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Abstract: While the study of reverse wood value chains has become an important topic recently,
optimization-focused studies usually consider network-level problems and decisions, and do not
address the individual processes in the network. In the case of waste wood, one such important
process is the scheduling of the various machines in a waste wood processing facility to treat incoming
wood deliveries with multiple sources and varying quality. This paper proposes a robust multi-
objective mixed-integer linear programming model for the optimization of this process that considers
the uncertain origins and compositions of the incoming deliveries, while aiming to minimize both
lateness and energy consumption. An exhaustive study is performed on instance sets of different
sizes and structures to show the efficiency and the limits of the proposed model both in single- and
multi-objective cases.

Keywords: reverse wood value chain; scheduling; waste-wood processing

1. Introduction

The topics of recycling and reuse are getting an increased recognition due to the
growing importance of sustainability and environmental consciousness. Adding values to
residues and wastes not only helps industries meet their commitments towards various EU-
and country-level regulations, but also provides an environmentally friendly alternative
to other, more traditional resource streams. Still, biomass wastes are mainly considered
for energy production [1], which leads to scientific studies of biomass value chains concen-
trating mostly on efficient use for energy as well [2]. However, there are certain biomass
types where viable alternative uses also exist. Waste wood is a good example for this: it
is a versatile material that can be reused and recycled after its original function becomes
obsolete, offering a more sustainable option than energy production [3].

Reverse logistics is the field that considers the logistics network of return product
flows, putting an emphasis on the end-of-life recovery and the reuse of resources [4].
The three major processes of a reverse logistics network are distribution, production
planning and inventory management [5]. Naturally, this may change or become more
specialized for certain industrial fields. While the processes remain the same for biomass
supply chains, extra emphasis should be put on processing, conditioning and intermediate
production, as these can influence the attributes of the transported, stored and utilized
biomass products [6]. However, the majority of papers in literature only study inventory
and product return management and network design [7], and the optimization of produc-
tion processes is rarely considered. This is especially true for waste wood value chains.
While the traditional forward resource flows of wood are well-studied [8,9] and facility-
level processes like sawmilling [10] or cutting pattern optimization [11] are also considered,
the available literature on the reverse logistics processes of waste wood is significantly
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scarcer. Apart from studies about the use of waste wood for energy [12,13], the few existing
papers revolve around variations of network design [14–17], but the optimization problems
arising in the facilities of these networks are not addressed.

This paper studies the arising scheduling problems in a waste wood processing
facility over a planning horizon, and presents an optimization approach for their solution.
These facilities are considered as an integral and intermediate process of a waste wood
reverse logistics network where various types of wood waste are first collected from
the available sources of the network, then transported to such a facility for processing,
and finally delivered to customers to satisfy their demands. The wood deliveries arriving
to a facility go through a series of transformation processes, and the resulting product
is then transported to the customer in its required form. As the incoming deliveries to
such a facility can have different origins (e.g., building/industrial or household waste)
and characteristics (e.g., coated or uncoated) [18], the exact processing steps that have
to be taken might vary between deliveries based on these features. Because of these
characteristics, there is an uncertain element to the problem that also has to be taken into
account during optimization. Moreover, each delivery has a priority and a deadline that
also have to be considered during scheduling.

A mixed-integer linear programming model (MILP) is presented for scheduling the
wood deliveries on the various machines of the processing facility in the required order
over a fixed planning horizon of several days/weeks. The model considers the robustness
of the problem by taking into account the uncertainty that arises because of the varying
delivery sources and quality. Optimization is done using two different objective functions;
either ensuring timely completion of the deliveries by considering their priority-weighted
lateness, or minimizing the energy consumption of the available machines at the facility.
This allows the generation of different solutions for the same problem scenario using
multi-objective optimization, which can aid the decision-making process of production
planning at the facility.

The efficiency of the model is presented on input instances of varying sizes and
structures. As the acquisition of accurate and exact real-world data is difficult on this level
of a supply chain, these instances are randomly generated. The characteristics (origin and
type) of incoming deliveries are determined based on real-world distributions published in
the literature, while the available machines of the facility have the characteristics of actual
existing waste wood processing machinery.

The outline of this paper is the following. First, the arising scheduling problem is
defined in detail, describing all constraints that are be taken into account, and a multi-
objective MILP model is formalized for the optimization of this problem. Then, the results
of this model are presented on various input instances, showing its capabilities and limits.
Finally, the paper is concluded with the presentation of future extension possibilities of the
current work.

2. Problem Definition
2.1. General Process and Infrastructure

The approach proposed in this paper tackles the mid-term scheduling of stochastic
jobs in a waste wood processing facility. The time horizon of interest spans over several
days, starting from the earliest delivery of input materials until the latest deadline. For the
scope of this study, time frames of one and two weeks were both examined.

The processing facility receives waste wood deliveries from various sources and has to
produce shredded wood out of them by pre-determined deadlines. The production process
of a delivery will be referred to as a job. There is a one-to-one relation between jobs and
deliveries, thus the two terms will often be used interchangeably.

Incoming waste wood deliveries are categorized according to the information in [18].
Deliveries can belong to multiple categories based on their origin: construction waste,
industrial waste, household waste, and waste from collection centers. Due to their similar
characteristics, construction and industrials wastes will be merged under the same category
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for the remainder of this paper. The same will be true for wastes from households and
collection centers. Waste wood of the former category usually arrives directly from the
sites, while the latter can come either directly from households or regional collections
centers. Independently of their origin, deliveries can also be categorized by the type of the
delivered material: they consist of either solid wood or derived timber products.

A key feature of a delivery is the possibility and percentage of contaminations. On top
of the above characteristics, a part of each delivery is coated wood that has to go through
a removal process. The ratio of coated wood in a delivery depends on its other features.
Derived timber products from households or collection centers are coated in the majority
of the cases, while this is not true for industrial and building waste, which is only partly
coated. A more detailed classification of deliveries would be possible, however, from the
aspect of the current investigation, jobs sharing the same delivery category are assumed
to have similar properties. Furthermore, collecting accurate real-world data for finer
classification may be practically infeasible.

The processing of each job consists of six or seven steps. Five of these steps, in process-
ing order, are: inspection, coating removal, shredding, screening, and re-shredding. The
sixth step, metal separation can be done either manually between inspection and coating
removal, or in an automated fashion by a (magnetic) separator after shredding. For solid
wood deliveries from industrial sites, a seventh step, pre-shredding is also required to
make the materials suitable for the shredding equipment. The interconnection of the above
processes can be seen in Figure 1.

Figure 1. The possible flow of waste wood through the different transformation processes (green:
manual steps, gray: machine steps).

In Figure 1, each box corresponds to one of the processing steps of the facility, while
the blue line represents the flow of the materials. The green-colored steps must be carried
out by dedicated crews, gray-colored steps are performed by machines. Coating removal is
performed only for the coated part of each delivery, while pre-shredding is only done for
solid industrial wood deliveries. The two metal separation steps have a mutually excluding
relation: exactly one of them has to be included in the transformation process of every
delivery. Similarly to coating removal, re-shredding is only performed on a portion of
all materials.
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The facility has two types of resources to carry out these tasks. Shredding, pre-
shredding, automated metal separation, screening, and re-shredding is done by high-value
machines with limited availability. There is no overlap among the machines suitable for
these steps, except for shredding and re-shredding, which use the same machines. The rest
of the tasks, i.e., inspection, coating removal, and manual metal separation are carried out
by dedicated crews. Both machines and the crews have an estimated processing speed,
expressed in the processed mass over time. Several suitable machines may be assigned to
work in parallel on the same delivery. However, the processing steps are non-preemptive:
they may not be interrupted and resumed later on the same machine. The only interruption
occurs at the end of shifts, and the next day processing continues with the same job.
It is assumed that setup and shutdown operations are done before and after the shifts,
respectively. Specialized crews for inspection and removal tasks work on a single job at a
time, and—similarly to machines—do not switch to other jobs until they are finished with
the current one.

While the paper considers shredded wood as the end-product produced by the facility,
different wood processing techniques can also be handled in a similar fashion. The pro-
posed modeling and solution methodology is flexible enough to accommodate different
processes as well, as long as their relations can be defined in a similar way.

2.2. Uncertainty and Objective

The uncertainty of the problem comes from two steps: coating removal and re-
shredding. The percentage of coated raw material is not known in advance, it is determined
during the inspection step. Similarly, the amount of shredded material, that is not fine
enough and requires re-shredding is only revealed during screening. There is, however,
statistical data available for both of these for each of the four categories. Since the out-
come of the inspection/screening influences the amount of raw material needing coating
removal/re-shredding, the time required for these steps is stochastic.

Unless the worst-case scenario is considered for all of the deliveries, the feasibility (i.e.,
adhering to the deadlines) of a schedule cannot be ensured. However, if processing plans
were tailored for the worst-case scenario, the real-life operation would have too much idle
time and an oversized machine capacity would be required.

Thus, a different approach and objective is proposed. Two scenarios are modeled
simultaneously: worst considered case, and robust case. The theoretical worst case would
be when 100% of a delivery requires both coating removal and re-shredding. The probabil-
ity of this is very low. Instead of this, the worst considered case assumes ratios needing
coating removal and re-shredding, such that the probability that the actual ratios will be
lower, is 95%. Similarly, the robust case assumes ratios that are higher or equal to the actual
ratios 80% of the time, based on the statistics. These percentages can be set to different
values by the experts responsible for daily operation planning, to manage the robustness
of the solution.

The cumulative probabilities can be translated into material ratios, based on the
probability density functions constructed by estimating the distribution from statistical
data. Figure 2 shows such a probability density function for coating removal. Aiming for
95% and 80% probabilities, this translates to 81%, and 62% of materials needing coating
removal in the worst considered and robust cases, respectively. A separate function is
created for each delivery category, and for both coating removal and re-shredding.

By fixing uncertain parameters to constant values in each scenario, the same modeling
techniques can be applied as in deterministic scheduling problems. Robustness can be
specified through the chosen probability values, and more scenarios can be analyzed by
rerunning the solution procedure with different values. A possible future research topic is
to incorporate uncertainty into the scheduling model in the form of stochastic variables,
fuzzy numbers, or by other techniques.
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Figure 2. Probability density function for the ratio of raw material needing coating removal based on
statistical data.

Scheduling decisions are the same for both scenarios but some constraints and objec-
tives are only connected to one of them.

Delivery deadlines impose hard constraints for the robust case. So a schedule is only
feasible if no lateness occurs in this scenario. It is important to note that even if some ratios
turn out to be over the specified robust threshold, deadlines may still be satisfied due to
reserve machine times, which are either inherently present in the schedule, or resulted
from lower ratios for other jobs.

For given robustness thresholds, plenty of schedules may be feasible. To select the
best of them, two different objectives are proposed in this paper.

The first objective is to minimize deadline violations for the worst considered case.
Deliveries may have different associated penalties, liquidated damages, or importance
based on the client. These factors are modeled via a scalar priority, and the exact objective
is the priority-weighted sum of lateness. Simply put, the reported solution will be a robust
schedule with the lowest possible penalty in the worst case.

Processing machines require a huge amount of electricity to operate. Machine assign-
ment to jobs can influence the total energy consumption of the facility, and as a result,
its environmental footprint. The second objective is to provide a robust schedule that
minimizes this footprint, coming from the energy needs of setup, shutdown, and operation
of the machines. Energy need for setup and shutdown is provided for each machine as is.
For operation, two different power values are given per machine: working and idle power.
It is assumed that machines are turned off for the night, and only turned off before the
shifts end, if they are not required later on the same day.

2.3. Formal Problem Definition

The proposed problem class can be defined formally by the sets and parameters
listed below.

2.3.1. Job Related Data

J is the finite set of jobs/deliveries.

JB, JH are the sets of jobs with building/industrial and household deliveries, respectively.
JB ∩ JH = ∅ and JB ∪ JH = J

JS, JD are the sets of jobs with solid and derived wood deliveries, respectively. JS ∩ JD = ∅
and JS ∪ JD = J

da
j ∈ Z0,+ is the day of arrival of the delivery for job j ∈ J. [day]

ds
j ∈ Z0,+ is the day of shipping of the product for job j ∈ J. [day]

pj ∈ R0,+ is the priority of job j ∈ J. [−]
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mj ∈ R0,+ is the total mass of the delivery for job j ∈ J. [t]

2.3.2. Infrastructure Related Data

cIS, cCR, cMS ∈ R0,+ are the throughput capacities for inspection and separation, coating
removal, and manual metal separation at the facility, respectively. [t/h]

M is the finite set of machines, the union of the following pairwise disjoint sets:

MMS is the finite set of machines for automated metal separation.
MPS is the finite set of machines for pre-shredding.
MSH = MRS is the finite set of machines for shredding and re-shredding.
MSC is the finite set of machines for screening.

cm,j ∈ R0,+ is the throughput capacity of a machine m ∈ M for job j ∈ J. [t/h]

em ∈ R0,+ is the electrical power consumption of a machine m ∈ M. [kW]

wm ∈ R0,+ is the total amount of electrical energy needed to shutdown and then start up
machine m ∈ M. [kWh]

s ∈ R0,+ is the length of the shifts. [h]

2.3.3. Uncertain Data

pCRX,Y, pRSX,Y ∈ [0, 1] are the percentages requiring coating removal and re-shredding for jobs
with origins X ∈ {B, H} and material type Y ∈ {S, D} in the robust case. [−]

p̄CRX,Y, p̄RSX,Y ∈ [0, 1] are the percentages requiring coating removal and re-shredding for jobs
with origins X ∈ {B, H} and material type Y ∈ {S, D} in the worst-case scenario. [−]

3. Proposed Approach

In this section we propose a family of Mixed-Integer Linear Programming (MILP)
models to tackle the aforementioned optimization problem. All of these models rely on
the same basis, and differ in objective functions and/or several constraints. The models
can be applied in various ways, as illustrated in Section 4: solving them provides the
globally optimal solution, or for large problem instances, they may report a close-optimal
solution within a short amount of time. Having two objective functions, one can derive
a Pareto-curve with iterative execution of the optimizer. The models are developed for
offline scheduling, however, by fixing variables that represent already applied decisions,
the models may be used in a reactive fashion as well.

The operation of the facility is not continuous, s represents the total length of work
shifts on a day. However, since tasks can be interrupted at the end of shifts and resumed the
next day, the active time of the facility can be considered as a continuous time horizon. If
something happens at time t ≥ 0 in the model described below, it refers to the t− s · b t

s c-th
hour on the d t

s e-th day.

3.1. General Structure and Derived Sets

As detailed later, the model follows a precedence-based representation of scheduling
decisions. To ease the formulation, several sets are derived from the input data.

As already used for the c, p and p̄ parameters and the M sets above, the following
symbolic names represent the processing steps:

IS Inspection and separation

CR Coating removal

MS Metal separation

PS Pre-shredding

SH Shredding

RS Re-shredding
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SC Screening

Various subsets of these will be used for simpler formalization of the model:

SC = {IS, CR, MS} (1)

SM = {MS, PS, SH, RS, SC} (2)

S = SC ∪ SM (3)

S̄ = {CR, RS} (4)

SC contains the steps that could be done manually by dedicated crews, while SM

contains the steps that can be carried out by machines. S is simply the set of all step types,
and S̄ contains the steps with uncertain load.

The mandatory precedence relations between these steps are stored as pairs in the
P set:

P = {(IS, CR), (CR, PS), (CR, SH), (PS, SH), (SH, SC), (SC, RS)} (5)

A key derived set for the formulation is T, the set of all processing steps for all jobs,
which will be called the set of tasks and can formally be defined as:

T =
{
(j, s) ∈ J × S | s 6= PS∨ j ∈ JB ∩ JS

}
(6)

Another useful derived set is the set of possible machine-task assignments:

A =
{
((j, s), m) ∈ T ×M | s ∈ SM ∧m ∈ Ms} (7)

3.2. Basic Scheduling Variables

As mentioned before, the model follows a precedence based logic. Each task is
assigned two non-negative continuous variables indicating its start and completion time:

ts
j,s , tc

j,s ∈ [s · da
j , s · ds

j ] ∀(j, s) ∈ T (8)

The decision whether to do metal separation manually or by a machine is represented
by the following binary variable:

dj ∈ {0, 1} ∀j ∈ J (9)

dj = 1 means manual separation, and dj = 0 represents separation by machines.
Binary variables represent assignment decisions as well, 1 referring to a machine

assigned to a task, and 0 if it is not:

aj,s,m ∈ {0, 1} ∀((j, s), m) ∈ A (10)

As parallel execution is allowed, and several machines may be assigned to the same
task (e.g., shredding of a single delivery is performed on two or more machines), a continu-
ous variable represents the quantity distribution for each assignment:

qj,s,m ∈ [0, mj] ∀((j, s), m) ∈ A (11)

There are tasks that may share one or more machines (e.g., shredding is done on the
same machine for two different deliveries). The set of these (ordered) task pairs is given in
the following set:

CM =
{
((j1, s1), (j2, s2)) ∈ T × T | s1, s2 ∈ SM ∧Ms1 ∩Ms2 6= ∅ ∧ (j1, s1) 6= (j2, s2)

}
(12)

Note, that as most steps have their separate machines, s1 6= s2 only occurs, if one of
them is SH and the other is RS.
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If such tasks are both assigned to at least one shared machine, they have to be sequenced.
The following variable takes the value of 1, if (j1, s1) must precede (j2, s2) if at least one shared
machine is assigned to both of them. The value 0 indicates the opposite direction.

bMj1,s1,j2,s2
∈ {0, 1} ∀((j1, s1), (j2, s2)) ∈ A (13)

For manual jobs, each step has a dedicated crew, and thus assignment collision is there
for all job pairs. A similar set to CM is defined for manual jobs, however, in this case it only
contains triplets, as the step has to be the same for colliding tasks:

CC =
{
(j1, s, j2) ∈ J × SC × J | j1 6= j2

}
(14)

And a similar binary variable represents sequencing:

bCj1,s,j2 ∈ {0, 1} ∀(j1, s, j2) ∈ CC (15)

Finally, M will denote a sufficiently large number for relaxations in big-M constraints.

3.3. Constraints
3.3.1. Logical and Balance Constraints

There are some logical dependencies between the decisions represented by the intro-
duced binary variables, that can be expressed by the following constraints.

aj,MS,m ≤ 1− dj ∀((j, MS), m) ∈ A (16)

bCj1,s,j2 + bCj2,s,j1 = 1 ∀(j1, s, j2) ∈ CC \ {MS} (17)

bCj1,MS,j2 + bCj2,MS,j1 ≤
dj1 + dj2

2
∀(j1, MS, j2) ∈ CC (18)

bCj1,MS,j2 + bCj2,MS,j1 ≥ dj1 + dj2 − 1 ∀(j1, MS, j2) ∈ CC (19)

bMj1,s1,j2,s2
+ bMj2,s2,j1,s1

= 1 ∀((j1, s1), (j2, s2)) ∈ CM : s1 6= MS (20)

bMj1,MS,j2,MS + bMj2,MS,j1,MS ≤ 1−
dj1 + dj2

2
∀((j1, MS), (j2, MS)) ∈ CM (21)

bMj1,MS,j2,MS + bMj2,MS,j1,MS ≥ 1− dj1 − dj2 ∀((j1, MS), (j2, MS)) ∈ CM (22)

Equation (16) ensures that no machine is assigned to metal separation if it is decided
to be done manually. Equation (17) states that for every job pair and manual step, one
of the jobs should precede the other for that step. Metal separation is handled sepa-
rately in Equations (18) and (19) to address the possibility of automated metal separation.
Equations (20)–(22) do the same for steps carried out by machines, addressing MS sepa-
rately again.

∑
(j,s,m)∈A

qj,s,m = mj ∀(j, s) ∈ T : s ∈ {PS, SH, SC} (23)

∑
(j,MS,m)∈A

qj,MS,m = mj · (1− dj) ∀j ∈ J (24)

∑
(j,RS,m)∈A

qj,s,m = pRSX,Y ·mj ∀X ∈ {B, H}, Y ∈ {S, D}, j ∈ JX ∩ JY (25)

qj,s,m ≤ mj · aj,s,m ∀((j, s), m) ∈ A (26)

Equations (23)–(25) enforce that the sum of the quantities assigned to machines at
a step should add up to the total load. Besides metal separation, re-shredding needs a
separate constraint as well, due to its uncertain nature. Equation (26) allows only assigned
units to process a non-zero quantity for a task.
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3.3.2. Processing Time Constraints

The following constraints set the relation between the starting and completion times
of tasks.

tc
j,IS = ts

j,IS +
mj

cIS
∀j ∈ J (27)

tc
j,MS ≥ ts

j,MS +
mj

cMS
−M · (1− dj) ∀j ∈ J (28)

tc
j,MS ≤ ts

j,MS +
mj

cMS
+ M · (1− dj) ∀j ∈ J (29)

tc
j,CR = ts

j,CR + pCRX,Y ·
mj

cCR
∀X ∈ {B, H}, Y ∈ {S, D}, j ∈ JX ∩ JY (30)

tc
j,s,c ≥ ts

j,s,c +
qj,s,m

cm,j
∀((j, s), m) ∈ A (31)

Inspection and separation is the simplest to address (27), metal separation needs
special attention due to possible automated execution (28), and coating removal has its
own equation as well due to its uncertain nature (30).

A single constraint, Equation (31) sets the difference between completion and starting
time for all tasks that are carried out by machines.

3.3.3. Production Precedence Constraints

The following 5 equations express mandatory production sequencing due to mate-
rial flows.

ts
j,sn
≥ tc

j,sp
∀j ∈ J, (sp, sn) ∈ P : (j, sp) ∈ T ∧ (j, sn) ∈ T (32)

Equation (32) enforces all mandatory production precedence relations in P for all jobs.
Namely, if sp is a predecessor step of sn, then the starting time of sn must be at earliest the
completion time of sp.

ts
j,MS ≥ tc

j,IS −M · (1− dj) ∀j ∈ J (33)

ts
j,CR ≥ tc

j,MS −M · (1− dj) ∀j ∈ J (34)

ts
j,MS ≥ tc

j,SH −M · dj ∀j ∈ J (35)

ts
j,SC ≥ tc

j,MS −M · dj ∀j ∈ J (36)

Equations (33) and (34) handle the case when metal separation is done by a ded-
icated crew, and it must be carried out after inspection and before coating removal.
Equations (35) and (36) address the other case, when the metal separation is done by a
machine, then it must follow shredding and precede screening.

3.3.4. Scheduling Precedence Constraints

The following two constraints express timing constraints that are the results of se-
quencing decisions made by bC and bM binary variables.

ts
j2,s ≥ tc

j1,s −M · (1− bCj1,s,j2) ∀(j1, s, j2) ∈ CC (37)

ts
j2,s2
≥ tc

j1,s1
−M · (3− aj1,s1,m − aj2,s2,m − bMj1,s1,j2,s2

)

∀((j1, s1), (j2, s2)) ∈ CM, m ∈ Ms1 ∩Ms2
(38)

Equation (37) handles sequencing of dedicated crews, while Equation (38) addresses
machine sequencing.

3.4. Objective Functions

As discussed before, two different objective functions are considered here, and each
requires additional variables and constraints to be calculated. Most of these variables are
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fixed or computed, e.g., they do not introduce additional decisions into the model, rather
they are the consequences of the decisions made by the preexisting variables.

3.4.1. Priority Weighted Lateness Minimization

As this objective function intends to minimize the total weighted lateness in the worst
considered case, an alternate timing for each task needs to be calculated. In order to achieve
that, a worst considered scenario versions of ts, tc and q variables need to be defined over
the same domains: t̄s, t̄c, and q̄. The only difference is that the upper limit of t̄s and t̄c

is infinity instead of s · ds
j . These variables represent the starting and completion times,

and the load of machines when coating removal and re-shredding takes longer in the worst
considered case.

To set these variables, Equations (23)–(38) need to be duplicated with the worst
considered case variables instead of the robust case ones.

An additional set of continuous variables, the number of late days of each job needs
to be introduced:

l̄j ∈ Z0,+ ∀j ∈ J (39)

Equation (40) calculates the values for these variables:

t̄c
j,RS ≤ (ds

j + l̄j) · s ∀j ∈ J (40)

Then, the objective function can be defined as:

∑
j∈J

pj · l̄j → min (41)

3.4.2. Electrical Footprint Minimization

To ease the formulation of this objective function, a set for the considered days (in the
robust case) is defined as:

Hj = {da
j − 1, . . . , ds

j + 1} ∀j ∈ J (42)

H = ∪j∈J Hj (43)

An additional binary variable is introduced to indicate whether a machine is turned
on or not on a particular day:

um,d ∈ {0, 1} ∀m ∈ M, d ∈ H (44)

The total energy consumption is the sum of electricity used for processing tasks and
the energy used to start up and shut down machines on active days. This objective can be
expressed as:

∑
(j,s,m)∈A

qj,s,m · em

cm,j
+ ∑

m∈M,d∈H
um,d · wm → min (45)

However, u needs to be computed from t and a variables. In order to do that, an auxil-
iary computed binary variable is introduced to indicate if a machine works on a task at a
given day:

yj,s,m,d ∈ {0, 1} ((j, s), m) ∈ A, d ∈ Hj (46)

If a machine works on at least one task on a day, it must be turned on, as expressed by
Equation (47):

um,d ≥ yj,s,m,d ∀((j, s), m) ∈ A, d ∈ Hj (47)

A machine must work on a task at least as many days as many is needed to process
the assigned quantity:
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∑
d∈H

yj,s,m,d ≥
qj,s,m

cm,j · s
∀((j, s), m) ∈ A (48)

The following constraints ensure that a task does not start on an earlier day or end on
a later one than indicated by the corresponding y variables:

ts
j,s ≥ d · s−M · (1− yj,s,m,d + yj,s,m,d−1) ∀((j, s), m) ∈ A, d ∈ Hj : d > da

j (49)

tc
j,s ≤ (d + 1) · s + M · (1− yj,s,m,d + yj,s,m,d+1) ∀((j, s), m) ∈ A, d ∈ Hj : d < ds

j (50)

ts
j,s ≤ (d + 1) · s + M · (1− yj,s,m,d) ∀((j, s), m) ∈ A, d ∈ Hj : d ≥ ds

j (51)

tc
j,s ≥ d · s−M · (1− yj,s,m,d) ∀((j, s), m) ∈ A, d ∈ Hj : d ≤ ds

j (52)

3.5. Overview of the Mathematical Model

A structural overview of the sets, parameters, and variables used in the proposed
model is illustrated in Table 1. The table details the sets and parameters that are provided
as input data, and the ones that are derived from others. Moreover, it also highlights
the parameters, sets, and variables that are required for the base model or one of the
objective functions.

Table 1. Overview of model notations.

BASE MODEL

Input data sets JB, JH, JS, JD, MMS, MPS, MSH, MSC

parameters da
j , ds

j , mj, cIS, cCR, cMS, cm,j, s, pCRX,Y, pRSX,Y

Derived sets J, M, MRS, SC, SM, S, S̄, P, T, A, CM, CC

Decision variables continuous ts
j,s, tc

j,s, qj,s,m

binary dj, aj,s,m, bMj1,s1,j2,s2
, bCj1,s,j2

PRIORITY WEIGHTED LATENESS MINIMIZATION

Additional input data pj, p̄CRX,Y, p̄RSX,Y

Additional variables continuous t̄s
j,s, t̄c

j,s, q̄j,s,m

discrete l̄j

Objective function ∑j∈J pj · l̄j

ELECTRICAL FOOTPRINT MINIMIZATION

Additional input data Hj, H, em, wm

Additional variables binary um,d, yj,s,m,d

Objective function ∑(j,s,m)∈A
qj,s,m ·em

cm,j
+ ∑m∈M,d∈H um,d · wm

4. Numerical Results

In order to properly test the efficiency of the proposed model, a large number of
tests had to be carried out on instances of varying sizes and structures. While acquiring
single instances can be manageable by monitoring a collection center over a given period,
solving only a handful of these does not show the general usefulness of the model, rather
its functionality on a couple of dedicated use-cases. Existing large-scale information
about waste generation, collection and processing is mostly published as statistical data,
aggregated usually in a yearly fashion [19]. Such data cannot be decomposed into actual
real-life scenarios, but information about the general structure of real-world instances can
be derived from them. Because of this limitation, instances used for testing the model
were randomly generated based on studies about the characteristics and distributions of
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wood waste. Randomly generated instances can turn out to be infeasible, usually in cases
where a greater amount of deliveries arriving around the same time cannot be processed
by their given deadline due to the limited capacity of the available machines. However,
such inputs are also useful for testing purposes to see how efficiently infeasibility can be
reported. Proving the infeasibility of scenarios is not always a trivial task, but it should be
within the capabilities of the model.

Features of the deliveries such as their origin (building or industrial waste, and wastes
from households and collection centers) and type (solid or derived) were determined based
on statistics in [18]. While that study discusses the four origins independently of each
other, we merged them into two groups based on their similarities for the sake of simplicity
and easier presentation. Naturally, the model would function the same way with four
different origins.

The total mass of deliveries was determined based on the potential payloads of
biomass transport trucks [20]. Two different payload ranges were considered. Instances
with a small payload contained deliveries of 19–23 t, that could hypothetically be processed
on their arrival day, while the deliveries of instances with large, 31–49 t payloads could
take more than one day to process. Information of the machines (throughput and energy
use) for the different tasks was based on real machinery [21]. Three machines with differ-
ent properties were available for every machine task, each extra option offering higher
throughput in exchange for more energy use. Only a single crew was provided for each
manual step of the process, and their throughput was intentionally set significantly lower
than that of the machine steps. This resulted in inspection and sorting being the bottleneck
of the scheduling process, as every delivery had to go through this step, and there are no
machine alternatives for it. For this reason, tests were run both with the original 10 t/h
throughput, and with doubling this efficiency.

A large number of tests were performed with optimizing for either one of the objective
functions, or solving the combined bi-objective optimization problem. The proposed model
was solved using Gurobi 9.1 solver for every instance. Tests were run on a PC with an Intel
Core i7-5820K 3.30 GHz CPU and 32 GB memory.

4.1. Single Objective Optimization

The first set of input instances were generated over a one-week horizon. The arrival
day of the deliveries was chosen in a uniformly random way from this period, and the
deadlines were also uniformly random: 1–2 days from arrival for small deliveries and
2–3 days for large deliveries. Various instance sets were generated with delivery numbers
between 5 and 20, and the average running times of instances of the same set are presented
in Table 2 for the slower inspection throughput, and Table 3 for the faster one. Each row
of the tables gives the number of deliveries and delivery size (S—small, L—large) of the
instances group, and provides an average optimization time for a set of 10 randomized
instances in the case of minimizing their lateness or energy use. The optimization time
corresponds to the time needed to either achieve an optimal solution or determine the
infeasibility of the instance under the current parameter settings. A running time limit
of one hour (3600 s) was enforced on the solution process. In some cases, non-optimal
solutions were found within the time limit, these will be explained in detail when discussing
the corresponding tables. Such occurrences are marked with an * next to the average
running time.

In the case of the one-week horizon and a slower inspection throughput, the running
time limit was reached for two inputs of the (15,L) instance set while minimizing energy
use. The instances were infeasible in both cases. However, this infeasibility was found in
under 10 s when optimizing for minimal lateness, so these running times were used when
calculating the energy use average. Results for the (20,L) instances are not provided, as they
were infeasible in every case, because the planning horizon was too small to schedule every
delivery on the available machines.
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Table 2. Average results of a one-week horizon and slower inspection and sorting process.

Deliveries Size Lateness Sol. Time (s) Energy Sol. Time (s)

5 S 0.10 0.15
5 L 0.15 0.55

10 S 1.62 2.21
10 L 1.06 7.23
15 S 2.73 23.20
15 L 9.70 154.24
20 S 2.86 339.56
20 L - -

Doubling the speed of the inspection and sorting step shows a more efficient solution
process, the results of which are presented in Table 3.

Table 3. Average results of a one-week horizon and faster inspection and sorting process.

Deliveries Size Lateness Sol. Time (s) Energy Sol. Time (s)

5 S 0.09 0.13
5 L 0.13 0.49

10 S 0.30 0.46
10 L 0.54 8.62
15 S 1.46 5.35
15 L 38.36 743.70
20 S 7.45 86.17
20 L 979.11 * 1243.16 *

Optimal solutions were found for all instances for the sizes of 5, 10 and 15 deliveries
except for one: in the (15,L) instance set, a single solution reached the time limit, and pro-
duced a non-optimal result with a 2.18% gap. However, while solutions were found for
all instances of the (20,L) instance set, only 5 were optimal when optimizing for lateness,
and 7 were optimal when optimizing for energy. The suboptimal solutions found for the
remaining instances had a greater than 50% optimality gap in every case. As a result, these
are not considered in the averages of Table 3. As bad-quality suboptimal solutions were
found for multiple inputs in this (20,L) instance set, this seems to be the limit of the model
considering the given time limit. Efficient (optimal, or close-to-optimal) solutions were
found for all other problem classes with a short average running time.

The model was tested for larger delivery numbers as well. However, as slower
inspection resulted in infeasible solutions for the (20,L) instances, these larger inputs were
tested over a two-week planning horizon. The instance sets were generated under the same
conditions as the one-week sets. Their average running times can be seen in Table 4 in the
case of slower inspection throughput, and Table 5 in the faster case.

Table 4. Average results of a two-week horizon and slower inspection and sorting process.

Deliveries Size Lateness Sol. Time (s) Energy Sol. Time (s)

20 S 3.59 72.37
20 L 21.59 * 494.32 *
25 S 10.02 113.25
25 L 431.46 * 1655.49 *
30 S 17.23 * 549.61 *
30 L - -

When using the slower throughput for inspection and sorting, two instances in the
(20,L) set did not yield any result in the one hour limit when optimizing for energy.
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However, these instances were shown to be infeasible under 60 s when optimizing for
lateness, so these values were used for calculating the average runtime. Another instance
did not provide an optimal solution in one hour, and the best feasible solution had a
3.79% gap. The (25,L) set had one instance where no optimal solution was found for either
objective function in an hour, but the optimality gap of the best solution was 83.88% and
17.29% respectively. Another three instances only gave optimal solutions for minimizing
lateness, but could only find near-optimal solutions for minimizing energy with 3.65%,
5.69% and 2.57% gaps. One such instance was also present for (30,S), where only a solution
with a 2.33% gap was found in one hour. Two inputs of this set did not yield any results
in the one hour running time limit for either objective function. These inputs were not
considered in the averages. Minimizing lateness for the same instances yielded an optimal
result below 60 s. The instances of the (30,L) set, however, were either all infeasible, of no
solution was found in the one hour limit, so their results are not presented in the table.

Again, transitioning to a faster inspection and sorting throughput provides more
efficient results, which can be seen in Table 5.

Table 5. Average results of a two-week horizon and faster inspection and sorting process.

Deliveries Size Lateness Sol. Time (s) Energy Sol. Time (s)

20 S 1.68 4.80
20 L 9.10 329.92
25 S 5.28 36.56
25 L 144.57 * 2445.34 *
30 S 17.45 776.60
30 L - -

It can be seen from the table that optimal solutions were found for all instances schedul-
ing short deliveries regardless of their problem sizes. In the case of the (25,L) instances,
time limit was reached for a single input when optimizing for lateness. The suboptimal
solution had a 44.06% optimality gap, and it is not included in the average. Time limit
was reached in five cases when minimizing energy consumption for the same instance
set. However, these solutions were much closer to the optimum (with respective gaps of
4.74%, 1.82%, 5.31%, 2.87% and 0.93%), and their running time was included in the average.
Solution of the (30,L) instance set inputs, however, reached the time limit on every occasion,
and while solutions were found, their optimality gap was above 50% in every case. This
clearly shows that this instance set is not solvable in the given time limit, and results are
not presented for this reason.

If the goal is the optimization of a single objective, it can be seen from the above results
that the model can efficiently schedule a big number of smaller deliveries over both a one-
and two-week horizon, and has no problem with larger deliveries up to a certain problem
size. While solutions could not be acquired for some instances in the given time limit,
or their quality was not good enough, this can be remedied with the increase of available
running time for the solution process. The solution of the model is significantly easier
when optimizing for lateness, which was expected due to the added complexity of the large
number of extra binary decision variables in the case of the energy minimization objective.

4.2. Bi-Objective Optimization

In the case of considering both objectives at the same time, a bi-objective optimization
problem has to be solved. One option for this is the augmented ε-constraint method
introduced in [22]. This method yields multiple non-dominated solutions for the problem,
meaning that there is no obvious best solution among them. Such a set of solutions where
one cannot find an improved alternative to any of them is called a Pareto front.

The solutions of this front are achieved by solving a series of optimization problems
based on the original model. First, the lexicographic method is applied: the objectives are
assigned a hierarchical ordering, and the model is solved considering all objectives in this
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order. Two hierarchical optimization problems are solved, one having the lateness objective
on top of the hierarchy, while the other having the energy objective. Using the objective
values of these solutions, the possible value range can be determined for each objective.
This value range is then divided along multiple grid points, and an optimization problem
is solved for every region of this division. The number of problems to be solved depends
on the chosen number of grid points, which acts as a parameter of the ε-constraint method.
Using G grid points will result in G + 1 regions.

Based on the experiences from the single objective cases, bi-objective optimization was
carried out for problem sizes of 5–25 deliveries. Inputs with 5–15 deliveries were generated
over a one-week horizon, while inputs with 20 and 25 deliveries were generated over a two-
week horizon. For each delivery number, 10-10 instances were generated with small and
large deliveries. Bi-objective optimization was carried out for all of these instances using
both 5 and 10 grid points, resulting in 6 or 11 problems to be solved. A time limit of 30 min
(1800 s) was set for the individual solution processes. Instance sets were generated with
both slower and faster inspection and sorting throughput similarly to the single-objective
case. Aggregated results can be seen in Table 6 for the slower, and Table 7 for the faster
throughput. Both tables present the number and size of deliveries in the given instance
set, as well as the number of instances where the solution process was terminated due to
reaching the time limit. For instances where solutions were achieved, the average number
of solutions in the Pareto front and the average required solution time is presented both for
the 5 and 10 grid point divisions.

Table 6. Average bi-objective results with slower inspection and sorting process.

Deliveries Size Limit Reached
Division 5 Division 10

Front Time (s) Front Time (s)

5 S 0 1.20 0.72 1.20 0.89
5 L 0 1.00 1.13 1.00 1.07

10 S 0 1.60 7.43 1.70 11.32
10 L 0 2.10 172.48 2.10 303.07
15 S 0 3.10 46.61 3.20 80.23
15 L 3 3.71 1321.81 3.86 2079.09
20 S 0 3.00 109.42 3.20 181.13
20 L 4 2.50 1331.42 2.67 1981.28
25 S 0 3.10 593.51 3.50 1043.97
25 L 10 - - - -

Table 7. Average bi-objective results with faster inspection and sorting process.

Deliveries Size Limit Reached
Division 5 Division 10

Front Time (s) Front Time (s)

5 S 0 1.10 0.62 1.10 0.70
5 L 0 1.00 0.92 1.00 0.90

10 S 0 1.80 12.44 1.80 18.75
10 L 0 1.40 185.86 1.40 316.93
15 S 0 2.60 50.88 2.80 85.67
15 L 4 3.67 2314.70 4.33 3952.80
20 S 0 2.50 75.03 2.60 118.81
20 L 4 3.83 1809.51 4.17 3213.87
25 S 0 3.40 631.90 3.70 896.69
25 L 10 - - - -

In the case of using the slower inspection throughput, the finer division of 10 grid
points usually produced the same number of solutions for the front than the 5-grid point
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division, or provided at most one additional. However, having 10 grid points leads to an
average of 63% increase in running time for the bigger instances. Instances of the (25,L)
set were not solvable in the given time limit, and solutions are not presented for them as
a result.

Instances with faster inspection throughput behaved similarly to the previous instance
sets. The finer 10-grid point division again produced at most one additional solution
compared to the 5-grid point division with an average of 64% increase in running time for
the bigger instances. There was a notable exception for one instance in the (15,S) set, where
the 10-point division resulted in 9 solutions as opposed to the 6 solutions of the 5-point
division. Instances of the (25,L) set were not solvable in the given time limit, and their
solutions are not presented.

It can be seen from the above tables that efficient bi-objective optimization of the
model is also possible. Multiple non-dominated solutions can be found for the problems in
an acceptable time. Results show that increasing the size of the division from 5 to 10 grid
points usually results in the same number of solutions, or provides only one additional
result. However, this comes at the cost of a significant increase in running time. There
was only a single instance where the finer division provided three additional solutions to
the front.

5. Conclusions

This paper studied the problem of scheduling the machines in a waste wood pro-
cessing facility where the incoming deliveries can come from various sources and have
uncertain compositions. A multi-objective mixed-integer linear programming model was
presented for the problem to provide robust solutions that minimize lateness and en-
ergy consumption. The efficiency of the method was shown on instances with various
sizes, which were randomly generated based on real-world distribution data. Computa-
tional tests showed that the approach can provide mid-term (1–2 weeks) schedules for
25–30 deliveries in under an hour. The bi-objective model allows the consideration of
alternative solutions based on both economic and sustainability factors.

The topic has possibilities for future research. In the current model, a simplified energy
cost function was considered. The approach can be extended with a more detailed energy
model, for example, considering the idle power of machines between tasks during a day,
possibly with additional decisions about when to turn them off. Another possible extension
is to model different operation profiles for machines, which allow more energy-efficient
processing with the expense of slower throughput. To achieve better overall throughput,
the scheduling model could be improved to allow overlap between subsequent processing
steps. Some extensions can be too computationally intensive to solve with an exact MILP
solver, so a metaheuristic solution approach may also be beneficial for future research.
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15. Burnard, M.; Tavzes, Č.; Tošić, A.; Brodnik, A.; Kutnar, A. The Role of Reverse Logistics in Recycling of Wood Products. In
Environmental Implications of Recycling and Recycled Products; Springer: Singapore, 2015; pp. 1–30, doi:10.1007/978-981-287-643-0_1.

16. Trochu, J.; Chaabane, A.; Ouhimmou, M. Reverse logistics network redesign under uncertainty for wood waste in the CRD
industry. Resour. Conserv. Recycl. 2018, 128, 32–47, doi:10.1016/j.resconrec.2017.09.011.

17. Egri, P.; Dávid, B.; Kis, T.; Krész, M. Robust Reverse Logistics Network Design. In Logistics Operations and Management for Recycling
and Reuse; Golinska-Dawson, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 37–53, doi:10.1007/978-3-642-33857-1_3.

18. Kharazipour, A.; Kües, U. Recycling of Wood Composites and Solid Wood Products. In Wood Production, Wood Technology, and
Biotechnological Impacts; Universitätsverlag: Göttingen, Germany, 2007; pp. 509–533.

19. Cocchi, M.; Vargas, M.; Tokacova, K. European Wood Waste Statistics Report for Recipient and Model Regions; Technical Report;
Absorbing the Potential of Wood Waste in EU Regions and Industrial Bio-based Ecosystems (BioReg): 2019. Available online:
https://www.bioreg.eu/assets/delivrables/BIOREG%20D1.1%20EU%20Wood%20Waste%20Statistics%20Report.pdf (accessed
on 6 April 2021).

20. Laitila, J.; Asikainen, A.; Ranta, T. Cost analysis of transporting forest chips and forest industry by-products with large
truck-trailers in Finland. Biomass Bioenergy 2016, 90, 252–261, doi:10.1016/j.biombioe.2016.04.011.

21. Komptech. Stationary Machines. Available online: https://komptech.ca/wp-content/uploads/2020/09/Komptech-Stationary-
Machines_2018_E.pdf (accessed on 6 April 2021).

22. Mavrotas, G. Effective implementation of the ε-constraint method in Multi-Objective Mathematical Programming problems.
Appl. Math. Comput. 2009, 213, 455–465, doi:10.1016/j.amc.2009.03.037.

https://www.bioreg.eu/assets/delivrables/BIOREG%20D1.1%20EU%20Wood%20Waste%20Statistics%20Report.pdf
https://komptech.ca/wp-content/uploads/2020/09/Komptech-Stationary-Machines_2018_E.pdf
https://komptech.ca/wp-content/uploads/2020/09/Komptech-Stationary-Machines_2018_E.pdf

	Introduction
	Problem Definition
	General Process and Infrastructure
	Uncertainty and Objective
	Formal Problem Definition
	Job Related Data
	Infrastructure Related Data
	Uncertain Data


	Proposed Approach
	General Structure and Derived Sets
	Basic Scheduling Variables
	Constraints
	Logical and Balance Constraints
	Processing Time Constraints
	Production Precedence Constraints
	Scheduling Precedence Constraints

	Objective Functions
	Priority Weighted Lateness Minimization
	Electrical Footprint Minimization

	Overview of the Mathematical Model

	Numerical Results
	Single Objective Optimization
	Bi-Objective Optimization

	Conclusions
	References

