
sustainability

Article

Large-Scale Road Network Congestion Pattern Analysis and
Prediction Using Deep Convolutional Autoencoder

Navin Ranjan 1 , Sovit Bhandari 1 , Pervez Khan 1, Youn-Sik Hong 2 and Hoon Kim 1,*

����������
�������

Citation: Ranjan, N.; Bhandari, S.;

Khan, P.; Hong, Y.-S.; Kim, H.

Large-Scale Road Network

Congestion Pattern Analysis and

Prediction Using Deep Convolutional

Autoencoder. Sustainability 2021, 13,

5108. https://doi.org/10.3390/

su13095108

Academic Editors: Pan Lu and Marc

A. Rosen

Received: 12 February 2021

Accepted: 24 April 2021

Published: 2 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 IoT and Big Data Research Center, Department of Electronics Engineering, Incheon National University,
Incheon 22012, Korea; ranjannavin07@gmail.com (N.R.); sovit198@gmail.com (S.B.);
pervaizkanju@hotmail.com (P.K.)

2 Department of Computer Science and Engineering, Incheon National University, Incheon 22012, Korea;
yshong@inu.ac.kr

* Correspondence: hoon@inu.ac.kr

Abstract: The transportation system, especially the road network, is the backbone of any modern
economy. However, with rapid urbanization, the congestion level has surged drastically, causing
a direct effect on the quality of urban life, the environment, and the economy. In this paper, we
propose (i) an inexpensive and efficient Traffic Congestion Pattern Analysis algorithm based on Image
Processing, which identifies the group of roads in a network that suffers from reoccurring congestion;
(ii) deep neural network architecture, formed from Convolutional Autoencoder, which learns both
spatial and temporal relationships from the sequence of image data to predict the city-wide grid
congestion index. Our experiment shows that both algorithms are efficient because the pattern
analysis is based on the basic operations of arithmetic, whereas the prediction algorithm outperforms
two other deep neural networks (Convolutional Recurrent Autoencoder and ConvLSTM) in terms of
large-scale traffic network prediction performance. A case study was conducted on the dataset from
Seoul city.

Keywords: traffic congestion; congestion pattern modelling; convolutional autoencoder; traffic pre-
diction

1. Introduction

Traffic congestion has become a serious issue faced by cities around the world, devel-
oped or not, and the pattern indicates that the situation is going to get worse [1]. Traffic
congestion directly affects the quality of urban life, by lengthening commuting time, pro-
moting a rise in the tendency towards road rage, increasing the number of traffic-related
accidents, causing health-related problems due to air pollution, etc. It also effects the
economy, urban sustainable growth and development, and environmental pollution [2–4].
Thus, this study on transportation management is of high importance. Congestion related
problems occur when there is an imbalance in supply and demand along the transportation
network. Typically, regarding the nature of occurrence, traffic congestion is of two types:
reoccurring and non-reoccurring. In reoccurring congestion, parts of the road network
experience congestion very frequently or at a specific time of the day, mainly due to a
bottleneck in the transportation infrastructure, a similar origin–destination pattern among
commuters, inefficient management of supply–demand, heavy weather, inaccurate traffic
signaling time, or unforeseen conditions, etc. Non-reoccurring congestion consists of unpre-
dictable non-repeating delays that usually last for a short duration and are generally seen
during special events, road accidents, vehicle breakdown, road maintenance, emergency
conditions, or bad weather [5]. As non-reoccurring congestion is spontaneous, non-typical,
and unplanned, it is extremely difficult to estimate its likelihood. Therefore, it is crucial for
transportation planning to identify activities to reduce its occurrence, vulnerability, and ex-
posure, especially during emergency conditions [6]. Based on the nature of the occurrence,

Sustainability 2021, 13, 5108. https://doi.org/10.3390/su13095108 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-4608-0304
https://orcid.org/0000-0003-0150-0480
https://doi.org/10.3390/su13095108
https://doi.org/10.3390/su13095108
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su13095108
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su13095108?type=check_update&version=2

Sustainability 2021, 13, 5108 2 of 26

several approaches [6–12] have been implemented to assess and reduce non-reoccurring
congestion.

The problem of reoccurring congestion can be resolved by applying congestion man-
agement measures either on the supply-side or the demand-side. Supply can be extended
by building new roads and transportation infrastructures, which is an expensive approach
that also causes damage to the environment, and these newly built resources could be
under-utilized during non-peak hours. Constructing new resources also leads to the in-
creased attractiveness of private vehicle use (i.e., generation of induced traffic), which will
intensify the road traffic congestion, leading to unsustainable mobility patterns in the long
run [13]. On the other hand, demand-side management measures are designed to reduce
vehicle demand on the road network through numerous traffic strategies, such as conges-
tion pricing, transportation allowance, transit and ridesharing, parking pricing, etc. [14].
This approach is cheap, smoothly deployable on the existing transportation network, and
does not accentuate congestion conditions due to inducing increased traffic, as seen in
supply-side management.

The primary focus of this paper is developing a methodology to mitigate road traffic
congestion. The research aims to use demand-side congestion measures as a building
block towards resilient and sustainable urban mobility. In this regard, we developed traffic
strategies and conducted a case study using real-traffic data from Seoul city (South Korea)
to evaluate their capabilities in reducing reoccurring traffic congestion. We propose efficient
city-wide algorithms: (i) traffic congestion pattern analysis based on image processing
(TCPIP) and (ii) a deep convolutional autoencoder-based grid congestion index predic-
tion network (CIPNet). The TCPIP algorithm generates the city-wide congestion map
pattern for any period (such as morning or evening rush hour, noon, etc.); it shows the
likelihood of traffic jam occurrence on each road in a transportation network by monitoring
the patterns from the historical data. The proper monitoring of the congestion pattern is
the first step toward building a resilient and sustainable transportation system [13–17].
Based on the congestion pattern map, the traffic planning agencies, policy-makers, and
transportation experts can pinpoint and investigate those networks with a high probability
of being in traffic-jam states, examine the cause and, accordingly, plan a demand-side
management-based policy toward mitigating the congestion. There are various traffic
congestion measures available; evaluating and finding the appropriate congestion mea-
sures is crucial. For instance, implementing policies such as congestion pricing, restrictions
for heavy transport vehicles (like cargo and delivery trucks), or vehicle diversion to a
congestion-free road can neutralize the network congestion during rush hour. The CIPNet
predicts the grid-based traffic congestion index from the chronological sequence of the
traffic data, which quantifies congestion levels and shows which particular region in the
urban area will be affected by congestion in the future. Based on the prediction map, the
traffic management agency can systematically plan and respond to the change by imple-
menting demand-side policies, and individual drivers can plan their travel route ahead
of time by circumventing the congested region. The prediction map can also be valuable
while planning for traffic management during special events [18]. As both strategies are
based on profound knowledge of traffic flow patterns, they can be used by policy-makers
and transportation experts as part of a decision-making system to manage traffic conges-
tion proactively. In the medium to long run, these approaches will reduce or eliminate
congestion in the highly affected region by ensuring even distribution of traffic across the
transportation network. The contribution of this paper can be summarized as follows:

• We develop an efficient city-wide traffic congestion pattern algorithm based on Image
Processing. The algorithm generates the map which shows the parts of the road
network suffering from high reoccurring congestion.

• We develop a grid-based congestion index prediction algorithm, based on the con-
volution autoencoder, which learns the spatial and temporal relationship from the
sequence of historical images to predict a city-wide grid-based traffic congestion index.

Sustainability 2021, 13, 5108 3 of 26

• Both models can be generalized to the large-scale traffic analysis problem. Because the
TCPIP algorithm is based on simple arithmetic operations, and the CIPNet is based
on convolutional and pooling layers.

• Our extensive experiments on the Seoul city transportation network demonstrate the
efficiency and effectiveness of the proposed approaches.

The remainder of the paper is organized as follows: Section 2 presents related literature
on traffic congestion patterns and traffic forecasting. Section 3 presents traffic congestion
data acquisition and preprocessing, traffic congestion pattern analysis methodology, and
network congestion index prediction (problem statement and explanation of our deep
neural network architecture for traffic congestion index prediction). Section 4 presents
the data source statistics, results and findings for congestion analysis (congestion index,
stochastic congestion map, and reoccurring congestion patterns), and traffic forecasting
(metrics used to test the effectiveness of the proposed model, detailed explanations of model
construction, and performance comparison of the proposed model with the forecasting
models such as Convolutional Recurrent Autoencoder and ConvLSTM). Finally, Section 5
presents the discussion and conclusion of our work and indicates the future direction of
this study.

2. Related Work

Undoubtedly, traffic jams are the most frustrating experience that a traveler can
face in daily life. The impact of traffic congestion is particularly severe in developing or
underdeveloped countries [8]. In this section, related work on congestion pattern analysis
and congestion prediction is presented.

2.1. Traffic Congestion Pattern Analysis

Reoccurring congested roads are responsible for a significant amount of traffic conges-
tion. To address this problem, static congestion clusters were constructed in [19] based on
data from Floating Car (FC). It was constructed iteratively by comparing whether pairs
of roads were in the same congestion state for at least a certain threshold (minimum con-
gestion duration). In [20], the traffic intensity pattern was analyzed for different cases (all
day, the effect of marketplaces, and day-wise traffic variations) based on data from Global
Positioning System (GPS). In [21], the author uses Jaccard similarity to identify recurrent
congestion that occurs on different days but at approximately the same location and time
of day based on data from Floating Car. In [22], the author uses a sum of congested link
lengths to identify relieving or worsening congestion based on data from historical conges-
tion patterns. In [21], typical congestion patterns are identified using the cluster method
based on the traffic performance index derived from data collected by Floating Car.

Our model is superior to the existing model in [20–23] because these models do not
consider city-wide traffic analysis. The literature in [14] does consider the generation of
city-wide static congestion clusters, but the algorithm is computationally intensive as it
iteratively compares between each pair of roads to generate clusters, compared to our
model which is based on a simple arithmetic operation. Moreover, the data pre-processing
in the proposed model is simpler compared to [21], which uses a data cube with a different
granularity of space and time that increases the dimension to find recurrent congestion on
a single road link. Our proposed model does not use database search, which saves much
time in operation compared to the literature [22,23], which first searches for similar traffic
patterns to approximate the traffic state.

2.2. Traffic Congestion Predcition

Research on traffic forecasting has a rich history, starting from data-driven approaches
that mainly focus on the development of statistical and mathematical models such as
historical average [24], autoregressive integrated moving average model (ARIMA) [25],
to parametric approaches such as K-nearest neighbor (KNN) [26], Support Vector Machine
(SVM) [27], Bayesian network (BN) [28], and so on. All of the above methods requires ex-

Sustainability 2021, 13, 5108 4 of 26

tensive prior knowledge of the domain and feature engineering. Recently, the Deep Neural
Network (DNN) model has become popular in various domains due to its ability to handle
multidimensional data without feature engineering, its potential of non-linear learning
ability, and availability of cheap and high computational power. Some of the well-known
works based on the deep learning model are autonomous systems [29], medical diagno-
sis [30], transportation systems [31,32], radio resource management and caching [33–35],
etc. Therefore, researchers have focused on the deep learning-based algorithm and re-
markable results has been obtained based on Long Short-Term Memory (LSTM) [36,37],
Convolutional Neural Network (CNN) [38,39], Autoencoder-LSTM [40], etc.

Most of the research work in transportation focuses on predicting traffic parameters
such as traffic speed, traffic flow or traffic volume, etc., on a single road or few major
roads in a region. Some of the recent work in large-scale traffic prediction; in [41,42] the
researcher studies on the urban traffic signal problem and improves the traffic flow by
synchronizing the traffic signals at the intersections. In [38], the researcher used data from
Floating Car of some major roads to generate a two-dimensional time-space matrix and
used a CNN model to predict the short-term (10 and 20 min) speed of road traffic. In [39],
the researcher used the trajectories of taxis GPS, to generate a traffic flow volume matrix
to predict the short-term (15 min) traffic flow volume. The time interval between samples
is 15 min (sparse) unrealistic for real traffic flow volume. In [43], the researcher proposed
an autoencoder-based DNN model to predict the traffic congestion of the inter-regional
transportation network. Since the model is based on a fully connected architecture, the
model becomes very computationally intensive for a large-scale traffic prediction problem.
In [44], the researcher used the ConvLSTM model to predict the short-term traffic flow,
but the training time is very high due to the large resolution of input image for the LSTM
layer. To overcome the problem of trainability in [43] and time complexity in [44], we
had proposed a novel hybrid DNN based on Convolutional Recurrent Autoencoder in
our previous work [32]. PredNet, where first, a convolution encoder encodes the image
sequence into a low-resolution feature map, followed by an LSTM, which trains on a
low-resolution matrix. Finally, the convolutional decoder decodes the low resolution back
to the original image dimension. Convolutional Autoencoder in [32] solves the trainability
problem from [43] while decreasing the resolution for the LSTM model, solving the time
complexity problem from [42]. Although the model in [32] outperforms the state-of-the-art
neural network in [43] and [44], there is still room for improvement. Due to the large
amount of computational power required, the PredNet model was trained with a batch
size of one, which usually results in noisy estimation of the gradient (high variance). In this
work, we propose a new architecture (CIPNet) by removing the LSTM layers between
the convolutional encoder block and the decoder block in PredNet, which reduces the
computational cost and allows the model to train with a higher batch size while achieving
better performance by estimating the gradient accurately. It also solves the problems of
trainability and time complexity for large scale traffic prediction.

3. Methodology

In this section, we first describe our approach to data acquisition, preprocessing,
and database design from raw snapshots of the online traffic congestion map. Then,
we propose city-wide (i) congestion pattern analysis based on image processing and (ii)
grid-based congestion index prediction. Figure 1 shows the complete methodology for
traffic congestion analysis.

Sustainability 2021, 13, 5108 5 of 26

Sustainability 2021, 13, x FOR PEER REVIEW 5 of 21

based congestion index prediction. Figure 1 shows the complete methodology for traffic

congestion analysis.

Figure 1. A general block diagram showing the methodology of the research paper.

3.1. Traffic Data

Most previous research uses data from a fixed sensor installed on each road or from

a fleet of vehicles (Vehicular ad hoc networks (VANETs), Floating Car) operating on each

road. In [19–21], each floating car reports its time and location information via GPS or

cellular phone, from which traffic parameters such as speed and congestion are calculated.

Each vehicle in Vehicular ad hoc networks (VANETs) in [45,46] acts as a data collection

device and transmits the information using vehicle-to-vehicle communication and vehi-

cle-to-fixed roadside infrastructure communication. Each Inductive loop in [47] and traffic

camera in [48] collect information when vehicles pass over or through sensor’s area. The

number of operating devices for city-wide data collection should be very large, so the

deployment, operation, and maintenance costs are very high. Moreover, all these infra-

structures need to be deployed in each new city to establish traffic analysis. Recently, there

has been an upsurge of web-based online public services worldwide. Online portals such

as Google Traffic [49], Bing Map [50], Seoul Transportation Operation and Information

Service (TOPIS) [51], Baidu Map [52], DOTD [53], Sigalert [54], Live Traffic NSW [55],

Wisconsin Traffic [56], and I-Traffic [57] provide accurate real-time traffic information

such as the congestion level of each road and the average speed of the road section. These

online web services use multiple sources of data collection such as inductive loop,

crowdsourcing, etc. to provide accurate real-time data for the entire city.

3.1.1. Traffic Data Acquisition

For data collection, we build a web crawling program that takes a snapshot of the

website. To develop the web crawler program, it is essential to know exactly how the user

browses a website, from the web address to the specific location on the web page where

the information is located. Selenium IDE is the most widely used web crawling tool that

controls and automates browsers like Chrome and Firefox through an API called Web

Driver. Based on the knowledge of the website roadmap and Selenium IDE, the web

crawling programming takes a snapshot of the raw traffic image as shown in Figure 2a.

The image consists of road networks with three different congestion levels: congestion is

Figure 1. A general block diagram showing the methodology of the research paper.

3.1. Traffic Data

Most previous research uses data from a fixed sensor installed on each road or from
a fleet of vehicles (Vehicular ad hoc networks (VANETs), Floating Car) operating on
each road. In [19–21], each floating car reports its time and location information via
GPS or cellular phone, from which traffic parameters such as speed and congestion are
calculated. Each vehicle in Vehicular ad hoc networks (VANETs) in [45,46] acts as a data
collection device and transmits the information using vehicle-to-vehicle communication
and vehicle-to-fixed roadside infrastructure communication. Each Inductive loop in [47]
and traffic camera in [48] collect information when vehicles pass over or through sensor’s
area. The number of operating devices for city-wide data collection should be very large,
so the deployment, operation, and maintenance costs are very high. Moreover, all these
infrastructures need to be deployed in each new city to establish traffic analysis. Recently,
there has been an upsurge of web-based online public services worldwide. Online portals
such as Google Traffic [49], Bing Map [50], Seoul Transportation Operation and Information
Service (TOPIS) [51], Baidu Map [52], DOTD [53], Sigalert [54], Live Traffic NSW [55],
Wisconsin Traffic [56], and I-Traffic [57] provide accurate real-time traffic information such
as the congestion level of each road and the average speed of the road section. These online
web services use multiple sources of data collection such as inductive loop, crowdsourcing,
etc. to provide accurate real-time data for the entire city.

3.1.1. Traffic Data Acquisition

For data collection, we build a web crawling program that takes a snapshot of the
website. To develop the web crawler program, it is essential to know exactly how the
user browses a website, from the web address to the specific location on the web page
where the information is located. Selenium IDE is the most widely used web crawling
tool that controls and automates browsers like Chrome and Firefox through an API called
Web Driver. Based on the knowledge of the website roadmap and Selenium IDE, the web
crawling programming takes a snapshot of the raw traffic image as shown in Figure 2a.
The image consists of road networks with three different congestion levels: congestion is
represented by a red color, slow by a yellow color, and free by a green color. Algorithm 1
provides a step-by-step process for the traffic data acquisition method.

Sustainability 2021, 13, 5108 6 of 26

Algorithm 1 Traffic Data Acquisition

Sustainability 2021, 13, x FOR PEER REVIEW 6 of 22

represented by a red color, slow by a yellow color, and free by a green color. Algorithm 1

provides a step-by-step process for the traffic data acquisition method.

(a) (b)

(c) (d)

(e)

Figure 2. Image Data Preprocessing. (a) A snapshot of traffic congestion data from TOPIS website. (b) A sample of the

Image dataset after road network extraction based on Algorithm 1, where the black color represents the background.

(c)The road network segmented into 200 × 200 m2 grids. (d) The congestion index of each grid. (e) Congestion Index dis-

tribution color scale.

Algorithm 1 Traffic Data Acquisition

1. Input: Online Traffic Website (URL), Total number of collection days (D)

2. Require: Web browser (chrome), Selenium IDE, compatible web driver

3. Output: Raw snapshot of traffic Image

4. for all available days d (𝟎 ≤ 𝒅 ≤ 𝑫) do

5. driver = webdriver.chrome() #Load web driver

6. driver.get(URL) # Load website

7. driver.fullscreen_window()

8. sleep(10) # Wait for website to load

9. for zoom in range (z = 2) do

10. driver.find_element_by_xpath(‘button path’).click()

11. sleep(2)

12. end

13. driver.get_screenshot_as_file(‘save location with date and time as filename’)

14. driver.close()

15. sleep(286)

16. end

Traffic website and number of days for data collection are the inputs; web browser

(google chrome), selenium IDE, and web driver are program requirements. We loop the

Sustainability 2021, 13, x FOR PEER REVIEW 6 of 21

represented by a red color, slow by a yellow color, and free by a green color. Algorithm 1

provides a step-by-step process for the traffic data acquisition method.

(a) (b)

(c) (d)

(e)

Figure 2. Image Data Preprocessing. (a) A snapshot of traffic congestion data from TOPIS website. (b) A sample of the

Image dataset after road network extraction based on Algorithm 1, where the black color represents the background.

(c)The road network segmented into 200 × 200 m2 grids. (d) The congestion index of each grid. (e) Congestion Index dis-

tribution color scale.

Algorithm 1 Traffic Data Acquisition

1. Input: Online Traffic Website (URL), Total number of collection days (D)

2. Require: Web browser (chrome), Selenium IDE, compatible web driver

3. Output: Raw snapshot of traffic Image

4. for all available days d (𝟎 ≤ 𝒅 ≤ 𝑫) do

5. driver = webdriver.chrome() #Load web driver

6. driver.get(URL) # Load website

7. driver.fullscreen_window()

8. sleep(10) # Wait for website to load

9. for zoom in range (z = 2) do

10. driver.find_element_by_xpath(‘button path’).click()

11. sleep(2)

12. end

13. driver.get_screenshot_as_file(‘save location with date and time as filename’)

14. driver.close()

15. sleep(286)

16. end

Traffic website and number of days for data collection are the inputs; web browser

(google chrome), selenium IDE, and web driver are program requirements. We loop the

Figure 2. Image Data Preprocessing. (a) A snapshot of traffic congestion data from TOPIS website. (b) A sample of the
Image dataset after road network extraction based on Algorithm 1, where the black color represents the background. (c) The
road network segmented into 200 × 200 m2 grids. (d) The congestion index of each grid. (e) Congestion Index distribution
color scale.

Traffic website and number of days for data collection are the inputs; web browser
(google chrome), selenium IDE, and web driver are program requirements. We loop the
whole process until the completion condition (i.e., data collected for all mentioned number
of days) is reached, as in line 4. We load the compatible web driver of the web browser

Sustainability 2021, 13, 5108 7 of 26

to use Selenium, as in line 5. Then we open the website using the ‘get’ command and
use the ‘fullscreen_window’ command to load the website in full-screen mode and wait
for a few seconds for the website to load completely, as in lines 5 to 8. Then we use the
‘find_element_by_xpath’ command to click on the website screen. In our case, we click on
the zoom button link to zoom in on the website, waiting a few seconds between each click
until the website is fully loaded, as in lines 9 to 12. Then we use the ‘get_screenshot_as_file’
command to capture the raw image of the traffic and save the data with the date and time
as the file name, as in line 13. Finally, we close the web driver and sleep until the next
screenshot time, as in lines 14 and 15.

3.1.2. Road Network Extraction

Digital Image is a collection of pixels, where each pixel in a color image takes on
three values (red, green, and blue), whereas, in a binary or grayscale image it takes on
only one value. Each pixel value is between [0, 255]. The congestion levels has unique
color composition with lower and upper bounds ([75, 80, 230], [77, 100, 255]), ([75, 217,
230], [78, 238, 255]), and ([75, 190, 120], [124, 202, 160]) for red, yellow and green colors,
respectively. To extract the road network with congestion information from the image, the
Pseudo-algorithm is presented in Algorithm 2. The input to the algorithm is a raw snapshot
image (r), the requirement of the algorithm is upper bound (U) and lower bound (L) for
each congestion level (congestion, slow and free), and the output of the algorithm is only
the road network image. Line 4 returns a loop for all the raw images in the database. For
each input image, line 5 provides a loop to compute the mask images for all the congestion
levels. Line 6 performs the pixel-wise comparison of the input image with the boundary
condition for each congestion level to update the mask image for each congestion level.
Here, (mc) is the mask image for congestion level c, where c ∈ [jam, slow, and f ree], (i, j)
is the pixel position, r(i, j) is the pixel value of the input image, and Uc and Lc are the upper
and lower boundary conditions for each congestion level. The mask image pixel mc(i, j) is
updated to ‘1’ if the corresponding pixel value in the raw image is within the boundary
conditions, otherwise updated by ‘0’. In line 8, all the mask images (mjam, mslow and m f ree)
are summed element-wise to produce a single mask image (m) containing a pixel value
of ‘1’ for the road network and ‘0’ for the non-road network or background. In line 9, the
‘bitwise and’ operation (&) is performed between the final mask image (m) and the original
input raw image (r) to generate the image with only road network, as shown in Figure 2b.
Finally, in Line 10, the output matrix is saved as an image file. The whole process from line
5 to 10 is executed in a loop until the condition in line 4 is satisfied.

Algorithm 2 Road Network Extraction

Sustainability 2021, 13, x FOR PEER REVIEW 7 of 22

whole process until the completion condition (i.e., data collected for all mentioned num-

ber of days) is reached, as in line 4. We load the compatible web driver of the web browser

to use Selenium, as in line 5. Then we open the website using the ‘get’ command and use

the ‘fullscreen_window’ command to load the website in full-screen mode and wait for a

few seconds for the website to load completely, as in lines 5 to 8. Then we use the ‘find_el-

ement_by_xpath’ command to click on the website screen. In our case, we click on the

zoom button link to zoom in on the website, waiting a few seconds between each click

until the website is fully loaded, as in lines 9 to 12. Then we use the ‘get_screen-

shot_as_file’ command to capture the raw image of the traffic and save the data with the

date and time as the file name, as in line 13. Finally, we close the web driver and sleep

until the next screenshot time, as in lines 14 and 15.

3.1.2. Road Network Extraction

Digital Image is a collection of pixels, where each pixel in a color image takes on three

values (red, green, and blue), whereas, in a binary or grayscale image it takes on only one

value. Each pixel value is between [0, 255]. The congestion levels has unique color com-

position with lower and upper bounds ([75, 80, 230], [77, 100, 255]), ([75, 217, 230], [78, 238,

255]), and ([75, 190, 120], [124, 202, 160]) for red, yellow and green colors, respectively. To

extract the road network with congestion information from the image, the Pseudo-algo-

rithm is presented in Algorithm 2. The input to the algorithm is a raw snapshot im-

age (r), the requirement of the algorithm is upper bound (U) and lower bound (L) for each

congestion level (congestion, slow and free), and the output of the algorithm is only the

road network image. Line 4 returns a loop for all the raw images in the database. For each

input image, line 5 provides a loop to compute the mask images for all the congestion

levels. Line 6 performs the pixel-wise comparison of the input image with the boundary

condition for each congestion level to update the mask image for each congestion level.

Here, (𝑚𝑐) is the mask image for congestion level 𝑐 , where 𝑐 ∈
[𝑗𝑎𝑚, 𝑠𝑙𝑜𝑤, and 𝑓𝑟𝑒𝑒], (𝑖, 𝑗) is the pixel position, 𝑟(𝑖, 𝑗) is the pixel value of the input image,

and 𝑈𝑐 and 𝐿𝑐 are the upper and lower boundary conditions for each congestion level.

The mask image pixel 𝑚𝑐(𝑖, 𝑗) is updated to ‘1’ if the corresponding pixel value in the raw

image is within the boundary conditions, otherwise updated by ‘0’. In line 8, all the mask

images (𝑚𝑗𝑎𝑚, 𝑚𝑠𝑙𝑜𝑤 and 𝑚𝑓𝑟𝑒𝑒) are summed element-wise to produce a single mask im-

age (m) containing a pixel value of ‘1′ for the road network and ‘0′ for the non-road net-

work or background. In line 9, the ‘bitwise and’ operation (&) is performed between the

final mask image (m) and the original input raw image (r) to generate the image with only

road network, as shown in Figure 2b. Finally, in Line 10, the output matrix is saved as an

image file. The whole process from line 5 to 10 is executed in a loop until the condition in

line 4 is satisfied.

Algorithm 2 Road Network Extraction

1. Input: Image Data (r)

2. Require: Lower (L) and Upper (U) boundary value for each congestion level

3. Output: Image with Road network only

4. for each image in database do

5. for each congestion level c in congestion list [jam, slow, and free] do

6. 𝑚𝑐(𝑖, 𝑗)= {
1 𝐿𝑐 ≤ 𝑟(𝑖, 𝑗) ≤ 𝑈𝑐

0 𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒
, 𝑐 ∈ [jam, slow, free]

7. end

8. 𝑚 = 𝑚𝑗𝑎𝑚 + 𝑚𝑠𝑙𝑜𝑤 + 𝑚𝑓𝑟𝑒𝑒

9. output = 𝑟 & 𝑚

10. Save output matrix as image

11.end

3.1.3. Grid Representation

Deep Neural Network models become more complex and require more computation
power, memory, and time to train the model as the input image resolution increases. Instead

Sustainability 2021, 13, 5108 8 of 26

of using original resolution image for the DNN model, we segmented the image into non-
overlapping grids of 5× 5 pixels [58], as shown in Figure 2c. Each grid corresponds to a 200
× 200 m2 region, reducing the resolution by a factor of 25 and reducing the complexity of
the DNN model. We represent congestion statistics of each grid by congestion index rather
than congestion level, as shown in Figure 2d. The grid congestion index is calculated based
on Equation (1), which consider the length of road for each congestion level in the grid.

Congestion Index =
0.2× l f + 0.5× ls + 1.0× lj

l f + ls + lj
× 100 (1)

Here, l f , ls, and lj are the length, and the factor 0.2, 0.5, and 1.0 are the weights of
the free, slow and jam congestion level of the road network. The weight are chosen based
on logical considerations, and a similar approach is also discussed in the literature [58].
In general, only roads with jam and slow congestion states are considered in the calculation
of the congestion index. Since the slow-congestion state has less impact on traffic mobility
than the congested condition when calculating the congestion index, the weight for the
slow-congestion state is kept lower than that for the congestion condition. To distinguish
congestion-free roads from the background and show the impact of congestion-free roads
on the entire network. In addition to congested and slow roads, we also considered
congestion-free roads in the calculation of the network congestion index.

Table 1 shows the threshold condition for each grid to be categorized into Jam, Slow,
and Free states. For a grid to be categorized as jam congestion level, it should have at least
50% congested roads, as indicated in grid state number (G.S.N) 2 and 3. Similarly, for a
grid to be categorized as slow congestion level, it should have at least 50% roads with
a slow-congestion state and congested road length should not exceed 50%, as shown in
G.S.N 4 and 5. Similarly, the grid to be categorized as a free congestion level, the length of
congested and slow congested road in the grid should not exceed 50%, as shown in G.S.N
6. Without considering the road length of free congestion level, the grid with (50% jam +
50% free) congestion condition as in G.S.N 3 and the grid with 100% slow congestion state
as in G.S.N 4 has an equal congestion index of 50. However, the impact of G.S.N 3 should
be higher compared to G.S.N 4 because there are roads with congestion condition in G.S.N
3. In order to remove such occlusion, in this work, we have considered the free congestion
level road with a weighting factor of 0.2 while calculating the grid congestion index. With
the inclusion of free congested roads, Table 1 shows the upper and lower limits for jam,
slow, and free congestion levels for grid [100, 60], [60, 35], and for free [35, 20] with better
edge resolution. The weights for jam should always be the highest, followed by the slow
state, and the free state should have the lowest weight compared to the other two.

Table 1. Grid Congestion Index boundary value for categorizing congestion level. The boundary value is marked in bold.

G.S.N Grid Status Grid C.L Congestion Index Congestion Index 1

1. 100% Jam Jam 1.0 × 100 = 100 1.0 × 100 = 100
2. 50% Jam + 50% Slow Jam 1.0 × 50 + 0.5 × 50 = 75 1.0 × 50 + 0.5 × 50 = 75
3. 50% Jam + 50% Free Jam 1.0 × 50 + 0.2 × 50 = 60 1.0 × 50 + 0.0 × 50 = 50
4. 100% Slow Slow 0.5 × 100 = 50 0.5 × 100 = 50
5. 50% Slow + 50% Free Slow 0.5 × 50 + 0.2 × 50 = 35 0.5 × 50 + 0.0 × 50 = 25
6. 100% Free Free 0.2 × 100 = 20 0.0 × 100 = 0
7. No Road (Background) X 0 0

G.S.N: Grid State Number; Grid C.L: Grid Congestion Level; Congestion Index 1: with factor of 0.0 for l f in numerator of Equation (1).

3.2. Traffic Congestion Analysis

In recent years, numerous research has been conducted in the field of transportation
and traffic management towards traffic forecasting [59–61], prediction [32,38,39,44], and
navigation planning. However, little to no priority has been given to research on the

Sustainability 2021, 13, 5108 9 of 26

root cause of traffic congestion, i.e., reoccurring congestion. In this section, we propose a
city-wide reoccurring traffic patterns based on the Image Processing.

Algorithm 3 Reoccurring Congested Road Pattern

Sustainability 2021, 13, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sustainability

Algorithm 3 Reoccurring Congested Road Pattern

1. Input: Jam mask image, 𝑚𝑗𝑎𝑚 (from Algorithm 1)

2. Output: Reoccurring Congested Road Pattern

3. count = 0

4. for each day data in Jam database do

5. for each mask image in each day Jam database do

6. 𝑈ℎ add Jam mask image

7. count = count + 1

8. if count is equal to 12 do

9. 𝐽𝑅ℎ subtract 𝑈ℎ matrix by 6

10. Convert negative pixel values in 𝐽𝑅ℎ to 0

11. Save 𝐽𝑅ℎ

12. Reset count to 0

13. end

14. end

15. Add all the 𝐽𝑅ℎ of one day to get most Jam route of entire day (MCRR)

16. end

17. for each MCRR in database do

18. Convert MCRR >0 = 1

19. RCRP Add each MCRR

20. end

21. RCRP Subtract RCRP by the half the number of observation day

 Congested roads are very crucial, especially in a busy area, where these roads can
temporarily create bottlenecks in the transport network and lead all adjacent road sections
into a state of congestion. This effect is even more serious when some road networks are
frequently affected. Finding and solving the congestion problem from the reoccurring con-
gested roads can significantly reduce the congestion level in the city. Generally, reoccurring
congestion road patterns (RCRP) are different on weekdays, weekends, holidays, and in
different weather conditions. In this paper, the algorithm for finding crucial reoccurring
congestion roads in the city is presented by Algorithm 3. The input to the algorithm is
the jam mask image from Algorithm 2, and the output of the algorithm is reoccurring
congested road pattern. First, we calculate the most crucial reoccurring route (MCRR) of
the whole day, as seen in lines 3 to 16, and then we generate reoccurring congestion road
patterns as shown in lines 17 to 21. For MCRR generation, in the first step, we create the
most frequent reoccurring jam road during one hour JRh as in lines 5 to 13, and then add
all hourly patterns to develop the MCRR. In line 3, we initialize a counter to keep track
of hourly data. We add a loop the get each day jam masked data from database as in line
4, and then add another loop to get individual mask images of a particular day as in line
5. In line 6, an element-wise addition operation adds the jam images and simultaneously
increments the counter value in line 7. Line 8 checks if all data of the respective hour has
been processed, if so, an hourly jam pattern is created by subtracting the hourly matrix by a
factor of 6 (30 min, i.e. the resulting matrix experiences the jammed state for at least 30 min)
as in line 9. We convert the negative pixel of the JRh matrix to 0, store the hourly pattern,
and reset the counter for the next hour’s analysis, as in lines 10 to 12. After calculating the
most frequent hourly congestion of a whole day, all hourly pattern images are summed
element-wise to generate MCRR. For the RCRP pattern, all MCRRs are converted to binary
by replacing pixel values greater than zero with 1, as in line 17. Then, all binary MCRRs are
summed element-wise as in line 19. Finally, each element of the RCRP matrix is subtracted
by half the number of MCRR observation days to produce an RCRP pattern as in line 21.

Sustainability 2021, 13, 5108 10 of 26

Identifying Crucial Reoccurring Congested Road

Let mjam(t) be the jammed masked image of the raw snapshot image r(t) and let
the time interval between two consecutive mask images be 5 min, i.e., 12 mask images
in one hour. From Algorithm 2, we know that mj(t) is an array that has value ‘1’ for jam
road pixels and ‘0’ for everything else (road network with slow and free congestion and
background). The road network experiencing congestion in an hour ‘h’ represented by Uh
is given by Equation (2). The pixel value in Uh ranges from ‘0’ representing, no congestion
on the road, or in the background to ‘12’ representing, there is congestion during the
entire hour.

Uh =
11

∑
t=0

mjam(t) (2)

In this paper, we only consider the road segments that have a jammed state for at least
30 min in an hour. Therefore, subtracting the value 6 from Uh pixel by pixel yields a new
matrix containing only the road network suffering from congestion for at least 30 min in
hour ‘h’ called ‘hourly jam route’ (JRh), given by Equation (3). All negative pixel values of
the array JRh are replaced by zero and all positive pixel values are replaced by 1, as shown
in Equation (4).

JRh = Uh − 6 (3)

JRh(i, j) =

{
0 i f (jrh)ij < 0
1 i f (jrh)ij > 0

(4)

Here, (jrh)ij represents the ith row and jth column element of the matrix JRh. The
union of all hourly jam route (JRh) in a day gives the reoccurring congested roads. These
road clusters are the maximum crucial reoccurring road (MCRR) of a day, and for day ‘d’ it
is given by Equation (5). The value in the MCRR matrix ranges from ‘0’ representing no
congestion, or background to ‘24’ representing the road at jammed state for more than 30
min in an hour and has a repeating pattern for 24 h.

MCRRd =
23

∑
h=0

JRd
h (5)

The MCRR pattern varies widely or repeats on some particular days. Since, traffic
congestion depends on various factors such as weekday, weekend, holiday, or weather
conditions, in this paper we will only analyze MCRR on a weekday to derive a maximum
reoccurring congested road pattern (RCRP). First, the MCRR matrix is converted into a
binary matrix according to Equation (6), and then the summation of all binary MCRR for
weekdays, as shown in Equation (7), yields the RCRP matrix.

MCRR(i, j) =
{

1 i f (mcrr)ij > 0
0 otherwise

(6)

RCRP =
n

∑
d=0

MCRRd (7)

Here, (mcrr)ij represents the ith row and jth column element in matrix MCRR. The
value of the RCRP matrix ranges from ‘0’ representing no congestion or background,
to ‘n’ representing road at jam state for more than 30 min in an hour, with the trend
repeating for any number of the hours in a day, but at least once in ‘n’ days. The number of
reoccurring congested road groups from Equation (7) is too large. To reduce the number of
the reoccurring jammed road groups, we consider only the road groups where the pattern
repeats for at least half of the number of observation days (n/2). We can achieve the result
by subtracting the RCRP matrix pixel-wise by ‘n/2’, as shown in Equation (8). The resulting

Sustainability 2021, 13, 5108 11 of 26

matrix removes less frequently congested roads, and this matrix represents the city-wide
traffic congestion pattern.

RCRP = RCRP− n/2 (8)

3.3. Traffic Congestion Index Prediction

In this section, we first explain the problem statement and then discuss on the ar-
chitecture for predicting the city-wide grid traffic congestion index using the time-series
sequence of historical data.

3.3.1. Problem Statement

Let N ∈ {1, 2, . . . , n} be the chronological order of n image data in a database collected
at sampling rate t. We design a deep neural network (f) that takes past p images as the
input sequence (X) to predict the short-term congestion level of the traffic network (Y)
at the prediction horizon of k. Table 2 shows the input sequence and its corresponding
prediction output for the 1st and ith time-series input to the network.

Table 2. Input sequence to the model and its corresponding prediction output.

Input Sequence Prediction Output

X1
pt =

{
x1, x2, . . . , xp−2, xp−1, xp

}
Y1

pt =
{

xp+k }

Xi
(i+p)t =

{
xi, xi+1, . . . , xi+p−1, xi+p

}
Yi
(i+p)t =

{
x(i+p)+k

}

Here, X� represent the time-series sequence number, X� represent the time at which
sequence was feed to the network, {X, Y} ⊂ N, and {p, k} ∈ N. For the ith time-series
input the model f can be defined as

Yi
(i+p)t = f

(
Xi
(i+p)t, θ

)
(9)

Here, θ are the model parameters. We divide our database N into 3 parts training,
validation, and testing. We generate m sets of historical time series data from the training
dataset, Xtrain =

{
X1, X2 , X3 , . . . , Xm

}
, such that the corresponding forecast data point

associated with Xtrain given by, Ytrain =
{

xp+k , x(1+p)+k , x(2+p)+k . . . , x(m+p)+k

}
also

lies in the training dataset. Therefore, we can train our neural network based on supervised
learning.

3.3.2. Model Architecture

The proposed congestion index prediction network is based on a convolutional auto-
encoder named CIPNet. The schematic is shown in Figure 3. The proposed model consists
of two blocks (i) convolutional encoder and (ii) convolutional decoder. The convolutional
encoder performs feature extraction from the input image and is mainly consists of convo-
lutional layers and downsampling layers. The convolutional layer is the central building
block of a CNN model. It contains a set of learnable filters that have a small receptive field
but span the entire depth of the input volume. Each filter is convoluted with the input
volume to compute an activation map. The output of the convolution layer is obtained by
stacking the activation maps of all the filters. Since the filter has a small receptive field,
the number of the parameters to be learned is significantly reduced compared to the full
connection model, and a network can grow deeper with fewer parameters. Moreover, the
small receptive field also allows sharing weights and exploits spatial correlation. Between
two successive convolutional layers, the pooling layer is usually placed, whose task is
to achieve shift invariance by gradually reducing the spatial dimension of the feature
map while preserving the essential information. In this paper, the downsampling layer
is performed by convolution operation with filter size and strides of 2 × 2. Since the
input to the model is a time-series of historical images, each layer in the convolutional

Sustainability 2021, 13, 5108 12 of 26

encoder network is enclosed by the Time Distribution layer. The stack of convolutional
layers and downsampling layers converts the original image into the latent space. On
the other hand, the convolutional decoder network performs the image reconstruction
from the latent space back to the original resolution. It consists of convolutional layers
and upsampling layers. The upsampling operation is similar to the downsampling layer
operation, where instead of halving the spatial dimension, the size of the previous layer
is doubled. The upsampling layers are typically used for the generative model. Here, the
upsampling operation is performed by the Convolutional Transpose layer, with a filter size
and strides of 2× 2. The ReLU activation function is applied to all layers, followed by batch
normalization and dropout. The architecture includes a skip connection, i.e., a connection
from the initial layers in the convolutional encoder to the later layers in the convolutional
decoder, allowing the gradient to flow directly through the skip connection back from later
layers to initial layers, solving the vanishing gradient problem in a deep neural network.
The details of the model architecture are presented in Section 4.3.2.

Sustainability 2021, 13, x FOR PEER REVIEW 12 of 21

while preserving the essential information. In this paper, the downsampling layer is per-

formed by convolution operation with filter size and strides of 2 × 2. Since the input to the

model is a time-series of historical images, each layer in the convolutional encoder net-

work is enclosed by the Time Distribution layer. The stack of convolutional layers and

downsampling layers converts the original image into the latent space. On the other hand,

the convolutional decoder network performs the image reconstruction from the latent

space back to the original resolution. It consists of convolutional layers and upsampling

layers. The upsampling operation is similar to the downsampling layer operation, where

instead of halving the spatial dimension, the size of the previous layer is doubled. The

upsampling layers are typically used for the generative model. Here, the upsampling op-

eration is performed by the Convolutional Transpose layer, with a filter size and strides

of 2 × 2. The ReLU activation function is applied to all layers, followed by batch normali-

zation and dropout. The architecture includes a skip connection, i.e., a connection from

the initial layers in the convolutional encoder to the later layers in the convolutional de-

coder, allowing the gradient to flow directly through the skip connection back from later

layers to initial layers, solving the vanishing gradient problem in a deep neural network.

The details of the model architecture are presented in Section 4.3.2.

Figure 3. CIPNet Model Architecture. The 3 and strides of 1 × 1 with zero padding. Each layer is trained with the activation

function ReLU, followed by the dropout layer with a value of 0.1 and a batch normalization. The input for the ConvLSTM

models has the same input as that of the proposed model. For PredNet, we adopted the configuration of Convolutional

Encoder with filter number [32, 64, 96, 128, 160, 192, 8] followed by 4 LSTM layers with hidden units 672 and then convo-

lutional decoder with filter size [192, 160, 128, 96, 64, 32]. Each layer has ReLU activation followed by a dropout layer of

0.1 and batch normalization layers.

3.3.3. Prediction Result and Analysis

Figure 4 shows the detailed MSE result of all the prediction models for prediction

horizons of 10 minutes on 12 October 2020, in a period from 09:00 to 12:50. The proposed

Convolution: Conv2D(filter size = 3 × 3, strides = 1 × 1) + ReLu + BN + Dropout

Downsampling: Conv2D(filter size = 2 × 2, strides = 2 × 2) + ReLu + BN + Dropout

Upsampling: Conv2DTranspose(filter size = 3 × 3, strides = 2 × 2) + ReLu + BN + Dropout

12
8

×
 2

56

32

64

128

256

512

256

128

64

32

64
 ×

 1
28

32
 ×

 6
4

16
 ×

 3
2

8 × 16

16
 ×

 3
2

32
 ×

 6
4

64
 ×

 1
28

12
8

×
 2

56

Figure 3. CIPNet Model Architecture. The model contains two part convolutional encoder and convolutional decoder. The
color code represent the type of convolutional operation.

3.3.3. Training Process of CIPNet

Algorithm 4 summarizes the training process of CIPNet. At first, we preprocess the
raw snapshot image to construct the training dataset. Then, we create the sequence of
training samples and train the model via gradient-descent backpropagation and an Adam
optimization algorithm as in lines 3 to 10. For a given temporal input sequences Xt and
the target value Yt for an arbitrary time interval t with prediction horizon k. During the
training process, we initialize the model parameter θ with a ‘he uniform’ distribution with
default values as in line 11. Then, we randomly select the batch of training instances
Sb from the set S as in line 13 and repeat the process until predefined stopping criteria
are satisfied as in lines 12 to 15. After the completion of the iteration, an optimal set of
parameter θ representing the prediction model f is generated as in line 16.

Sustainability 2021, 13, 5108 13 of 26

Algorithm 4 Training process for CIPNet

Sustainability 2021, 13, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sustainability

 1
Algorithm 4 Training process for CIPNet
1. Input: Grid traffic congestion index matrices: 𝒙𝒕|𝒕 𝟎, 𝟐, 𝟑, … , 𝒏 𝟏
 sequence of input image: p, prediction horizon: k
2. Output: CIPNet model 𝑓
3. 𝑺 ← ∅
4. for all available time intervals 𝒕 𝟏 𝒕 𝒏 do
5. for all time-series sequence 𝒊, 𝟎 𝒊 𝒏 𝒑 𝒌 do
6. 𝑿 𝒊 𝒑 𝒕𝒊 𝒙𝐢 , 𝒙𝐢 𝟏, … , 𝒙𝒊 𝒑 𝟏, 𝒙𝒊 𝒑
7. 𝒀 𝒊 𝒑 𝒕𝒊 𝒙 𝒊 𝒑 𝒌
8. put a training instance 𝑋 , 𝑌 into 𝑆
9. end
10. end
11. initialize model parameters 𝜃
12. do
13. randomly select a batch of training instances 𝑆 from 𝑆
14. find 𝜃 by minimizing the objective ℒ 𝜃 𝑌 𝑌 with 𝑆
15. while the stopping criteria is not satisfied
16. Output the learned CIPNet model 𝑓

4. Experiment and Result Analysis

In this section, we evaluate the proposed (i) traffic congestion analysis based on the
Image processing (TCPIP) algorithm and (ii) grid congestion index prediction network
based on a deep neural network (CIPNet). Both algorithms are evaluated on the same
dataset.

4.1. Data Source

In this study, we choose Seoul, the capital of South Korea, as a case study. Figure
2a shows the raw snapshot of the spatial transportation network image taken from the
TOPIS traffic web page. Each image has a resolution of 1366 × 694 pixels and covers an
area of 54.64 km × 27.1 km (scale 1 cm = 1.3 km). In this work, we collected the traffic
congestion data for the entire day (24 hours) from 1 August 2020 to 31 October 2020, a total
of 92 days, with an interval of 5 min (288 samples per day). Out of 92 days, we remove the
data from some particular day due to missing data caused by an error or failure of the web
crawling program. Furthermore, we divide the database into weekdays and weekends.
We analyze the traffic congestion patterns for both weekdays and weekends. On the other
hand, for grid congestion index prediction, we experimented only with weekday’s data.
For the congestion index prediction algorithm, we divide the weekday database (07:00
to 13:00) into three parts, namely: training, validation, and testing. The samples from
1st August to 30th September are used as training data, samples from 1st November to
10th November are used as validation data, and the sample from 11th November to 31st
November is used to test the predictive ability of the CIPNet. Sections 3.1.2 and 3.1.3
describe the preprocessing of the data.

4.2. Traffic Congestion Analysis

In this subsection, we first analyze the city-wide traffic congestion index, which
provides an initial overview of the congestion state. Second, we generate the stochastic
congestion map, which exhibits the likelihood of the road network is congestion at a
given time. Finally, we construct the city-wide reoccurring congestion road pattern, which
provides information about the road priority where traffic management agencies can apply
measures such as traffic diversion, selective entry, entry pricing, or road expansion to
reduce congestion.

Sustainability 2021, 13, 5108 14 of 26

4.2.1. Jam Index Distribution

The congestion of the city can be analyzed quantitatively using the value of the jam
index from Equation (1). Here, the value of jam index ranges from 20% when all the
roads in network are in the free-state (normally value should be zero, but to differentiate
the effects of congestion levels, we considered the congestion-free road length for the
calculation of the congestion index, see Section 3.1.3) to 100% when all the roads are in the
congested state.

Figure 4a is the graph of the congestion index distribution for weekdays and shows
similar trends for all working days. The congestion index increases rapidly from (25–30%)
at 06:00 to about (40–45%) at 09:00 and remains in the same range until 15:00, then further
increases to (50–60%) between 18:00 and 20:00, and gradually decreases thereafter. On
weekdays, the morning peak hour begins at 08:00, where congestion is relatively low
compared to the evening peak hour, which occurs between 17:00 and 21:00. Based on
the congestion index boundary condition from Table 1, the city of Seoul experiences a
free congestion condition in the early morning until 07:00 and between 23:00 and 24:00,
while it approaching a city-wide congestion condition between 18:00 and 19:00 and has
sloe congestion condition during the rest of the period. Similarly, Figure 4b shows the
distribution of the jam index for weekends. The congestion index value does not follow
similar trends as in the weekday analysis. Nevertheless, there is a sharp increase in the
congestion index from (20–35%) in the morning until 09:00 to (35–55%) between 09:00 and
21:00 with the maximum between 15:00 and 19:00. From Table 1, it is observed that the
city experiences congestion free condition in the early morning till 09:00 and late evening
between 21:00 and 24:00, and slow congestion condition during the rest of the day. The
analysis of congestion index distribution on weekdays and weekends shows that road
traffic in Seoul city does not operate at optimal capacity, and large congestion occurs
during peak hours. Consequently, a study of reoccurring traffic patterns and congestion
predictions is needed to evaluate and solve the city-wide congestion problem.

4.2.2. Stochastic Congestion Maps

In this subsection, we construct the city-wide stochastic congestion map based on
weekday data to analyze the traffic statistics and congestion patterns. The stochastic con-
gestion map represents the likelihood of the occurrence of a congestion in a road network
based on the observation of many days [60,61]. To construct the stochastic congestion map,
we first, extract jam road segments from the database based on Algorithm 2 and group
the image based on their timestamp, multiple of 3 hours, i.e., (0–3, 3–6, 6–9, . . . 18–21,
and 21–24). Then, all the images in their respective groups are added element-wise and
finally each group are divided by the total number of the images in their respective group
to obtain the stochastic congestion map. Figure 3 shows the dynamics of congestion during
weekdays.

Sustainability 2021, 13, 5108 15 of 26

Sustainability 2021, 13, x FOR PEER REVIEW 2 of 4

 2
Figure 4. Road traffic jam index distribution graph. (a) The congestion index of the city during weekdays. (b) The conges- 3
tion index of the city during weekends. 4

4.2.2. Stochastic Congestion Maps 5
In this subsection, we construct the city-wide stochastic congestion map based on 6

weekday data to analyze the traffic statistics and congestion patterns. The stochastic con- 7
gestion map represents the likelihood of the occurrence of a congestion in a road network 8
based on the observation of many days [60,61]. To construct the stochastic congestion 9
map, we first, extract jam road segments from the database based on Algorithm 2 and 10
group the image based on their timestamp, multiple of 3 hours, i.e., (0–3, 3–6, 6–9,… 18– 11
21, and 21–24). Then, all the images in their respective groups are added element-wise and 12
finally each group are divided by the total number of the images in their respective group 13
to obtain the stochastic congestion map. Figure 3 shows the dynamics of congestion dur- 14
ing weekdays. 15

 16

(a)

(b)

Figure 4. Road traffic jam index distribution graph. (a) The congestion index of the city during weekdays. (b) The congestion
index of the city during weekends.

In Figure 5, the stochastic map for (0–3) and (3–6) hours is not included because
they have a very-low recurrent congestion probability similar to that of the stochastic
pattern for (21–24) hours, and the reoccurring congestion pattern of other time-period can
be clearly seen. During the early morning, (6–9) hours, most of the road network in the
central of Seoul is free of congestion, whereas a moderate level of reoccurring congestion
(40–60%) to a high probability of reoccurring congestion is observed on the other roads,
especially in the outskirts of the city. This pattern is true for Seoul, as many people commute
from the outer suburbs to work in central Seoul. During (9–12) hours, in addition to the
periphery, central Seoul also experiences a moderate to high probability of reoccurrence
of congestion. After the end of the morning rush hour, the probability of congestion of
most roads in the periphery decreases, while most of roads in the central region continue
to experience a high probability of reoccurring congestion. Similarly, during (15–18) hours,
the probability of reoccurring congestion rises for all road networks, especially in the
central region. During (18–21) hours, almost all road networks show high probability of

Sustainability 2021, 13, 5108 16 of 26

reoccurring congestion, the maximum during the entire day. After 21:00 h, the likelihood
of reoccurring congestion subsides to minimum except for few roads. The stochastic
congestion map shows the reoccurring congestion probability, which is time dependent
and changes frequently. Hence, for the traffic authority to focus on the most vulnerable
road segment, in this paper we generate reoccurring traffic congestion pattern explained in
Section 3.2.

Sustainability 2021, 13, x FOR PEER REVIEW 3 of 4

(a) 06:00–09:00 (b) 09:00–12:00

(c) 12:00–15:00 (d) 15:00–18:00

(e) 18:00–21:00

(f) 21:00–24:00

(g)

Figure 5. Weekdays Stochastic Congestion Maps 06:00–24:00. The likelihood of reoccurring congestion in the road net- 17
work, in Figure (a–f). The likelihood color scale for the occurrence of traffic congestion, in Figure (g). 18

 19

R1

R2

Figure 5. Weekdays Stochastic Congestion Maps 06:00–24:00. The likelihood of reoccurring congestion in the road network,
in Figure (a–f). The likelihood color scale for the occurrence of traffic congestion, in Figure (g).

4.2.3. Reoccurring Traffic Congestion Pattern

In this subsection, we construct the reoccurring traffic congestion pattern based on
Algorithm 3 presented in Section 3.2. Figure 5 shows the reoccurring traffic congestion
pattern under different conditions. Figure 6a is an example of a raw image extracted from
the website showing the spatial structure of the road. Figure 6b–d shows the reoccurring

Sustainability 2021, 13, 5108 17 of 26

congestion patter of the city based on the road network affected by congestion for at least
15, 30, and 45 min in an hour in a day and repeating the same pattern for at least half of
the observation day. The frequently reoccurring congested roads are shown in ‘red’ color,
and all other non-congested roads with background are shown in black color. In Figure
6b, the number of the reoccurring roads is immense and can be seen in almost every part
of the city. Thus, the 15 min congestion statistic is not an optimal criterion for designing
the reoccurring congestion pattern. Instead, 30 and 45 min congestion patterns give the
road network with high priority. Therefore, to alleviate the city-wide congestion problems
in the road network, the traffic management authority can use the congestion pattern
from Figure 6c,d to investigate and solve the congestion cause on each road. Solving
the congestion problem of congestion-prone roads can significantly reduce congestion in
the city.

Sustainability 2021, 13, x FOR PEER REVIEW 4 of 4

 20

(a) Sample Image (b) 15 min

(c) 30 min (d) 45 min

Figure 6. Reoccurring traffic congestion pattern from Seoul City on weekdays. (a) The sample of a captured raw image 21
from TOPIS traffic web service. Reoccurring traffic congestion pattern based on road network affected by congestion for 22
at least (b) 15 minutes, (c) 30 minutes, and (d) 45 minutes in an hour. 23

Figure 6. Reoccurring traffic congestion pattern from Seoul City on weekdays. (a) The sample of a captured raw image
from TOPIS traffic web service. Reoccurring traffic congestion pattern based on road network affected by congestion for at
least (b) 15 min, (c) 30 min, and (d) 45 min in an hour.

4.3. Grid Congestion Index Prediction

In this subsection, we first present the performance comparison model and metric to
verify the effectiveness and superiority of the proposed architecture, then we present in-
depth experiments with the proposed model, and finally the results and analysis between
the proposed and comparison models.

4.3.1. Comparison Model and Metrics

To compare the performance of the proposed Convolutional Auto-encoder-based neu-
ral network, two state-of-the-art deep learning neural networks, namely: ConvLSTM [44]
and PredNet [32] were selected. ConvLSTM is similar to LSTM, where the internal matrix
multiplication is replaced by a convolutional operation, allowing both spatial and temporal
features to be learned. PredNet is a hybrid deep neural network formed by adding an
LSTM layer between the convolutional encoder and the convolutional decoder in the
convolutional Autoencoder. The model learns both the spatial and temporal relationship
of the input sequence. The baseline performance measure is the performance level that the

Sustainability 2021, 13, 5108 18 of 26

dataset is currently at, and this value helps determine if the models performance is really
improving or in other words, it helps determine if the model is learning. We performed
the congestion prediction for a prediction horizon of 10, 20, 30, 45, and 60 min. In this
paper, we present the performance result based on the mean absolute error (MAE), mean
square error (MSE), and root mean square error (RMSE). Equations (10) and (11) define
MAE and MAE.

MAE =
1
R

1
C

R−1

∑
i=0

C−1

∑
j=0

∣∣Y(i, j)−Y′(i, j)
∣∣ (10)

MSE =
1
R

1
C

R−1

∑
i=0

C−1

∑
j=0

(
Y(i, j)−Y′(i, j)

)2 (11)

4.3.2. CIPNet Implementation

In this section, we explain the details of the CIPNet model architecture. As shown in
Figure 3, the proposed model has 17 layers, nine convolutional layers, four downsampling
layers, and four upsampling layers. The input to the model is a sequence of 12 historical
images with the dimension of 128 × 256 and a channel depth of 1. The output of the
trained model is a predicted image with a time horizon of (10, 20, 30, 45, and 60) minutes
and have same image dimension as the input image. The sequence of input images is fed
to a 2D convolutional layer which has 32 filters of size 3 × 3, a stride of 1 × 1 with zero
paddings, a kernel weight initialization based on ‘he uniform’ and ‘ReLU’ as activation
function. This layer convolves the input image without reducing the spatial dimension
of the inputs. The convolutional layer is followed by a downsampling layer performed
by a 2D convolutional layer consisting of 64 filters of size 2 × 2 and the stride of 2 × 2
without zero padding. The convolution layer and the downsampling layer are stacked
one after another. The convolutional layer extracts the feature without decreasing the
spatial size. The downsampling layer, on the other hand, halves the spatial size in both
directions while doubling the number of filters compared to previous layer. The input
dimension of 12 × 128 × 256 × 1 is encoded into 12 × 8 × 16 × 1 by the convolutional
encoder. The combination of upsampling layers and convolutional layer regenerates the
latent image representation to its original dimension. The upsampling layer doubles the
spatial dimension while reducing the filter size to its half, formed by a Convolutional 2D
Transpose layer with a filter size of 2 × 2 and strides of 2 × 2 without zero padding. All
layers have a dropout of 0.1 and batch normalization layers.

Since CIPNet is a modified version of PredNet [32], we adopt some basic implementa-
tion parameters, such as the number of past image sequences at 12 and skip connections
between the initial layers and later layers. We compare the performance of the proposed
model, CIPNet, with ConvLSTM [44] and PredNet [32]. We implemented the ConvLSTM
with a six-layer filter configuration of [48, 36, 24, 12, 6, and 1], with a filter size of 3 × 3 and
strides of 1 × 1 with zero padding. Each layer is trained with the activation function ReLU,
followed by the dropout layer with a value of 0.1 and a batch normalization. The input for
the ConvLSTM models has the same input as that of the proposed model. For PredNet, we
adopted the configuration of Convolutional Encoder with filter number [32, 64, 96, 128, 160,
192, 8] followed by 4 LSTM layers with hidden units 672 and then convolutional decoder
with filter size [192, 160, 128, 96, 64, 32]. Each layer has ReLU activation followed by a
dropout layer of 0.1 and batch normalization layers.

4.3.3. Prediction Result and Analysis

Figure 7 shows the detailed MSE result of all the prediction models for prediction
horizons of 10 min on 12 October 2020, in a period from 09:00 to 12:50. The proposed
network, CIPNet, has the lowest mean squared error compared to PredNet, ConvLSTM
and Baseline. The proposed model achieves significantly lower MSE than Baseline and
ConvLSTM and slightly better than PredNet. Out of 48 instances, CIPNet achieves lower
prediction error 41 times, PredNet achieves lower prediction error five times and for the

Sustainability 2021, 13, 5108 19 of 26

other two times, both CIPNet and PredNet perform equally well. Table 3 shows the hourly
average MSE and MAE values for all prediction models and baseline performance for 10
and 60 min prediction horizons on 12, 13, and 14 November 2020 from 09:00 to 13:00. The
result shows that the proposed model has the lowest average MSE and MAE error on all
three days compared to all other models. The PredNet is close to the performance of the
CIPNet for the 10 min horizon. However, for the 60 min prediction, the performance of the
proposed model, CIPNet, is similar to PredNet, while the performance of ConvLSTM is
poor. Figure 8a,b shows the end–end result of CIPNet for the grid congestion index forecast
with the prediction horizon of 10 min on 1 September 2020 at 12:00 and 18:00, respectively.
Figure 8 shows that the CIPNet has a forecasting capability for a fine level of granularity
and it also shows that it is visually intuitive for policy-makers to plan ahead. Figure 9
shows the average MSE value for all the prediction models on an entire testing dataset
for the prediction horizon of 10, 20, 30, 45, and 60 min. The chart shows that the MSE of
the proposed model is the lowest for the prediction horizon up to 30 min after which the
performance is either lower or similar to PredNet. The plot also shows that all the three
prediction models are adaptive as their MSE loss is lower than the baseline performance.

Sustainability 2021, 13, x FOR PEER REVIEW 14 of 21

Figure 4. Mean Squared Error Comparison of the Grid Congestion Index Prediction model for a forecast horizon of 10

minutes on 12 October 2020.

(a) 12:00 (b) 18:00

Figure 5. Grid Congestion Index Prediction on 1 September 2020 for a prediction horizons of 10 min. (a) Prediction result

at 12:00. (b) Prediction result at 18:00 h.

Figure 6. Average MSE for all the prediction model for a prediction horizons of 10, 20, 30, 45, and

60 min.

0.0035

0.0045

0.0055

0.0065

0.0075

0.0085

0.0095

0.0105

0.0115

M
ea

n
 S

q
u

ar
ed

 E
rr

o
r

Time

 CIPNet PredNet ConvLSTM Baseline

0

0.005

0.01

0.015

0.02

0.025

10 20 30 45 60

M
S

E

Prediction Horizon (in minutes)

 CIPNet PredNet ConvLSTM Baseline

Figure 7. Mean Squared Error Comparison of the Grid Congestion Index Prediction model for a forecast horizon of 10 min
on 12 October 2020.

Table 3. Mean Squared Error and Mean Absolute Error of all the models at prediction horizons of 10 and 60 min. Best result
are marked in bold.

Date
&

Time

10 min 60 min

MSE MAE MSE MAE

C.Net P.N C.L B.L C.Net P.N C.L B.L C.Net P.N C.L B.L C.Net P.N C.L B.L

09-10 0.0049 0.0053 0.0062 0.0080 0.0173 0.0192 0.0207 0.0214 0.0076 0.0073 0.0065 0.0130 0.0215 0.0198 0.0255 0.0311
10-11 0.0053 0.0061 0.0069 0.0083 0.0182 0.0190 0.0206 0.0215 0.0089 0.0077 0.0097 0.0144 0.0221 0.0210 0.0270 0.0355
11-12 0.0059 0.0062 0.0063 0.0089 0.0195 0.0205 0.0209 0.0229 0.0082 0.0084 0.0101 0.0135 0.0271 0.0239 0.0256 0.0299
12-13 0.0051 0.0065 0.0072 0.0083 0.0130 0.0175 0.0210 0.0221 0.0079 0.0080 0.0088 0.0132 0.0192 0.0222 0.0266 0.0278
09-10 0.0045 0.0055 0.0051 0.0088 0.0189 0.0194 0.0195 0.0243 0.0077 0.0065 0.0091 0.0213 0.0187 0.0212 0.0256 0.0310
10-11 0.0047 0.0046 0.0047 0.0095 0.0170 0.0165 0.0206 0.0212 0.0074 0.0064 0.0094 0.0221 0.0198 0.0198 0.0282 0.0323
11-12 0.0058 0.0053 0.0075 0.0078 0.0197 0.0187 0.0231 0.0250 0.0081 0.0084 0.0099 0.0217 0.0210 0.0199 0.0211 0.0356
12-13 0.0050 0.0057 0.0061 0.0072 0.0176 0.0192 0.0218 0.0212 0.0065 0.0075 0.0074 0.0193 0.0201 0.0210 0.0210 0.0289
09-10 0.0058 0.0063 0.0079 0.0081 0.0244 0.0198 0.0220 0.0225 0.0068 0.0070 0.0063 0.0227 0.0278 0.0213 0.0217 0.0212
10-11 0.0045 0.0052 0.0052 0.0077 0.0165 0.0195 0.0214 0.0208 0.0066 0.0065 0.0087 0.0229 0.0222 0.0227 0.0229 0.0231
11-12 0.0048 0.0055 0.0057 0.0080 0.0172 0.0189 0.0211 0.0216 0.0072 0.0069 0.0089 0.0210 0.0176 0.0165 0.0278 0.0278
12-13 0.0050 0.0059 0.0062 0.0083 0.0177 0.0186 0.0192 0.0209 0.0076 0.0080 0.0107 0.0224 0.0198 0.0177 0.0223 0.0288

Avg. 0.0051 0.0057 0.0063 0.0082 0.0181 0.0189 0.0210 0.0221 0.0075 0.0074 0.0088 0.0189 0.0214 0.0206 0.0246 0.0294

C.Net: CIPNet, P.N: PredNet, C.L: ConvLSTM, B.L: Baseline.

Sustainability 2021, 13, 5108 20 of 26

Sustainability 2021, 13, x FOR PEER REVIEW 14 of 21

Figure 4. Mean Squared Error Comparison of the Grid Congestion Index Prediction model for a forecast horizon of 10

minutes on 12 October 2020.

(a) 12:00 (b) 18:00

Figure 5. Grid Congestion Index Prediction on 1 September 2020 for a prediction horizons of 10 min. (a) Prediction result

at 12:00. (b) Prediction result at 18:00 h.

Figure 6. Average MSE for all the prediction model for a prediction horizons of 10, 20, 30, 45, and

60 min.

0.0035

0.0045

0.0055

0.0065

0.0075

0.0085

0.0095

0.0105

0.0115

M
ea

n
 S

q
u

ar
ed

 E
rr

o
r

Time

 CIPNet PredNet ConvLSTM Baseline

0

0.005

0.01

0.015

0.02

0.025

10 20 30 45 60

M
S

E

Prediction Horizon (in minutes)

 CIPNet PredNet ConvLSTM Baseline

Figure 8. Grid Congestion Index Prediction on 1 September 2020 for a prediction horizons of 10 min. (a) Prediction result at
12:00. (b) Prediction result at 18:00 h.

Sustainability 2021, 13, x FOR PEER REVIEW 14 of 21

Figure 4. Mean Squared Error Comparison of the Grid Congestion Index Prediction model for a forecast horizon of 10

minutes on 12 October 2020.

(a) 12:00 (b) 18:00

Figure 5. Grid Congestion Index Prediction on 1 September 2020 for a prediction horizons of 10 min. (a) Prediction result

at 12:00. (b) Prediction result at 18:00 h.

Figure 6. Average MSE for all the prediction model for a prediction horizons of 10, 20, 30, 45, and

60 min.

0.0035

0.0045

0.0055

0.0065

0.0075

0.0085

0.0095

0.0105

0.0115

M
ea

n
 S

q
u

ar
ed

 E
rr

o
r

Time

 CIPNet PredNet ConvLSTM Baseline

0

0.005

0.01

0.015

0.02

0.025

10 20 30 45 60

M
S

E

Prediction Horizon (in minutes)

 CIPNet PredNet ConvLSTM Baseline

Figure 9. Average MSE for all the prediction model for a prediction horizons of 10, 20, 30, 45, and
60 min.

4.4. Computaional Complexity

The computational complexity of the algorithm depends solely on its logical structure
and input size. Table 4 shows the time complexity of the TCPIP algorithm for different
input image resolutions. For a one-day analysis, the TCPIP algorithm takes 288 images,
or 12 images per hour. As shown in Table 4, image resolution number (I.N) 7, with the
image resolution of 1 × 1, requires 12.98 milliseconds (ms) to process a single image. In
other words, with virtually no input, the logical and conditional instructions of the TCPIP
algorithm require 12.98 ms to process a single loop (i.e., base complexity). Moreover, with
the increase of input resolution, the algorithm requires an additional time for processing,
the value of which depends on the image size. For small image resolutions as in I.N
5 and I.N 6, the algorithm requires infinitesimal additional processing time. However,
with further increase in input resolution as in I.N 1 to 4, there is a significant increase in
additional computation time. For the 1366 × 694 resolution image used in this study, the
computation time increases by about 4.4 ms per image and 1264.3 ms per daily analysis
compared to the base time complexity. The TCPIP algorithm takes about 5 seconds (s) to
generate the congestion pattern for a single day of data. Once the algorithm has generated
the daily analysis, the result can be saved and reused in future pattern generation. Initially,
the time complexity of the algorithm is high as it has to analyze a large number of days,
but once the initial analysis is completed. The model takes only about 5 s to generate a

Sustainability 2021, 13, 5108 21 of 26

new pattern, and therefore we can say that the TCPIP algorithm is suitable for a real-world
application.

Table 4. TCPIP Model Comparison based on Computation Time.

I.N Image Resolution Computation Time
per Image (in Millisecond)

Computation Time
per Day (in Millisecond)

1. 1366 × 694 17.37 5003.7
2. 1024 × 512 16.23 4673.9
3. 512 × 256 14.09 4059.6
4. 256 × 128 13.30 3829.5
5. 128 × 64 13.08 3767.6
6. 64 × 32 13.01 3747.2
7. 1 × 1 12.98 3739.4

I.N: Image Resolution Number.

For deep neural network algorithms, the model complexity depends on the number
of trainable parameters and connection types between layers. The model with convolution
layers requires few trainable parameters due to local connectivity and weight sharing
features compared to layers with full-connection. Table 5 shows the comparison of model
complexity in terms of trainable parameters. As shown in Table 5, the trainable parameter
of CIPNet for the input resolution of (12, 128, 256, 1 is 6.1 million, which is approximately
four times lower compared to PredNet. Table 6 shows the performance comparison of
the CIPNet model in terms of computation time for different prediction horizons. After
training, the CIPNet took 29 ms to predict a sample of grid congestion index. Therefore, the
proposed CIPNet is the most efficient and best suited for real-world applications. Table 6
shows that the proposed CIPNet architecture requires the least training time for all three
prediction horizons, although the number of epochs at which the model reaches saturation
is large. It is about 3 and 15 times faster than PredNet and ConvLSTM, respectively, in
terms of learning capability. In Table 6, it appears that the training time required for model
saturation decreases with the prediction horizon, but this is not the case. Since, the same
dataset is used to generate training samples (i.e., input sample (X) and output labels (Y)) for
all prediction horizons, as the prediction horizon increases, the number of training samples
decreases, and so does the training time.

Table 5. Prediction Model Comparison based on the number of Trainable Model Parameters.

Models Description
(No. of Layers)

Input
Parameters

Trainable Model
Parameters

CIPNet Convolutional
Autoencoder (17) (12, 128, 256, 1) 6,102,113

PredNet [32]
Convolutional

Recurrent Autoencoder
(22)

(12, 128, 256, 1) 28,440,185

ConvLSTM [44] ConvLSTM (6) (12, 128, 256, 1) 264,160

Table 6. Prediction Model Performance Comparison based on Training Time.

Prediction
Horizon Model Variables CIPNet PredNet [32] ConvLSTM [44]

10 min
Epochs 40 27 23

Training Time (s) 2760 8046 41,055

30 min
Epochs 39 25 25

Training Time (s) 2535 6971 41,827

60 min
Epochs 41 23 22

Training Time (s) 2598 6414 32,792

Sustainability 2021, 13, 5108 22 of 26

All the mentioned models were trained on a real-world traffic image (Seoul) captured
from the TOPIS website containing congestion levels. The models were implemented on
an Ubuntu 18.04.4 machine with NVIDIA TITAN Xp Graphics cards. The performance of
the TCPIP algorithm does not depend on the graphics card. The predictive models were
trained using an Adaptive Moment Estimation (ADAM) optimizer, with a learning rate of
1e-3, a learning decay rate of 0.9, and a variable moving average of 0.999, and a batch size
of 16 for CIPNet and 2 for ConvLSTM and PredNet. We trained all the prediction models
based on the mean square error loss function. The prediction models were developed
on Python 3.8 platforms using the Tensor flow and Keras deep learning libraries and the
OpenCV library for an image processing task.

4.5. Discussion

One of the challenges for transportation decision-makers is to locate the congested
road links, routes, or zones in the transportation network that have negative impacts on the
overall network and develop strategies for sustainable urban mobility, especially consid-
ering the limited budget and resources [62]. The congestion pattern analysis results from
Section 4.2 and the grid congestion-index prediction results from Section 4.3 are efficient
algorithms with low computational complexity, as discussed in Section 4.4. Based on the
paper finding and congestion demand management tools, policy makers, transportation
experts or researchers can efficiently negate the congestion problem. In this section, we
present some practical aspects of decision making using congestion pricing and selective
access. Congestion pricing is a popular demand management tool that determines the price
charged to consumers for the actual congestion costs caused by using the network [63].
The pricing strategy is based on either static or dynamic traffic flow and can be link-based,
path-based, zone-based, etc.

For the practical aspects of the research, including the view of the decision maker,
in this subsection, we select and analyze two high density zones shown in Figure 5e, R1
and R2, represented by white rectangular boxes, for the pattern analysis result. Here, the
zone ‘R1’ is the center Seoul Region, while the zone ‘R2’ is a small region from Gangnam
area in Seoul City. The stochastic congestion map in Figure 5 shows that the likelihood of
congestion in both zones is very low until 09:00, with the slight congestion in the afternoon
until 15:00, which becomes stronger between 15:00 and 21:00 and has a very low probability
after that. For the other parts, except for the region inside the boxes, the likelihood is high
only between 18:00 and 21:00. In the morning hours until 09:00, the demand management
procedures such as traffic diversion or the selective entry need to be applied only on some
roads on the outskirt of the city. From 09:00 to 18:00, strategies such as traffic diversion
or dynamic congestion pricing can be an effective method. From 18:00 to 21:00, almost
all road networks within the boxes are congested. The demand management measures
such as the alternative routing are not possible in this scenario. However, by applying
strategies such as congestion pricing for small vehicles and banning for heavy vehicles from
entering the zone, the policy maker can prevent the situation from worsening. Similarly,
for the same timeline from 18:00 to 21:00, the policy makers can choose for road-based
congestion pricing for the region outside the boxes. The traffic redirecting strategy helps to
distribute congestion from highly congested roads to congestion-free roads. Congestion
pricing discourages travelers from taking private trips or making the unwanted trips
through congestion zones, and encourages them to use cheaper and more efficient modes
of transportation such as carpooling, public transportation, etc.

Based on the real-time grid congestion-index prediction result, policy makers can plan
and apply urban mobility measures more effectively than the hourly stochastic congestion
results. Figure 8a,b show the prediction result at noon and 6 p.m., on 1 September 2020,
respectively. At noon, the grids mostly have congestion index values below 0.5, and very
few grids have congestion index values above 0.8. Based on the result, policy makers can
target the grids that are approaching a jammed condition and take various measures, such
as imposing vehicle restrictions on grids with a high congestion index value, diverting

Sustainability 2021, 13, 5108 23 of 26

vehicles to grids with a lower congestion index, or apply dynamic congestion pricing
method based on the future value of the grid congestion index value. All demand man-
agement methods such as vehicle restrictions, diversions, and congestion pricing can be
applied when most girds have a low congestion index. However, in a situation where
the majority of girds have high congestion index, as shown in Figure 8b, only dynamic
congestion pricing can be an effective method to ensure sustainable mobility without
inducing congestion due to diversions. Moreover, short to long term congestion prediction
helps traffic management agencies in tactical planning for some special events. Predicting
the congestion condition of roads that have reoccurring congestion value of 0.7 or more
is not important whereas predicting the congestion for the network with a probability of
about 0.5 is of great importance.

5. Conclusions

In this article, we first propose an inexpensive and general approach for data collec-
tion using Selenium from an open-source online TOPIS website and create two datasets,
(i) city road network with congestion levels only and (ii) 5 × 5 pixel grid-based traffic
congestion index. Then we developed two algorithms, (i) traffic congestion pattern analysis
based on image processing, TCPIP, which performs simple arithmetic operations on the
historical traffic images to generate the city-wide reoccurring congestion road pattern,
as in Section 3.2. Moreover, (ii) grid traffic congestion-index prediction, CIPNet, based
on the Convolutional Autoencoder architecture that learns a feature representation and
temporal correlations from the historical grid congestion index data to predict the future
city-wide grid congestion index, as in Section 3.3. As can be seen in Section 4.2.1, the
traffic congestion index of the city is abnormally high, particularly during the morning
and evening peak hours, which indicates that the traffic management authority should
take measures to reduce the congestion. Similarly, Section 4.2.2 presents the stochastic
congestion map, which shows the likelihood of the road network is in a congested state
at a given time. The traffic management authority can use the congestion pattern from
Section 4.2.3 to investigate the cause of congestion on each road and solve it to significantly
reduce the congestion in the city. Similarly, Section 4.3 analyzes the result of the predictive
models. The analysis shows that for short-term prediction, 10 to 30 min, CIPNet shows
remarkable performance compared to ConvLSTM and PredNet in terms of prediction
performance. For long-term prediction, 60 min, PredNet performs better as it consists of
LSTM layers which have better long-term learning ability. In Section 4.4, an in-depth study
on computational complexity is presented; the study shows that both models are feasible
for particle applications in terms of resource utilization and computation time. Finally,
Section 4.5 discusses the decision maker’s point of view on reducing congestion through
demand response.

This research proposes inexpensive data collection methods whose sources are readily
available for the cities around the world through an open-source website such as Google
Traffic Map, TOPIS, and Bing maps. Both proposed models are computationally efficient
in terms of resource consumption, processing time and output performance and can be
generalized to the problem of large-scale traffic analysis due to their unique capabilities, as
TCPIP algorithm consists of simple arithmetic operations and CIPNet consists of convo-
lution and pooling layers. Therefore, this work has the potential for more cost-effective
and efficient methods that can provide a basis for analyzing the congestion pattern and
predicting grid congestion index of any city, provided there is an online web service that
provides the traffic information. In addition, both the model can also be used in other areas
of traffic management, such as analyzing or predicting traffic volume, speed, or occupancy
provided the input to the model is an image.

Although the research shows encouraging results in pattern analysis and predictive
performance, there is still room for improvement in the computational efficiency of the
model. In the current form of the two datasets, since most of the values do not contain
roads, computational resources are wasted on background learning. In future research,

Sustainability 2021, 13, 5108 24 of 26

we will try to exclude background information from the datasets to further improve the
efficiency of the models. We will also try to analyze demand management measures for
congestion control through a more detailed study. Moreover, this study only focuses on
using congestion data for traffic analysis. In future research, we can incorporate external
factors such as weather information, real-time construction, and accident information to
improve the model performance.

Author Contributions: Conceptualization, N.R. and H.K.; methodology, N.R. and H.K.; software,
N.R.; validation, N.R., S.B., Y.-S.H., and H.K.; formal analysis, N.R. and P.K.; investigation, N.R.;
resources, H.K. and Y.-S.H.; data curation, N.R. and S.B.; writing—original draft preparation, N.R.;
writing—review and editing, N.R., S.B., P.K., Y.-S.H., and H.K.; visualization, N.R., H.K., and S.B.;
supervision, H.K.; project administration, H.K.; funding acquisition, H.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the data used for the traffic congestion analysis was capture from
the open-source traffic web service. They provide accurate traffic information about the city. The
readers can access the data by capturing an image from the web service. The link to these web service
is mentioned in reference [49–57].

Acknowledgments: This work was supported by Post-Doctoral Research Program of Incheon Na-
tional University 2017.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Onyeneke, C.; Eguzouwa, C.; Mutabazi, C. Modeling the Effects of Traffic Congestion on Economic Activities-Accidents, Fatalities

and Casualties. Biomed. Stat. Inform. 2018, 3, 7–14. [CrossRef]
2. Wang, C.; Quddus, M.A.; Ison, S.G. Impact of traffic congestion on road accidents: A spatial analysis of the M25 motorway in

England. Accid. Anal. Prev. 2009, 41, 798–808. [CrossRef] [PubMed]
3. Hao, P.; Wang, C.; Wu, G.; Boriboonsomsin, K.; Barth, M. Evaluating the environmental impact of traffic congestion based on

sparse mobile crowd-sourced data. In Proceedings of the 2017 IEEE Conference on Technologies for Sustainability (SusTech),
Phoenix, AZ, USA, 12–14 November 2017; pp. 1–6.

4. Ye, S. Research on Urban Road Traffic Congestion Charging Based on Sustainable Development. Phys. Procedia 2012, 24, 1567–1572.
[CrossRef]

5. Ukpata, J.O.; Etika, A.A. Traffic Congestion in Major Cities of Nigeria. Int. J. Eng. Technol. 2012, 2, 1343–1438.
6. Russo, F.; Rindone, C. Planning in road evacuation: Classification of exogenous activities. Wit Trans. Built Environ. 2011, 116,

639–651.
7. Chung, Y.; Recker, W.W. A methodological approach for estimating temporal and spatial extent of delays caused by freeway

accidents. IEEE Trans. Intell. Transp. Syst. 2012, 13, 1454–1461. [CrossRef]
8. Chung, Y. Identification of Critical Factors for Non-Recurrent Congestion Induced by Urban Freeway Crashes and Its Mitigating

Strategies. Sustainability 2017, 9, 2331. [CrossRef]
9. Chung, Y. Assessment of non-recurrent traffic congestion caused by freeway work zones and its statistical analysis with

unobserved heterogeneity. Transp. Policy 2011, 18, 587–594. [CrossRef]
10. Sun, F.; Dubey, A.; White, J. DxNAT—Deep neural networks for explaining non-recurring traffic congestion. In Proceedings of

the 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017; pp. 2141–2150.
11. Afrin, T.; Yodo, N. A Survey of Road Traffic Congestion Measures towards a Sustainable and Resilient Transportation System.

Sustainability 2020, 12, 4660. [CrossRef]
12. Croce, A.I.; Musolino, M.; Rindone, C.; Vitetta, A. Sustainable mobility and energy resources: A quantitative assessment of

transport services with electrical vehicles. Renew. Sustain. 2019, 113, 109236. [CrossRef]
13. Nugmanova, A.; Arndt, W.-H.; Hossain, M.A.; Kim, J.R. Effectiveness of Ring Roads in Reducing Traffic Congestion in Cities for

Long Run: Big Almaty Ring Road Case Study. Sustainability 2019, 11, 4973. [CrossRef]
14. Triantis, K.; Sarangi, S.; Teodorović, D.; Razzolini, L. Traffic congestion mitigation: Combining engineering and economic

perspectives. Transp. Plan. Technol. 2011, 34, 637–645. [CrossRef]
15. Saha, R.; Tariq, M.T.; Hadi, M. Deep Learning Approach for Predictive Analytics to Support Diversion during Freeway Incidents.

Transp. Res. Rec. 2020, 2647, 480–492. [CrossRef]

http://doi.org/10.11648/j.bsi.20180302.11
http://doi.org/10.1016/j.aap.2009.04.002
http://www.ncbi.nlm.nih.gov/pubmed/19540969
http://doi.org/10.1016/j.phpro.2012.02.231
http://doi.org/10.1109/TITS.2012.2190282
http://doi.org/10.3390/su9122331
http://doi.org/10.1016/j.tranpol.2011.02.003
http://doi.org/10.3390/su12114660
http://doi.org/10.1016/j.rser.2019.06.043
http://doi.org/10.3390/su11184973
http://doi.org/10.1080/03081060.2011.602845
http://doi.org/10.1177/0361198120917673

Sustainability 2021, 13, 5108 25 of 26

16. Nellore, K.; Hancke, G.P. A survey on urban traffic management system using wireless sensor networks. Sensors 2016, 16, 157.
[CrossRef] [PubMed]

17. Gallo, M.; Marinelli, M. Sustainable Mobility: A Review of Possible Actions and Policies. Sustainability 2020, 12, 7499. [CrossRef]
18. Feng, X.; Saito, M.; Liu, Y. Improve urban passenger transport management by rationally forecasting traffic congestion probability.

Int. J. Prod. Res. 2016, 54, 3465–3474. [CrossRef]
19. Rempe, F.; Huber, G.; Bogenberger, K. Spatio-Temporal Congestion Patterns in Urban Traffic Networks. Transp. Res. Procedia 2016,

15, 513–524. [CrossRef]
20. Rahaman, M.M.; Shuvo, M.M.M.; Zaber, M.I.; Ali, A.A. Traffic Pattern Analysis from GPS Data: A Case Study of Dhaka City. In

Proceedings of the 2018 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT),
Bangalore, India, 16–17 March 2018; pp. 1–6.

21. Xu, L.; Yue, Y.; Li, Q. Identifying Urban Traffic Congestion Pattern from Historical Floating Car Data. Procedia Soc. Behav. Sci.
2013, 96, 2084–2095. [CrossRef]

22. Lee, H.; Hong, B.; Jeong, D.; Lee, J. An Algorithm for Identifying the Change of the Current Traffic Congestion Using Historical
Traffic Congestion Patterns. KIISE Trans. Comput. Pract. 2015, 21, 19–28. [CrossRef]

23. Wen, H.; Sun, J.; Zhang, X. Study on Traffic Congestion Patterns of Large City in China Taking Beijing as an Example. Procedia Soc.
Behav. Sci. 2014, 138, 482–491. [CrossRef]

24. Smith, B.L.; Demetsky, M.J. Traffic Flow Forecasting: Comparison of Modeling Approaches. J. Transp. Eng. 1997, 123, 261–266.
[CrossRef]

25. Kumar, S.V.; Vanajakshi, L. Short-term Traffic Flow Prediction using Seasonal ARIMA Model with Limited Input Data. Eur.
Transp. Res. Rev. 2015, 7, 21. [CrossRef]

26. Zhang, L.; Liu, Q.; Yang, W.; Wei, N.Q.; Dong, D. An Improved K-Nearest Neighbor Model for Short-Term Flow Prediction.
Procedia Soc. Behav. Sci. 2013, 96, 653–662. [CrossRef]

27. Castro-Neto, M.; Jeong, Y.; Jeong, M.; Han, L. AADT Prediction using Support Vector Regression with Data-Dependent Parameters.
Expert Syst. Appl. 2009, 36, 2979–2989. [CrossRef]

28. Sun, S.; Zhang, C.; Yu, G. A Bayesian Network Approach to Traffic Flow Forecasting. IEEE Trans. Intell. Transp. Syst. 2006, 7,
124–132. [CrossRef]

29. Fan, P.; Guo, J.; Zhao, H.; Wijnands, J.S.; Wang, Y. Car-Following Modeling Incorporating Driving Memory Based on Autoencoder
and Long Short-Term Memory Neural Networks. Sustainability 2019, 11, 6755. [CrossRef]

30. Liu, X.; Song, L.; Liu, S.; Zhang, Y. A Review of Deep-Learning-Based Medical Image Segmentation Methods. Sustainability 2021,
13, 1224. [CrossRef]

31. Ranjan, N.; Bhandari, S.; Zhao, H.P.; Kim, H. Neural Network Learning-based Traffic Jam Predicition Technique. In Proceedings
of the 2019 Fall Conference of the Institute of Electronics and Information Engineers, Gangneung, Korea, 22–23 November 2019;
pp. 951–954.

32. Ranjan, N.; Bhandari, S.; Zhao, H.P.; Kim, H.; Khan, P. City-Wide Traffic Congestion Prediction Based on CNN, LSTM and
Transpose CNN. IEEE Access 2020, 8, 81606–81620. [CrossRef]

33. Bhandari, S.; Kim, H.; Ranjan, N.; Zhao, H.P.; Khan, P. Optimal Cache Resource Allocation Based on Deep Neural Networks for
Fog Radio Access Networks. J. Internet Technol. 2020, 21, 967–975.

34. Bhandari, S.; Ranjan, N.; Zhao, H.P.; Kim, H. Artificial Intelligence Enabled Fog Radio Access Networks: A Case Study. In
Proceedings of the 2019 Fall Conference of the Institute of Electronics and Information Engineers, Gangneung, Korea, 22–23
November 2019; pp. 993–997.

35. Bhandari, S.; Ranjan, N.; Khan, P.; Kim, H.; Hong, Y.-S. Deep Learning-Based Content Caching in the Fog Access Points. Electronics
2021, 10, 512. [CrossRef]

36. Ma, X.; Tao, Z.; Wang, Y.; Yu, H.; Wang, Y. Long Short-Term Memory Neural Network for Traffic Speed Prediction using Remote
Microwave Sensor Data. Transp. Res. Part C Emerg. Technol. 2015, 54, 187–197. [CrossRef]

37. Chen, Y.Y.; Lv, Y.; Li, Z.; Wang, F. Long Short-Term Memory Model for Traffic Congestion Prediction with Online open Data. In
Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janerio, Brazil,
1–4 November 2016; pp. 132–137.

38. Ma, X.; Dai, Z.; Ma, J.; Wang, Y.; Wang, Y. Learning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale
Transportation Network Speed Prediction. Sensors 2017, 17, 818. [CrossRef] [PubMed]

39. Sun, S.; Wu, H.; Xiang, L. City-Wide Traffic Flow Forecasting Using a Deep Convolutional Neural Network. Sensors 2020, 20, 421.
[CrossRef]

40. Wei, W.; Wu, H.; Ma, H. An Autoencoder and LSTM-based Flow Prediction Method. Sensors 2019, 19, 2946. [CrossRef] [PubMed]
41. Dotoli, M.; Fanti, M.P.; Meloni, C. Coordination and real time optimization of signal timing plans for urban traffic control. In

Proceedings of the 2004 IEEE International Conference on Networking, Sensing and Control, Taipei, Taiwan, 21–23 March 2004;
pp. 1069–1074.

42. Dotoli, M.; Fanti, M.P.; Meloni, C. Real time optimization of traffic signal control: Application to coordinated intersections.
In Proceedings of the 2003 IEEE International Conference on Systems, Man and Cybernetics, Taipei, Taiwan, 8 October 2003;
pp. 3288–3295.

http://doi.org/10.3390/s16020157
http://www.ncbi.nlm.nih.gov/pubmed/26828489
http://doi.org/10.3390/su12187499
http://doi.org/10.1080/00207543.2015.1062570
http://doi.org/10.1016/j.trpro.2016.06.043
http://doi.org/10.1016/j.sbspro.2013.08.235
http://doi.org/10.5626/KTCP.2015.21.1.19
http://doi.org/10.1016/j.sbspro.2014.07.227
http://doi.org/10.1061/(ASCE)0733-947X(1997)123:4(261)
http://doi.org/10.1007/s12544-015-0170-8
http://doi.org/10.1016/j.sbspro.2013.08.076
http://doi.org/10.1016/j.eswa.2008.01.073
http://doi.org/10.1109/TITS.2006.869623
http://doi.org/10.3390/su11236755
http://doi.org/10.3390/su13031224
http://doi.org/10.1109/ACCESS.2020.2991462
http://doi.org/10.3390/electronics10040512
http://doi.org/10.1016/j.trc.2015.03.014
http://doi.org/10.3390/s17040818
http://www.ncbi.nlm.nih.gov/pubmed/28394270
http://doi.org/10.3390/s20020421
http://doi.org/10.3390/s19132946
http://www.ncbi.nlm.nih.gov/pubmed/31277390

Sustainability 2021, 13, 5108 26 of 26

43. Zhang, S.; Yao, Y.; Hu, J.; Zhao, Y.; Li, S.; Hu, J. Deep auto encoder Neural networks for short term traffic congestion prediction of
Transportation Networks. Sensors 2019, 19, 2229. [CrossRef] [PubMed]

44. Liu, Y.; Zheng, H.; Feng, X.; Chen, Z. Short-Term Traffic Flow Prediction with Conv-LSTM. In Proceedings of the 2017 9th
International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 11–13 October 2017;
pp. 1–6.

45. Rui, L.; Zhang, Y.; Huang, H.; Qiu, X. A New Traffic Congestion Detection and Quantification Method Based on Comprehensive
Fuzzy Assessment in VANET. KSII Trans. Internet Inf. Syst. 2018, 12, 41–60.

46. Heba, E.S.; Ayman, E.S. Survey of Traffic Congestion Detection using VANET. Commun. Appl. Electron. 2015, 1, 14–20.
47. Lu, X.; Varaiya, P.; Horowitz, R.; Guo, Z.; Palen, J. Estimating Traffic Speed with Single Inductive Loop Event Data. Transp. Res.

Rec. J. Transp. Res. Board 2012, 2308, 157–166. [CrossRef]
48. Padmavathi, S.; Naveen, C.R.; Kumari, V.A. Vision based Vehicle Counting for Traffic Congestion Analysis during Night Time.

Indian J. Sci. Technol. 2016, 9, 1–6. [CrossRef]
49. Google Maps. Available online: https://www.google.com/maps/place/Delhi,+India/@28.6471948,76.9531797,11z/data=

!3m1!4b1!4m5!3m4!1s0\times390cfd5b347eb62d:0\times37205b715389640!8m2!3d28.7040592!4d77.1024902 (accessed on
4 September 2019).

50. Bing Maps. Available online: https://www.bing.com/maps/traffic (accessed on 5 September 2019).
51. Seoul Transport Operation & Information Service Center. Available online: https://topis.seoul.go.kr/prdc/openPrdcMap.do

(accessed on 5 September 2019).
52. Baidu Maps. Available online: https://map.baidu.com/@13036895.494262943,4748316.384998233,11.52z/maplayer%

3Dtrafficrealtime (accessed on 10 September 2019).
53. DOTD “Louisiana Department of Transportation & Development”. Available online: https://www.511la.org/#:Alerts (accessed

on 10 May 2020).
54. Sigalert “Los Angeles Traffic Report”. Available online: https://www.sigalert.com/?lat=33.984259&lon=-118.223015&z=2

(accessed on 20 January 2020).
55. Live Traffic NSW. Available online: https://www.livetraffic.com/ (accessed on 10 May 2019).
56. 511 Wisconsin. Available online: https://511wi.gov/ (accessed on 10 May 2019).
57. I-Traffic. Available online: https://i-traffic.co.za/region/KwaZulu (accessed on 10 August 2020).
58. Ranjan, N.; Bhandari, S.; Zhao, H.P.; Kim, H. Analysis of Correlation between Regional Traffic Congestion Index and Population

density. In Proceedings of the 2019 Fall Conference of the Institute of Electronics and Information Engineers, Gangneung, Korea,
22–23 November 2019; pp. 955–958.

59. Lana, I.; DelSer, J.; Velez, M.; Vlahogianni, E.I. Road Traffic Forecasting: Recent Advances and New Challenges. IEEE Intell.
Transp. Syst. Mag. 2018, 10, 93–109. [CrossRef]

60. He, Z.; Zheng, L.; Chen, P.; Guan, W. Mapping to cells: A simple Method to Extract Traffic Dynamics from Probe Vehicle Data.
Comput. Aided Civ. Infrastruct. Eng. 2017, 32, 252–267. [CrossRef]

61. Ban, X.J.; Chu, L.; Benouar, H. Bottleneck Identification and Calibration for Corridor Management Planning. Transp. Res. Rec. J.
Transp. Res. Board 2008, 1999, 40–53. [CrossRef]

62. Mishra, S.; Kumar, A.; Golias, M.M.; Welch, T.; Taghizad, H.; Haque, K. Transportation Investment Decision Making for Medium
to Large Transportation Networks. Transp. Dev. Econ. 2016, 2, 18. [CrossRef]

63. Abou-Zeid, M.; Chabini, I. Methods for Congestion Pricing in Dynamic Traffic Networks. In Proceedings of the 10th IFAC
Symposium on Control in Transportation Systems, Tokyo, Japan, 4–6 August 2003; pp. 299–304.

http://doi.org/10.3390/s19102229
http://www.ncbi.nlm.nih.gov/pubmed/31091802
http://doi.org/10.3141/2308-17
http://doi.org/10.17485/ijst/2016/v9i20/91742
https://www.google.com/maps/place/Delhi,+India/@28.6471948,76.9531797,11z/data=!3m1!4b1!4m5!3m4!1s0$\times $390cfd5b347eb62d:0$\times $37205b715389640!8m2!3d28.7040592!4d77.1024902
https://www.google.com/maps/place/Delhi,+India/@28.6471948,76.9531797,11z/data=!3m1!4b1!4m5!3m4!1s0$\times $390cfd5b347eb62d:0$\times $37205b715389640!8m2!3d28.7040592!4d77.1024902
https://www.bing.com/maps/traffic
https://topis.seoul.go.kr/prdc/openPrdcMap.do
https://map.baidu.com/@13036895.494262943,4748316.384998233,11.52z/maplayer%3Dtrafficrealtime
https://map.baidu.com/@13036895.494262943,4748316.384998233,11.52z/maplayer%3Dtrafficrealtime
https://www.511la.org/#:Alerts
https://www.sigalert.com/?lat=33.984259&lon=-118.223015&z=2
https://www.livetraffic.com/
https://511wi.gov/
https://i-traffic.co.za/region/KwaZulu
http://doi.org/10.1109/MITS.2018.2806634
http://doi.org/10.1111/mice.12251
http://doi.org/10.3141/1999-05
http://doi.org/10.1007/s40890-016-0023-8

	Introduction
	Related Work
	Traffic Congestion Pattern Analysis
	Traffic Congestion Predcition

	Methodology
	Traffic Data
	Traffic Data Acquisition
	Road Network Extraction
	Grid Representation

	Traffic Congestion Analysis
	Traffic Congestion Index Prediction
	Problem Statement
	Model Architecture
	Training Process of CIPNet

	Experiment and Result Analysis
	Data Source
	Traffic Congestion Analysis
	Jam Index Distribution
	Stochastic Congestion Maps
	Reoccurring Traffic Congestion Pattern

	Grid Congestion Index Prediction
	Comparison Model and Metrics
	CIPNet Implementation
	Prediction Result and Analysis

	Computaional Complexity
	Discussion

	Conclusions
	References

