · ppp] + SUaz − VCaz (10)
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Subsidies (SU, Equation (11)) have been considered when related to the first pillar, as
regulated by EU Reg. 2013/1307 [43], including decoupled support (SD) and coupled aids
(sa) for specific crops, including durum wheat, protein crops, oil/protein crops, soybean,
sugar beet and field tomato:

SUaz = SDaz + ∑cc|ss [Saz,cc · sacc] (11)

Costs (co) per surface unit are those related to resources (rr) used, including the
previous year’s costs (fall seeding), energy, external services, seeds, pesticides, fertilisers,
water, transformation, marketing, insurances, certification, and other costs. The total
amount of variable costs (VC) is given by Equation (12):

VCaz, = ∑cc [Saz,cc ·∑rr cocc,rr] (12)

2.3.4. Objective Function

The model identifies the best combination of crops on the available arable surface area,
maximising the variable Z given by the objective function Equation (13):

Z= ∑az uaz ·∑j wj Ij,az (13)

where I{1,2} = {IN, CO2} are the normalised values of the criteria, uaz is the factor accounting
for farm representativeness at a country level (SAMPLE table in RICA), and wj are the
objective weights, as in Equation (2).

The model has been used to perform a frontier analysis for the contexts described
above. The frontier derivatives allow for evaluating the abatement costs of CO2 (AC):
∆ IN/∆ CO2.

The goal was to identify the likelihoods and differences in emissions and ACs amongst
contexts due to different local conditions deriving from climate, technological, and cul-
tural aspects.

2.3.5. Coefficients and Algorithms

Statistical algorithms were implemented using the R software package [44]. Specific
code was developed to identify and remove outliers and derive the average technical
coefficients by crop, product (quantity and prices), and subsidies. Averages and variations
were estimated for every quantitative observation included in RICA.

For the same crop, the technical coefficients derived from the RICA data describe a
process for a given context (region, climate, slope, regime) and have a general value beyond
the current analysis.

Farm surface area classes (sa) were merged to guarantee adequate sample numerosity.
In classes with a small size or large variability, the technical coefficients were not estimated.
This case occurred for groups defined by terms used occasionally or that were strongly
crop-dependent. Coefficients such as previous year costs, insurances, certification were
available only for a few crops.

Coefficient availability also affected the selection of crops for successive analysis, as
farm filtering, based on the comparison between estimated and observed accountancy
items, was applied.

3. Results

The model has been validated by comparing model estimates with the RICA budget
at the farm level, representing the Business as Usual (BAU) scenario. Only farms with a dif-
ference in total cost and product sold lower than 20% in both values were considered. This
selection further reduced the sample numerosity but highly increased representativeness.

Parametric analysis on weights was conducted, moving from wIN = 1, wCO2 = 0 to
wIN = 0, wCO2 = 1, considering a 5% variation and requiring 21 steps, for all the Regions
and different years. Since farmers were assumed to be income maximisers, the former
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combination represents the existing situation, while all the other combinations identify
efficient solutions with lower incomes and CO2 emissions levels. Due to the conflict
between the selected criteria, a reduction in the growth in emissions, which is desirable
from an environmental perspective, can be obtained only by lowering the income.

Only contexts with at least five farms were considered for this study; the analysis in-
cludes, in total, 65 contexts in 10 regions in the north, centre and south of Italy, representing
over 10,000 farms and covering about 230,000 hectares. The results by context are reported
in Appendix A. The first column identifies the context; columns 2–4 quantify the number
of farms, land surface area and the number of crops observed in the context; columns 5–9
include five indicators: INC, CO2, N, LAF, and LAE; columns 10–15 the variation of the
indicator with respect to the BAU; column 16 reports the average abatement cost for a
kilogram of CO2 (AC).

Context distribution among regions and classes of land size (Table 1) show that
contexts in cs1, (arable land < 5 ha) are only in four out of five regions (LOM, ERO, ABR,
LAZ; CAL) and have only middle-size farms, while in the other regions, the three larger
classes are always present. Most farms are located in flat (G1) and mild slope (G2) areas,
while only six are in steep slope areas (G3).

Table 1. Number of contexts by region, climatic area, and classes of land size.

Land Size Class Slope Land Size Slope Land Size Class Slope

Region and Climate cs1 cs2 cs3 cs4 G1 cs1 cs2 cs3 cs4 G2 cs2 cs3 cs4 G3 Total

LOM 2 2 2 6 1 1 1 3 9
Z3 1 1 1 3 1 1 1 3 6
Z4 1 1 1 3 3

VEN 1 1 1 3 3
Z3 1 1 1 3 3

ERO 1 1 1 1 4 1 1 2 1 1 7
Z3 1 1 1 1 4 1 1 2 1 1 7

MAR 1 1 1 1 2 1 1 1 3 6
Z3 1 1 1 1 2 1 1 1 3 6

TOS 2 1 1 4 2 2 4 1 1 2 10
Z1 1 1 1 3 1 1 2 5
Z3 1 1 1 1 2 1 1 2 5

ABR 1 1 2 1 2 1 1 5 7
Z1 1 1 1 1 2
Z3 1 1 1 1 1 1 4 5

LAZ 1 1 1 3 1 1 2 5
Z1 1 1 2 2
Z2 1 1 1
Z3 1 1 2 2

CAM 2 2 4 1 1 1 3 7
Z1 1 1 1 1 2
Z2 1 1 1
Z3 1 1 2 1 1 2 4

PUG 2 3 2 7 1 1 2 9
Z1 1 1 1 3 3
Z2 1 1 2 2
Z3 1 1 2 1 1 2 4

CAL 1 1 2 2
Z1 1 1 2 2

Total 2 11 13 8 34 2 6 9 8 25 1 2 3 6 65

Regions: LOM = Lombardia, VEN = Veneto, ERO = Emilia-Romagna, MAR = Marche, TOS = Toscana, UMB = Umbria, LAZ = Lazio,
CAM = Campania, PUG = Puglia, CAL = Calabria; Climates: Z1 = Lauretum, Z2 = Quercetum, Z3 = Castanetum, Z4 = Fagetum; G1 = flat,
G2 = mild slope, G3 = steep slope; arable land size: cs1 = <5 ha, cs2 = 5−15 ha, cs3 = 15−40 ha, cs4 = >40 ha
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The total land surface area is over 1.2 million hectares, nearly 50% of which is repre-
sented by large farms. Only 4390 hectares are in small farms, while the rest of the area is
allocated to the central classes. Most of the area is in the north of Italy, and ERO is the most
represented region (Table 2).

Table 2. Total surface by region and classes of arable land size.

Region cs1 cs2 cs3 cs4 Total by Region

LOM 168 46,256 91,465 161,388 299,277
VEN 52,279 48,723 53,313 154,315
ERO 2406 42,588 116,252 244,603 405,849
MAR 1250 27,198 23,973 52,421
TOS 4433 14,996 48,073 67,502
ABR 763 6448 5899 1740 14,850
LAZ 1053 28,215 34,187 63,455
CAM 8773 13,002 1261 23,036
PUG 20,049 67,004 53,420 140,473
CAL 2538 7413 9951

Total by cs 4390 184,614 420,167 621,958 1231,129
Regions: LOM = Lombardia, VEN = Veneto, ERO = Emilia-Romagna, MAR = Marche, TOS = Toscana, UMB = Um-
bria, LAZ = Lazio, CAM = Campania, PUG = Puglia, CAL = Calabria; arable land size: cs1 = <5 ha, cs2 = 5–15 ha,
cs3 = 15–40 ha, cs4 = >40 ha.

The context PUGcs2G1Z2 (PUG = Puglia, cs2 = 5–15 ha, G1 = flat, Z2 = Quercetum) is
described in detail, as an example of the methodology.

Table 3 shows the values of the indicators; the resulting values are illustrated in
Figure 2. Only five points are reported since more weight combinations gave identical
results. The chart has iteration along the horizontal axis and the income measured in
euros down the left vertical axis; the other four criteria are on the right vertical axis. All
values refer to one hectare of land. The BAU point on the extreme left of the horizontal
axis corresponds to iteration 1; moving from p1 to p2, income decreases by EUR 33.27 and
CO2 reduces by 25.71 kg, which gives an AC of 1.29 EUR/kg. Comparing p3 with p1, the
variation becomes 86.75 and 5.98, giving an AC of 14.56 EUR/kg. At p4, the AC rises to
15.68 due to an income loss of 253.77 and a reduction of 16.18 kg of CO2. The next line, p5,
shows a reduction in income of EUR 640.08, while CO2 reduction lowers to 25.59 kg, and
AC jumps to 25.01 EUR/kg.
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Table 3. Indicators’ values at different efficient levels of INC/CO2 in PUGcs2G1Z2 (PUG = Puglia,
cs2 = 5–15 ha, G1 = flat, Z2 = Quercetum).

p INC CO2 N LAF LAE D.INC D.CO2 AC

1 1692.10 177.33 76.18 91.86 17.86
2 1658.83 151.62 71.41 84.76 17.65 33.27 25.71 1.29
3 1572.08 145.66 60.79 82.98 17.65 86.75 5.96 14.56
4 1318.31 129.48 53.39 97.30 15.22 253.77 16.18 15.68
5 678.23 103.89 52.73 29.84 14.45 640.08 25.59 25.01

p = switch point, INC = income, CO2= carbon dioxide, N = nitrogen, LAF = family labour, LAE = external labour,
D.INC = delta income, D.CO2 = delta greenhouse gases, AC= abatement cost.

The relation between income and emissions can be well represented by a chart showing
the efficient frontier (Figure 2) with income measured in euros along the vertical axis and
CO2 emissions along the horizontal axis. Since farmers are income maximisers, the highest
income value identifies the current BAU situation, which is the extreme upper right in the
frontier; such a point corresponds to the highest emission levels. Points along the frontier
represent feasible solutions characterised by lower income levels and lower emissions.

As far as the other criteria are concerned, Table 3 and Figure 3 show the complete
picture. At the switch point 2, the use of N decreased from 76.18 kg/ha to 71.41 kg/ha
−4.77%; the impact on employment was also negative: family labour (LAF) moved from
91.86 h/ha to 84.76 h/ha −7.1%, while external labour (LAE), which requires 17.86 hours
at BAU decreased to 17.65 −0.21%. In this context, all the indicators decreased with
CO2 reduction, but family labour, at point 4, had an opposite trend, rising by +14.32%,
probably due to substitution with mechanical operations requested to comply with the
environmental goal.
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The previous charts describe the results in the objective space; a corresponding figure
can be obtained in the criteria space, where production processes are described. Figure 4
shows the distribution of crops for the previous context, only crops that cover more than
3% of the total surface were included. Iterations are along the horizontal axis and the total
surface in hectares is along the vertical axis. Durum wheat, the main cultivation currently
observed (iter 1), at point 2 decreased less than 2%, then lost surface, dropping from over
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4400 ha to 3600 ha (−18.58%), then keeps stable at around 3700 ha. Most profitable crops,
including fennel and melon, decreased the covered surface substantially, by more than
−80%. An opposite trend showed sunflowers rising from 177 to 270 ha + 52%, and unaided
set-aside land rising from 177 ha to 227 hectares (+28%). Broad beans kept stable, while
industrial tomatoes kept stable until point 3, then lost around 10%, and were substituted
by table tomatoes requiring more labour and fewer mechanical practices. Other labour-
intensive crops entered the rotation but with a very limited surface, while the highly
mechanised crops disappeared. An extensification and diversification process was adopted
to reduce the CO2 emissions in the short term.
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The analysis can be repeated for all the observed contexts, but for the sake of brevity,
we present a comparative analysis considering all 10 regions, and all the contexts provided
useful insight on the income/CO2 emissions relationship.

Table 4 presents the minimum abatement cost for a kilogram of CO2 by regions and
slope. Only ACs lower than EUR 1 were included. Regions are along the rows; in the PUG
case, more rows identify increasing levels of reduction. LAZ has no value due to ACs
higher than the entry level.

Table 4. Minimum abatement cost for a kilogram of CO2 by region and slope.

Region G1 G2 G3

LOM 0.537 0.555
VEN 0.102
ERO 0.109
MAR 0.913 0.070
TOS 0.056 0.250 0.786
ABR 0.268 0.612
CAM 0.482 0.607

PUG (p1) 0.364 0.159
PUG (p2) 0.487
PUG (p3) 0.835

CAL 0.576
Regions: LOM = Lombardia, VEN = Veneto, ERO = Emilia-Romagna, MAR = Marche, TOS = Toscana, UMB = Um-
bria, CAM = Campania, PUG = Puglia, CAL = Calabria; G1 = flat, G2 = mild slope, G3 = steep slope; p1, p2,
p3 = switch points.

A clear relation seems to exist between the AC and slope; G1 shows lower values in
all regions except PUG and MAR, where the highest value 0.913 EUR/kg was observed.
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The best performance with the lowest AC is in TOS, with the lowest observed AC, equal to
0.056 EUR/kg (Table 4).

Farm size seems to be linked to the capacity to reduce emissions (Table 5). cs1 has a
higher AC; this is probably due to the higher efficiency of larger farms in technical operations.

Table 5. Minimum abatement cost per kilogram of CO2 by arable land size class.

Arable Land Size Class Min ABATEMENT COST

cs1 0.862
cs2 0.056
cs3 0.070
cs4 0.109

Arable land size classes: cs1 = <5 ha, cs2 = 5–15 ha, cs3 = 15–40 ha, cs4 = >40 ha.

We illustrate our findings for four cases with conventional management (c) and
plain terrain (G1) data, including Lombardy (LOM) and Emilia-Romagna (ERO) for the
north, Tuscany (TOS) for the centre, and Puglia (PUG) for the south of Italy, with climate
corresponding to Z3 for LOM and ERO, Z1 for TOS, and Z2 for PUG.

Figure 5 shows the efficient frontiers, with income along the vertical axis and emissions
along the horizontal axis. Colours identify the farm size classes (cs1–cs4); not all the classes
were always present since the interval chosen covered only a part of the feasible space, and
in some cases, the first class fell out. All values refer to one hectare of land. Cross-squared
symbols represent the ideal values, identifying infeasible solutions where both criteria are
at the optimum; such points are referenced to identify the compromise range on the frontier,
characterised by the Euler and Chebyshev distances from the previous analysis [30].
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Figure 5. Income/CO2 emissions frontiers by regions and arable land size class. Regions: LOM = Lom-
bardia, ERO = Emilia-Romagna, TOS = Toscana, PUG = Puglia; climates: Z1 = Lauretum, Z2 = Querce-
tum, Z3 = Castanetum; G1 = plain, G2 = mild slope, G3 = hilly; farming system: c = conventional,
o = organic; arable land size classes: cs1 = <5 ha, cs2 = 5–15 ha, cs3 = 15–40 ha, cs4 = >40 ha.

The frontiers have similar shapes but a very different range of values. Within a region,
differences emerged among classes and greater ones among regions.
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Current income levels are quite different, ranging from about 3500 EUR/ha in ERO
cs1 to about 750 EUR/ha in LOM cs2 and PU cs4. Emissions show a more limited range of
values among observed situations, ranging from nearly 200 kg/ha to less than 100 kg/ha.

In general, CO2 emissions per hectare were lower in larger farms (classes cs3, cs4),
which can depend on higher efficiency in the use of machinery but also, and more probably,
from more extensive cultivation in comparison to smaller farms (cs1, cs2), where higher
emissions follow higher incomes.

Figure 6 shows the marginal abatement cost (MAC) calculated as the variation of
the two following points of the frontier. In this case, all the charts have equal values on
the axes.
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Almost every curve shows S-shaped behaviour. Moving from BAU, abatement costs
grow rapidly, and then reach a nearly stable value due to the existence of alternatives
that preserve income. A further reduction in emissions corresponds to a dramatic MAC
increase, particularly in the north.

Finally, the study shows that a reduction of CO2 emissions higher than 5 kg/ha, at an
AC lower than 1 EUR/kg is affordable only in six s regions, among which ABR, and LOM
show higher potential (Table 6).
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Table 6. Contexts with CO2 emissions higher than 5 kg/ha at an AC lower than 1 EUR/kg.

Context INC D.CO2 Abatement Cost

Euro kg Euros/kg

ABRcs2G2Z1 782 −128.91 0.612
LOMcs4G1Z4 56 −31.25 0.537
CAMcs2G1Z3 1640 −11.40 0.482
LOMcs3G2Z3 548 −9.58 0.555
TOScs4G3Z3 82 −6.79 0.786
ABRcs3G1Z1 833 −5.70 0.530

INC = income, D.CO2 = delta CO2 emissions level; regions: ABR = Abruzzo, LOM = Lombardia, CAM = Campania,
TOS = Toscana; arable land size classes: cs1 = <5 ha, cs2 = 5–15 ha, cs3 = 15–40 ha, cs4 = >40 ha; G1 = plain,
G2 = mild slope, G3 = steep slope; climates: Z1 = Lauretum, Z2 = Quercetum, Z3 = Castanetum, Z4 = Fagetum.

4. Discussion and Conclusions

The assessment of economic and environmental sustainability of agricultural systems
represents a critical issue, which has been addressed in this work with an integrated
approach based on the LMP to explore the abatement costs of CO2 for a set of representative
contexts of Italian arable land agriculture.

The study has shown a quite diversified situation regarding income and emission
levels per hectare across Italian regions and farm classes, due to diversified cropping
systems and production processes. A more homogeneous situation emerged, considering
the marginal abatement cost, which spanned 0–40 EUR/kg of CO2, but below EUR 1,
emissions showed nearly no reduction.

ETS, introduced by EU policies to reduce industrial emissions, got a price raise in
the last 10 years from 0.10 to 0.23 EUR/kg of CO2, and further increases are expected that
could further increase the price to 0.4 EUR/kg of CO2.

Comparing ETS values to MACs in the agricultural systems taken into account high-
lighted a difference of 1 order of magnitude, which can probably be ascribed to the huge
difference in efficiency between the industrial and agricultural production systems. Only in
a few cases could relevant emission reductions be obtained at a cost lower than 1 EUR/kg.
Therefore, to reduce emissions, innovation should be introduced in the arable cropping sys-
tems in terms of technologies with a lower use of resources, especially internal combustion
engine machinery, and a general increase of energy efficiency.

The simulation and optimisation tool developed proved to produce insightful re-
sponses to estimated CO2 emissions and their abatement costs. It is important to highlight
that this analysis was based on a short-term perspective. Therefore, it is useful to pro-
vide foresight on possible immediate impacts and contingency adjustments implemented
by farmers in response to environmental policies to reduce emissions [45–47]. However,
further research is necessary to complement this analysis and provide a medium to long-
term perspective, in which structural adaptation on the supply side, such as land-use
changes, technological innovation, intensification or extensification [48,49], supply chain
adaptations, and market developments on the demand side, [50,51] are also allowed.

The FADN-compliant Italian RICA has been shown to collect information adequate to
perform quantitative analysis of economical and agrotechnical aspects.

Data availability is at the base of statistical approaches adopted to derive technical
parameters. An important contribution of this analysis lies in its reliance on actual farm
accountancy data rather than simulation-based data. Such context-dependent parameters,
describing production processes at a crop level, can be useful to other bio-economic models.

The model developed, designed to use RICA’s information solely and based on an
innovative concept of a cropping scheme to simulate land-use adaptation, proved reliable
and capable of conducting multi-criteria analysis.

Nonetheless, both the model and its background database can be improved. The
model is ready to host more equations and constraints to study other farm contexts and
consider other socio-economic and environmental criteria.
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Several aspects can be enhanced in the RICA database to collect records that con-
sistently refer to the same farm over the years, link to other databases, and enrich the
information on non-conventional agricultural approaches (e.g., organic).

Further research may be addressed to update the analysis to more recent RICA surveys
and introduce stakeholder perspectives. Collaborations with the RICA maintenance team
and other national and international research and survey institutions could open further
opportunities to develop the tool.

Author Contributions: Conceptualisation, G.V., G.M.B. and M.C.; methodology, G.M.B. and, G.V.;
mathematical programming, G.M.B.; software, G.M.B. and G.V.; validation, G.V. and G.M.B.; data
curation, C.C. and G.V.; resources, M.C.; writing—original draft preparation, G.V. and G.M.B.;
writing—review and editing, M.C., G.M.B. and G.V.; visualisation, G.V.; funding acquisition, M.C.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Italian Ministry of Agricultural, Food, and Forest Policies,
project BIOSUS “Impatto dell’agricoltura biologica sulla sostenibilità ambientale e sulle emissioni di
gas serra”, Bando Agricoltura biologica-D.M. 6553/2013.

Data Availability Statement: Restrictions apply to the availability of these data. The data were
obtained from the Council for Agricultural Research and Economics (CREA) and are accessible at the
URL https://bancadatirica.crea.gov.it/Account/Login.aspx with the permission of CREA.

Acknowledgments: We gratefully acknowledge the support of CREA for making the RICA data
available to the research team.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Appendix A

CONTEXT FARM SURF CC INC CO2 N LAF LAE D.INC D.CO2 D.N D.LAF D.LAE AC cs

LOMcs1G2Z3 67 168 6 921 294 32 82.6 0 cs1
LOMcs1G2Z3 67 168 6 894 289 23 79.3 0 −27.4 −5.65 −9.02 −3.3 0 4.85 cs1
LOMcs2G1Z3 7814 39070 28 714 120 135 55.8 0 cs2
LOMcs2G1cZ3 7814 39070 28 710 117 133 54.8 0 −3.7 −2.29 −2.05 −0.92 0 1.616 cs2
LOMcs2G1Z4 101 503 12 2691 120 43 45.4 0 cs2
LOMcs2G1Z4 101 503 12 2684 117 43 44.8 0 −6.35 −3.12 −0.12 −0.63 0 2.035 cs2
LOMcs2G2Z3 1337 6683 19 1323 197 103 101.2 0 cs2
LOMcs2G2Z3 1337 6683 22 1318 192 89 100.4 0 −4.97 −4.43 −14.46 −0.8 0 1.122 cs2
LOMcs3G1Z3 4084 81683 51 995 111 138 56.3 3.4 cs3
LOMcs3G1Z3 4084 81683 51 995 110 137 56.2 3.4 −0.29 −0.12 −1.11 −0.11 0 2.417 cs3
LOMcs3G1Z4 138 2768 13 474 80 125 25.4 0 cs3
LOMcs3G1cZ4 138 2768 16 472 78 122 24.8 0 −1.76 −2.51 −3.37 −0.67 0 0.701 cs3
LOMcs3G2Z3 351 7014 11 553 100 157 61 0 cs3
LOMcs3G2Z3 351 7014 11 548 91 147 49.8 0 −5.32 −9.58 −10.09 −11.16 0 0.555 cs3
LOMcs4G1Z3 3891 155642 53 1063 96 157 37 17.1 cs4
LOMcs4G1Z3 3891 155642 53 1062 95 155 36.7 16.7 −0.95 −1.33 −1.85 −0.32 −0.41 0.714 cs4
LOMcs4G1Z4 144 5746 12 73 151 204 38.9 0 cs4
LOMcs4G1Z4 144 5746 23 56 120 161 30.5 0 −16.78 −31.25 −43.09 −8.37 0 0.537 cs4
VENcs2G1Z3 10456 52279 53 420 221 46 65.1 0 cs2
VENcs2G1cZ3 10456 52279 53 419 217 44 63.9 0 −0.42 −4.1 −1 −1.22 0 0.102 cs2
VENcs2G1Z3 10456 52279 53 415 217 41 63.6 0 −4.57 −4.31 −4.81 −1.51 0 1.06 cs2
VENcs3G1Z3 2436 48723 20 126 198 48 48.9 0 cs3
VENcs3G1Z3 2436 48723 20 123 198 46 48.9 0 −2.11 −0.21 −2.26 −0.02 0 10.048 cs3
VENcs4G1Z3 1333 53313 54 427 167 50 32.8 18.4 cs4
VENcs4G1Z3 1333 53313 54 426 165 49 32.4 18.2 −0.93 −1.92 −0.82 −0.43 −0.19 0.484 cs4
VENcs4G1Z3 1333 53313 54 422 162 46 31.7 18.2 −5.42 −4.91 −3.32 −1.12 −0.16 1.104 cs4
EROcs1G1Z3 962 2406 19 3737 283 244 219.1 0 cs1
EROcs1G1cZ3 962 2406 21 3600 270 225 212.9 0 −137.07 −12.66 −19.56 −6.2 0 10.827 cs1
EROcs2G1Z3 8518 42588 52 1439 112 148 58.3 0 cs2
EROcs2G1Z3 8518 42588 46 1437 111 146 57.7 0 −1.83 −1.26 −2.35 −0.55 0 1.452 cs2
EROcs3G1Z3 5419 108374 47 1391 82 132 40.2 0.8 cs3
EROcs3G1Z3 5419 108374 53 1390 81 125 40 0.8 −1.41 −0.71 −7.06 −0.28 0.01 1.986 cs3
EROcs3G2Z3 394 7878 5 669 83 64 37.6 0 cs3
EROcs3G2Z3 394 7878 13 630 78 59 35.7 0 −39.02 −4.74 −4.48 −1.91 0 8.232 cs3
EROcs4G1Z3 5787 231460 53 1046 89 126 23.1 20.9 cs4
EROcs4G1cZ3 5787 231460 53 1046 88 125 23.1 20.3 −0.13 −1.19 −1.39 0.02 −0.54 0.109 cs4
EROcs4G1Z3 5787 231460 53 1043 87 124 23.1 20 −2.76 −1.95 −2.72 −0.02 −0.89 1.415 cs4
EROcs4G2Z3 218 8711 6 1329 34 211 13.7 2.9 cs4
EROcs4G2Z3 218 8711 6 1324 32 210 13.7 2.3 −5.04 −1.51 −1.52 0 −0.64 3.338 cs4

https://bancadatirica.crea.gov.it/Account/Login.aspx
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CONTEXT FARM SURF CC INC CO2 N LAF LAE D.INC D.CO2 D.N D.LAF D.LAE AC cs

EROcs4G3Z3 111 4432 5 1708 47 51 19.8 21.6 cs4
EROcs4G3Z3 111 4432 5 1706 44 48 19.8 21.2 −2.24 −2.08 −2.99 0 −0.41 1.077 cs4
MARcs2G3Z3 250 1250 7 391 74 106 30 0 cs2
MARcs2G3Z3 250 1250 7 312 57 78 24.9 0 −79.31 −16.39 −27.43 −5.1 0 4.839 cs2
MARcs3G1cZ3 432 8649 24 180 103 103 34.7 0 cs3
MARcs3G1Z3 432 8649 37 178 100 98 34 0 −2.2 −2.41 −4.06 −0.65 0 0.913 cs3
MARcs3G2Z3 819 16381 33 541 102 79 44.9 0 cs3
MARcs3G2Z3 819 16381 33 541 101 78 44.7 0 −0.05 −0.71 −0.14 −0.22 0 0.07 cs3
MARcs3G2Z3 819 16381 32 537 101 75 44.8 0 −3.66 −0.88 −3.5 −0.14 0 4.159 cs3
MARcs3G3Z3 108 2168 9 2319 225 366 68.2 92 cs3
MARcs3G3Z3 108 2168 15 2098 193 273 68.2 15.5 −220.38 −31.54 −92.96 0 −76.55 6.987 cs3
MARcs4G2Z3 223 8903 36 762 88 73 21.8 4.1 cs4
MARcs4G2cZ3 223 8903 41 761 86 70 21.8 3.6 −0.31 −1.8 −2.76 0 −0.51 0.172 cs4
MARcs4G2Z3 223 8903 36 759 86 69 21.7 3.6 −2.25 −1.9 −3.85 −0.07 −0.52 1.184 cs4
MARcs4G3Z3 377 15070 22 545 90 93 29.9 0.2 cs4
MARcs4G3Z3 377 15070 23 544 89 92 29.9 0 −0.52 −0.52 −0.83 0 −0.15 1 cs4
TOScs2G1Z1 533 2666 14 1862 249 166 87.2 0 cs2
TOScs2G1Z1 533 2666 15 1862 249 166 87.1 0 −0.01 −0.18 −0.06 −0.06 0 0.056 cs2
TOScs2G1Z1 533 2666 30 1852 248 164 86.8 0 −10.77 −1.55 −1.98 −0.33 0 6.948 cs2
TOScs2G1Z3 353 1767 13 293 70 89 21.9 0 cs2
TOScs2G1cZ3 353 1767 13 293 70 88 21.8 0 −0.24 −0.36 −0.69 −0.06 0 0.667 cs2
TOScs3G1Z1 171 3413 35 2002 149 158 62.2 29.3 cs3
TOScs3G1Z1 171 3413 29 1978 149 142 62.2 25.6 −24.52 −0.12 −15.46 0 −3.76 204.333 cs3
TOScs3G2Z1 266 5312 31 25 50 19 15.7 0 cs3
TOScs3G2Z1 266 5312 31 25 50 19 15.7 0 −0.02 −0.03 −0.02 −0.01 0 0.667 cs3
TOScs3G2Z3 85 1699 21 95 59 38 93.5 0 cs3
TOScs3G2Z3 85 1699 20 81 58 30 66.2 0 −14.21 −1.53 −7.98 −27.32 0 9.288 cs3
TOScs3G3Z3 229 4572 17 146 78 41 23 0 cs3
TOScs3G3cZ3 229 4572 17 145 78 41 22.9 0 −1.66 −0.19 −0.61 −0.11 0 8.737 cs3
TOScs4G1Z1 474 18945 29 1274 169 183 28.4 51.2 cs4
TOScs4G1Z1 474 18945 37 1210 156 155 28.2 42.3 −64.13 −12.27 −28.19 −0.15 −8.92 5.227 cs4
TOScs4G2Z1 269 10773 26 166 52 47 11.2 0.9 cs4
TOScs4G2Z1 269 10773 26 165 52 45 11 0.9 −1.03 −0.5 −2.52 −0.15 0 2.06 cs4
TOScs4G2Z3 409 16378 26 178 63 45 15.7 1.1 cs4
TOScs4G2Z3 409 16378 26 178 62 45 15.7 1.1 −0.04 −0.16 −0.09 −0.04 0 0.25 cs4
TOScs4G2Z3 409 16378 26 169 62 42 15.6 1.1 −9.27 −0.48 −2.88 −0.05 −0.04 19.313 cs4
TOScs4G3cZ3 49 1977 18 87 81 35 21.3 0 cs4
TOScs4G3Z3 49 1977 18 82 74 30 19.5 0 −5.34 −6.79 −5.59 −1.85 0 0.786 cs4
ABRcs1G2Z3 305 763 18 711 198 52 154.1 0 cs1
ABRcs1G2Z3 305 763 18 711 198 52 154 0 −0.25 −0.29 −0.11 −0.1 0 0.862 cs1
ABRcs2G1Z3 439 2195 32 1100 240 52 169.8 0 cs2
ABRcs2G1Z3 439 2195 28 1100 240 52 169.4 0 −0.19 −0.71 −0.17 −0.4 0 0.268 cs2
ABRcs2G1Z3 439 2195 29 1072 234 48 166.6 0 −28.56 −6.32 −4.02 −3.28 0 4.519 cs2
ABRcs2G2Z1 42 211 24 861 226 23 108.2 0 cs2
ABRcs2G2cZ1 42 211 24 782 97 10 25.3 0 −78.85 −128.91 −12.76 −82.93 0 0.612 cs2
ABRcs2G2Z3 808 4042 38 509 163 37 99.4 0 cs2
ABRcs2G2Z3 808 4042 38 507 161 37 99.4 0 −2.03 −1.84 −0.51 −0.01 0 1.103 cs2
ABRcs3G1Z1 51 1026 10 836 148 61 50.1 13.7 cs3
ABRcs3G1Z1 51 1026 10 833 142 59 48.2 13.7 −3.02 −5.7 −1.55 −1.94 0 0.53 cs3
ABRcs3G2Z3 244 4873 37 2778 162 42 35.7 22.2 cs3
ABRcs3G2Z3 244 4873 37 2770 162 40 35.9 22.2 −8.3 −0.48 −2.15 0.17 0 17.292 cs3
ABRcs4G2Z3 43 1740 37 339 115 30 11.1 26.9 cs4
ABRcs4G2cZ3 43 1740 37 193 89 21 11.1 18.2 −145.74 −26.47 −8.23 0 −8.62 5.506 cs4
LAZcs1G1Z2 421 1053 16 3929 106 36 553.2 0 cs1
LAZcs1G1Z2 421 1053 20 2976 90 25 481 0 −952.32 −16.26 −10.5 −72.22 0 58.568 cs1
LAZcs3G1Z1 430 8608 32 2479 134 16 112.9 68.2 cs3
LAZcs3G1Z1 430 8608 32 2478 134 16 112.9 68.2 −0.38 −0.27 −0.05 0 0 1.407 cs3
LAZcs3G2Z3 980 19607 42 120 103 26 30.7 1.6 cs3
LAZcs3G2Z3 980 19607 41 114 103 25 30.1 1.6 −5.48 −0.69 −1.07 −0.66 0 7.942 cs3
LAZcs4G1Z1 806 32246 43 1283 52 19 26.7 51.4 cs4
LAZcs4G1cZ1 806 32246 43 1281 52 19 26.6 51.1 −1.79 −0.06 −0.15 −0.13 −0.21 29.833 cs4
LAZcs4G2Z3 49 1941 12 181 65 76 15.7 0 cs4
LAZcs4G2Z3 49 1941 13 164 58 72 13.4 0 −16.73 −7 −4.32 −2.26 0 2.39 cs4
CAMcs2G1Z2 745 3723 27 2059 293 119 194.5 29.5 cs2
CAMcs2G1Z2 745 3723 31 2045 286 112 186 28.3 −14.32 −7.07 −6.91 −8.52 −1.22 2.025 cs2
CAMcs2G1Z3 210 1050 23 1645 223 34 231.1 0 cs2
CAMcs2G1Z3 210 1050 16 1640 211 32 231.1 0 −5.5 −11.4 −1.75 0 0 0.482 cs2
CAMcs2G1Z3 210 1050 28 1355 119 16 141.1 0 −290.11 −104 −18.18 −89.95 0 2.79 cs2
CAMcs2G2cZ3 800 4000 25 1231 83 21 307.8 0 cs2
CAMcs2G2Z3 800 4000 29 1229 80 20 305.8 0 −1.42 −2.34 −1.39 −2.04 0 0.607 cs2
CAMcs3G1Z1 195 3890 14 1875 72 74 49.9 34.4 cs3
CAMcs3G1Z1 195 3890 15 1806 40 60 35.6 34.4 −69.2 −31.89 −14.58 −14.38 0 2.17 cs3
CAMcs3G1Z3 296 5922 31 699 181 32 123.3 22.7 cs3
CAMcs3G1Z3 296 5922 33 689 178 31 122.6 22.7 −9.47 −2.6 −1.22 −0.73 0 3.642 cs3
CAMcs3G2Z3 159 3190 18 1147 99 47 85.3 10.8 cs3
CAMcs3G2Z3 159 3190 19 1145 98 45 84.8 10.8 −1.78 −0.91 −1.55 −0.59 0 1.956 cs3
CAMcs4G2cZ1 32 1261 11 3165 26 145 32.9 129.5 cs4
CAMcs4G2Z1 32 1261 11 2915 21 133 32.9 110.3 −249.46 −4.81 −12.02 0 −19.23 51.863 cs4
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CONTEXT FARM SURF CC INC CO2 N LAF LAE D.INC D.CO2 D.N D.LAF D.LAE AC cs

PUGcs2G1Z1 2184 10922 29 3719 162 40 135 122.2 cs2
PUGcs2G1Z1 2184 10922 29 3719 162 40 135 122.1 −0.25 −0.3 −0.12 0 −0.1 0.833 cs2
PUGcs2G1Z2 1459 7296 13 1692 177 76 91.9 17.9 cs2
PUGcs2G1Z2 1459 7296 25 1659 152 71 84.8 17.7 −33.27 −25.71 −4.77 −7.1 −0.21 1.294 cs2
PUGcs2G1Z2 1459 7296 25 1572 146 61 82.9 17.7 −86.75 −5.96 −10.62 −1.78 −0.0 14.555 cs2
PUGcs2G1Z2 1459 7296 25 1318 129 54 97.3 15.2 −253.77 −16.18 −7.40 14.32 −2.43 15.684 cs2
PUGcs2G1cZ2 1459 7296 25 678 104 53 29.9 14.5 −640.08 −25.59 −0.69 −67.46 −0.77 25.013 cs2
PUGcs2G2Z3 366 1831 6 195 77 31 41.5 0 cs2
PUGcs2G2Z3 366 1831 6 195 77 31 41.3 0 −0.11 −0.69 −0.13 −0.21 0 0.159 cs2
PUGcs2G2Z3 366 1831 6 168 76 27 41.1 0 −27.48 −1.65 −4.29 −0.42 0 16.655 cs2
PUGcs3G1Z1 1081 21617 26 482 127 25 39.6 81.7 cs3
PUGcs3G1Z1 1081 21617 26 482 126 24 39.6 81.2 −0.44 −1.21 −0.49 0 −0.41 0.364 cs3
PUGcs3G1Z1 1081 21617 26 480 125 24 39.6 81 −2.02 −1.88 −0.83 0 −0.64 1.074 cs3
PUGcs3G1Z2 556 11112 13 1877 166 70 78.1 37.8 cs3
PUGcs3G1cZ2 556 11112 13 1822 163 65 76.7 37 −55.62 −2.72 −5.76 −1.38 −0.84 20.449 cs3
PUGcs3G1Z3 1714 34275 26 511 81 47 39.5 0 cs3
PUGcs3G1Z3 1714 34275 26 505 79 46 39.2 0 −5.65 −1.29 −1.06 −0.32 0 4.38 cs3
PUGcs4G1Z1 738 29512 14 2142 231 50 28 121.3 cs4
PUGcs4G1Z1 738 29512 14 2141 230 49 28 120.7 −0.75 −1.54 −0.84 0 −0.57 0.487 cs4
PUGcs4G1Z1 738 29512 14 2140 229 49 28 120.6 −1.57 −1.88 −1.02 0 −0.69 0.835 cs4
PUGcs4G1Z3 306 12227 15 499 113 214 37.2 33.1 cs4
PUGcs4G1Z3 306 12227 15 498 111 213 37.2 32.6 −1.91 −2.07 −1.7 0 −0.51 0.923 cs4
PUGcs4G2cZ3 292 11681 11 408 71 58 28.8 0 cs4
PUGcs4G2Z3 292 11681 11 356 60 44 25.6 0 −52.11 −10.25 −14.05 −3.11 0 5.084 cs4
CALcs2G2Z1 508 2538 12 709 147 7 59.9 0 cs2
CALcs2G2Z1 508 2538 12 703 144 7 58.8 0 −6.11 −3.22 −0.36 −1.12 0 1.898 cs2
CALcs3G2Z1 371 7413 9 791 231 3 67.8 0 cs3
CALcs3G2Z1 371 7413 9 790 231 3 67.6 0 −0.38 −0.66 −0.04 −0.23 0 0.576 cs3
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