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Abstract: The characteristics of the built environment and the configuration of public facilities
can affect the health and well-being of older adults. Recognizing the range of daily activities and
understanding the utilization of public facilities among older adults has become essential in planning
age-friendly communities. However, traditional methods are unable to provide large-scale objective
measures of older adults’ travel behaviors. To address this issue, we used the smartphone-based
global positioning system (GPS) trajectory to explore the activity spaces of 76 older adults in a
high-density urban community in Shanghai for 102 consecutive days. We found that activity spaces
are centered around older adults’ living communities, with 46.3% within a 1.5 km distance. The older
adults’ daily activities are within a 15 min walking distance, and accessibility is the most important
factor when making a travel choice to parks and public facilities. We also found that the travel range
and spatial distribution of points of interest are different between age and gender groups. In addition,
we found that using a concave hull with Alpha shape algorithm is more applicable and robust than
the traditional convex hull algorithm. This is a unique case study in a high-density urban area with
objective measures for assessing the activity spaces of older adults, thus providing empirical evidence
for promoting healthy aging in cities.

Keywords: activity space; older adults; GPS; point of interest; built environment; Shanghai

1. Introduction

Activity space refers to the geographic coverage of individual daily travel behavior,
and describes the places that people frequently visit and the routes people prefer to take [1].
This concept provides an objective measure of the spatial environment that individuals are
exposed to and interact with [2]. Since a well-designed neighborhood can encourage older
adults to engage in more outdoor activities, identifying activity spaces for these adults has
become an essential part of the urban planning and design process. Activity space has been
used not only in its traditional fields such as travel behavior, geography [3], and behavior
science [4], but also in new fields including urban planning, criminology [5], health [6],
and environmental exposure assessment [7]. A fundamental question in all those fields is
how to accurately measure the range of activity [8].

Previous studies have used artificial borders, such as administrative units, census
tracts, or traffic zones, for the aggregated analysis of activity space. By using this method,
individuals are restricted to a certain geographic area for predicting their travel or activity
demands. The discrepancies among the results from previous studies could be partly
explained by the different unit areas [9]. For example, using a residential buffer with a
manually defined radius (0.5 or 1 mile) [10] has been a prevalent approach in describing
activity space [11], and can provide the approximate range of residents’ environmental

Sustainability 2021, 13, 5003. https://doi.org/10.3390/su13095003 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-9569-8824
https://doi.org/10.3390/su13095003
https://doi.org/10.3390/su13095003
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su13095003
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su13095003?type=check_update&version=1


Sustainability 2021, 13, 5003 2 of 17

exposure [12]. In addition, a street network buffer (within 0.5 and 1 km), based on walka-
bility, was used to better reflect real daily activities [13–15]. Compared with home range
buffers [16], individualized models are more effective for studying the association between
space (e.g., green space) and health [12]. Previously, activity space was investigated by
using self-report activity log diaries [17] and retrospective self-reported data [18]. However,
this approach may lead to a low response rate and recall bias, especially among older
adults [19]. Recently, data from mobile phone carriers were applied to analyze human
mobility across a large district through information and communication technologies
(ICTs) [20].

With the development of global positioning system (GPS) technology, the record-
ing of individual movements is becoming increasingly popular for human behavior
studies [21–24]. Since methods for GPS data collection and the identification of trajec-
tories have become increasingly advanced, many researchers are now interested in using
this technology for modeling travel behaviors. The Federal Communications Commission
(FCC) of the United States required mobile phone operators to provide location services
for users as early as in 1996. Since then, positioning technology in mobile phones has de-
veloped rapidly, accumulating massive travel data from mobile phone users. These travel
data can be categorized into two types: mobile signaling data and GPS trajectory data.
Specifically, mobile signaling data have been used to analyze large-scale spatial characteris-
tics, such as travel behavior and employment distribution, among large populations. GPS
trajectory data have advantages in precisely recording individuals’ behaviors, providing
real-time location information, simulating travel routes, and predicting Points of Interest
(POIs) [25]. The most commonly visited POIs are important in the planning and design
process because they not only feature public service facilities that meet older adults’ daily
needs but also include places that attract people to stay, such as green spaces, road corners,
playgrounds, and entrances to communities. Understanding the use of POIs would be
helpful to plan supporting facilities of a reasonable type with a reasonable scale and site
selection that can encourage more healthy behaviors among older adults. However, POIs
have not been widely used in urban planning and urban studies because of the challenges
in big-data collection, analysis, and application.

The urban system is complicated. Planners needs to take social, economic, and en-
vironmental governance into consideration when designing spaces. Beyond following
existing standards to distribute infrastructure (e.g., roads and public facilities), planners
should also focus on people, by prioritizing their needs and expectations. Traditional
planning processes usually feature limited considerations of age and gender differences,
leading to the possibility that the planned service performance may not be guaranteed.
Therefore, identifying built environment issues by analyzing individuals’ travel behaviors
and spatial utilizations is essential. However, traditional travel surveys using question-
naires or interviews, as well as field observations, have limitations in terms of reflecting
the spatial and temporal changes in some specific environmental factors, such as urban
form and density, land use, and street design [26]. Innovative data collection and analysis
methods are urgently needed.

In addition, the methods mentioned above should be adapted to older adults, who
may have limited access to new technologies in their daily lives, to address their specific
needs and challenges. For example, planners could optimize the allocation of space and
infrastructure by understanding and predicting the daily activities and behaviors of older
adults in their community. Moreover, planners could adjust the distribution of public
services for older adults by determining the preferences among this age group. Using
those evidence-based planning interventions, we will develop forward-looking and smart
solutions for elderly-oriented facilities that promote healthy aging. A previous study
showed that the aging population is more sensitive to the built environment than young
people when deciding to walk or engage in other physical activities [27]. Another study
in Beijing, China indicated that older adults mainly rely on walking for transportation in
high-density urban areas [28]. Therefore, this research aims to identify the activity spaces
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and mobility needs among retired older adults via GPS tracking data and to determine
what environmental factors contribute to the daily outdoor activities.

2. Methods
2.1. Study Site and Population

We selected the TJ New Village in Yangpu District, Shanghai (Figure 1) as the study
site for the following four reasons. Firstly, this area is a typical public housing community
that adopted a standardized housing design and community planning system. This type of
community was built in large quantities across China from the 1950s to 1980s, laying the
foundation to broaden the applicability of our findings. Secondly, these public houses have
become the main targets of elderly-oriented renovations in Chinese urban communities
since resident aging increased over the last half a decade. For example, more than one third
(38%) of the residents are 60 years or older in our study site. Thirdly, the social and economic
statuses of residents living in this community are very similar, which could reduce the
socio-economic confounding factors that affect their travel behaviors and activity spaces.
Finally, the study site is located in the high-density central area in Shanghai with sufficient
support facilities in the surrounding environment. Therefore, older adults living in this
community have more travel options, which increases the variation in our study outcomes.
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is the retirement age for most Chinese workers. Four participants from different age/gen-
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To test the interaction between older adults and their living built environment, we focused 
on older adults active in our study site and did not involve those who had physical disa-
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laration of Helsinki, and the protocol was approved by the Ethics Committee of Tongji 
University (Reference number: 2015yxy112). 

Figure 1. Study site: (a) map of the study site; (b) photo of the study site.

We used the convenient sampling method to enroll as many participants as possible.
We first sent enrollment information to each retired participant through the neighborhood
committee. Then, potential participants were divided into groups by age and gender to
represent different age and gender groups. Finally, we fully considered the building unit
they are living within to make sure our participants are spatially evenly distributed in the
community. Since we organized several meetings with the neighborhood committee to
recruit participants in each building, older adults who frequently engaged with the neigh-
borhood committee were more likely to be enrolled in this study. We invited 80 volunteers
(55+) using the stratified random sampling approach. We chose the age of 55 because this is
the retirement age for most Chinese workers. Four participants from different age/gender
groups dropped out the experiment due to sickness, travel, or other personal reasons.
Ultimately, we analyzed data from 76 participants (mean age = 70.1, SD = 7.7) (Figure 2). To
test the interaction between older adults and their living built environment, we focused on
older adults active in our study site and did not involve those who had physical disability,
mental disorder or ill in bed. The study was conducted in accordance with the Declaration
of Helsinki, and the protocol was approved by the Ethics Committee of Tongji University
(Reference number: 2015yxy112).
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Figure 2. Age and gender structure of the participants.

2.2. Equipment for Data Collection

We used a Redmi Smartphone (Xiaomi Corporation, China) running the Android
operating system to collect the data. By using the phone’s GPS+A-GPS location function,
we developed software called “Community Residents’ Behavior Monitoring Software
V1.0” (software copyright of National Copyright Administration of the People’s Repub-
lic of China: 201610014870.3) to record the activity trajectory of the participants. This
software can receive GPS satellite location information and acquire location data in real
time (Figure 3). Specifically, this software has two functional modules: (1) the GPS data
acquisition and storage module, which records and stores location data and (2) a module
to upload the stored GPS location data to the server. This software was pilot-tested and
calibrated before the experiment.
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Figure 3. Dashboard of Community Residents’ Behavior Monitoring Software V1.0. Note: the
upper left module shows the real-time location of the participants; the upper right module indicates
the continuity of the data acquisition; the lower left module shows the accumulated time of using
smartphone from each participant and by different age groups; the right module is the panel for data
visualization: users could examine the data by ID, gender and age group.

2.3. Data Collection and Processing

We established a novel framework to investigate participants’ activity spaces based
on successive long-term GPS trajectories. This framework includes data collection and
management, trajectory preprocessing, location of interest recognition, walking route
extraction, and daily activity space identification (Figure 4). We operated all processes
using PostgreSQL, the QGIS platform, and the Python 3.6 programming language.
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Figure 4. Framework for processing and analyzing data.

Our participants were asked to carry the Redmi Smartphone from 18 September to
28 December 2015. The sampling rate of the GPS loggers was three seconds per point
and the positioning accuracy was four meters. GPS points was generated by the smart
phones, recording the spatial–temporal information in real time (i.e., longitude, latitude,
and timestamps) and uploading that information to the PostgreSQL database service with
the GiST (combine R-Tree) index for data management [29,30]. This index is suitable
for optimizing nearest-neighbor searching and enhancing computing efficiency. We also
established a personal information file for each participant, including their demographic
information (i.e., age, gender, family composition, length of residence, and socio-economic
situation) and related information on the corresponding equipment (i.e., smartphone
serial numbers).

At the data management stage, the trajectory data were cleaned and compressed,
and then combined with multi-source data, such as POI data and auxiliary geographic
data. By the end of the experiment, we had collected 37.2 million GPS points data from
76 participants covering a period of over 102 days (Figure 5). Additionally, we obtained the
POI dataset from Gaode Map (a Chinese map service and location-based service provider),
and the road and public transport datasets from Open Street Map (OSM).
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Figure 5. Distribution of trajectory data generated by 76 participants in 102 days. Note: The x axis
represents the IDs of participant from smallest to largest. The y axis represents the data size, and the
number of GPS points. The color transition from blue to yellow represents a gradual increase in the
data quantity. Specifically, blue represents a small number of GPS points, while bright colors, such as
yellow, represent large quantities.
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The trajectory preprocessing stage included three steps: noise filtering, map matching,
and route segmentation. First, noise filtering was performed to remove GPS outliers from
the trajectory points caused by the poor satellite signals in urban canyons or indoor spaces.
The cosine similarity of the trajectory vector was used to identify the noise points. Second,
map matching was used for affine transforming each point of a trajectory onto a corre-
sponding road segment. Third, trajectory segmentation was used to divide a trajectory into
fragments based on moving speed (such as walking, cycling, or using vehicles) for further
processes like clustering and classification [31]. GPS data can correct the misreporting
problems from self-reported travel dairies, and improve the accuracy of describing travel
behavior accordingly. In this study, the results of our smartphone app testing showed that
the average position domain accuracy was less than 4.8 m with a 95% horizontal error. In
addition, the app had high frequency sampling with a time transfer resolution of three
seconds at a time. Outliers in the dataset were removed via a denoising algorithm to scien-
tifically improve the data quality. Therefore, we accurately identified walking segments by
calculating instantaneous velocity between 0.5 and 1.8 m per second and the successive
direction through our continuous fine-grained GPS trajectories data [32]. In addition, we
returned to the study site several times afterwards to observe the activities and space uses,
including direct questioning and verification with the older adults who participated in
the experiment, in an effort to make the data reveal understandable phenomena and valid
patterns. Two main types of defects in the initial processed GPS trajectories were smoothed
via spatial–temporal interpolation of the sequence: outliers and missing segments of routes.
Linear interpolation of missing movement data was performed between consecutive GPS
points if less than half an hour had passed between the collection of both points matching
the street network, or GPS signal dropped on the metro, or if two points were more than
100 m apart [33]. Specifically, the outliers contained noise in static and moving points. For
static noise points, the outliers calculated the correct position based on their neighborhoods
which had higher similarity to points in a cluster. Outliers were fixed by using time-series
flatness for smoothing. For noise points on movement, the cosine similarity of two adjacent
coordinate points was used to construct a seamless walking trajectory. If cosine value of a
GPS point were more than 30 degrees from a previous point, this point would be labeled
as an outlier. The average position of the two points before and after would replace the
original value for smoothing noise.

To identify POIs and walking trajectories, which are two key components of daily
activity spaces, we needed to determine the location of interest and extract the walking
routes. Specifically, we used the staying point detection algorithm to identify the locations
where each participant remained for a period, with these locations carrying greater semantic
meaning than other points in the trajectory. Density-based spatial clustering of applications
with noise (DBSCAN) is a classical non-supervised machine learning approach for detecting
individual stops and requires two parameters: the distance between neighboring points
and the minimum number of neighboring points around the core point [34]. In this study,
personal temporal-DBSCAN (PT-DBSCAN) aided the DBSCAN algorithm by integrating
individual info and time factors for recognizing personally meaningful places (Figure 6).
These characteristics involved three parts: (1) personal identity—i.e., the participants
living in the study site; (2) time discontinuity—the temporal extent of two stops that do
not overlap with each other; and (3) spatial density, with a higher density indicating the
formation of a cluster.
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Figure 6. Cluster, core point and noise between Density-based spatial clustering of applications with
noise (DBSCAN) and (personal temporal-DBSCAN) PT-DBSCAN. (a) standard DBSCAN cluster;
(b) PT-DBSCAN cluster.

A circular buffer with a radius of R = 9 m (two-times the GPS location error of
4.5 m [35]) was created around each labeled POI. The Euclidian distance D between the
POI and the centroid of detected places should be less than or equal to R. Through this
process, 88 clusters were matched to the given POIs from Gaode Map 2015.

To represent the daily mobility range, previous studies at the neighborhood level
used GPS-based activity spaces as an individual measure of spatial behavior. There are
three main approaches for estimating home ranges [36,37]: (1) the standard deviation
ellipse (SDE), which is widely used for overall activity space measurements; (2) kernel-
density estimation (KDE), which is based on disaggregated data and mostly used for home
range computations [38]; (3) minimum convex polygon (MCP), which contains the activity
locations visited by an individual [39]. However, a prominent problem is that the activity
space defined by the convex hull includes areas that do not reflect real arrivals and are
intensively affected by outliers (Figure 7). Alternatively, the concave hull model based on
the Alpha shape algorithm [40,41] considers internal spatial heterogeneity, which could be
a solution for some real-world problems (e.g., finding the reasonable boundary of a city). It
is derived from three main components: stationary points, active points distributed freely
in AOI (Area of Interest), and walking points along the streets. Since our fine-grained,
consecutive movement GPS data could represent the daily trip, including spaces for passing
and staying, using concave hull approach, which fully takes into account of the distribution
of spatial behavior data, would be suitable for this study. Therefore, we used the concave
hull model for analyzing the tracking data characteristics in our study.

Sustainability 2021, 13, x FOR PEER REVIEW 7 of 17 
 

 
Figure 6. Cluster, core point and noise between Density-based spatial clustering of applications 
with noise (DBSCAN) and (personal temporal-DBSCAN) PT-DBSCAN. (a) standard DBSCAN 
cluster; (b) PT-DBSCAN cluster. 

A circular buffer with a radius of R = 9 m (two-times the GPS location error of 4.5 m 
[35]) was created around each labeled POI. The Euclidian distance D between the POI and 
the centroid of detected places should be less than or equal to R. Through this process, 88 
clusters were matched to the given POIs from Gaode Map 2015. 

To represent the daily mobility range, previous studies at the neighborhood level 
used GPS-based activity spaces as an individual measure of spatial behavior. There are 
three main approaches for estimating home ranges [36,37]: (1) the standard deviation el-
lipse (SDE), which is widely used for overall activity space measurements; (2) kernel-den-
sity estimation (KDE), which is based on disaggregated data and mostly used for home 
range computations [38]; (3) minimum convex polygon (MCP), which contains the activity 
locations visited by an individual [39]. However, a prominent problem is that the activity 
space defined by the convex hull includes areas that do not reflect real arrivals and are 
intensively affected by outliers (Figure 7). Alternatively, the concave hull model based on 
the Alpha shape algorithm [40,41] considers internal spatial heterogeneity, which could 
be a solution for some real-world problems (e.g., finding the reasonable boundary of a 
city). It is derived from three main components: stationary points, active points distrib-
uted freely in AOI (Area of Interest), and walking points along the streets. Since our fine-
grained, consecutive movement GPS data could represent the daily trip, including spaces 
for passing and staying, using concave hull approach, which fully takes into account of 
the distribution of spatial behavior data, would be suitable for this study. Therefore, we 
used the concave hull model for analyzing the tracking data characteristics in our study. 

 
Figure 7. Convex hull and concave hull with the Alpha shape algorithm. 

Figure 8 presents examples based on convex hull and concave hull methods. Com-
paring with convex hull (A), concave hull (B) delineated the ideal envelope boundary, 

Figure 7. Convex hull and concave hull with the Alpha shape algorithm.



Sustainability 2021, 13, 5003 8 of 17

Figure 8 presents examples based on convex hull and concave hull methods. Com-
paring with convex hull (A), concave hull (B) delineated the ideal envelope boundary,
which could represent the spatial distribution of trajectory data objectively. Meanwhile,
convex hull may include a large of redundant area that may bias the identification of
activity spaces.
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2.4. Data Visualization and Analysis

After identifying walking routes, we overlaid the trajectory layers of four age groups,
55 to 64, 65 to 74, 75 to 84, and more than 85, respectively. In addition, we overlapped
the daily travel range of individuals to demonstrate their overall activity range on the
GIS map. Then, we used the walking trajectory data as the source and provided a more
accurate algorithm recognition models and visualizing the results by using PostgreSQL
database and FME spatial analysis platform. Firstly, we identified the spatial trajectory
based on PostgreSQL database, and calculated the average walking speed of ≤ 6.5 km/h
and the fastest walking speed of ≤ 9 km through GPS spatial data. Secondly, we used
the Alpha Shape algorithm from the FME Concave hull module to generate the walking
range polygons.

In this study, the POIs on GIS base-map, have been obtained from Gaode Map 2015.
Then, we use the travel trajectory data through clustering analysis to obtain a Heatmap
within the daily activity space. By comparing these two sets of data, we can filter the
exact locations of the most visited POIs by older adults. Specifically, most visited POIs
had the superior frequency of arrival. The semantic annotation of stay points as POIs
was divided into two steps. Firstly, the stay points needed to be estimated in terms of
whether they were within the AOI (Area of interests). If so, stay points inherited the spatial
semantic information of AOI. Then, we used nearest neighbor approach to assign the
spatial semantic info of POI to the remaining stay points. Additionally, we conducted a
further analysis on POIs within the maximum walking distance of 60 min.
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3. Results
3.1. Daily Activity Spaces of Older Adults
3.1.1. Travel Range—Trajectory Clustering

We found that those in the age group of 75 to 84 had the widest walking range,
followed by those aged 65 to 74. Both groups had wider walking ranges than those
aged 55–64. This result does not follow the commonsense supposition that the range of
activities will be inversely associated with increased age due to decreased physical mobility.
Considering the participants’ socioeconomic status and the survey results, we found that
most of our participants were ex-staff from Tongji University (22.4%). Some of them,
especially in the younger age group (i.e., ages 55–64), were still doing some paid work for
the university, even though they had retired. Therefore, these participants had a pendulum
travel pattern between home and campus. In addition, we found that more participants
in the younger group took care of their grandchildren than those in the older group. As a
result, their daily travel ranges were limited around their houses (Figure 9).
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The gradient from green to red in Figure 10 shows the superposition intensity of
the individual trajectory data. We found that daily activities of our participants mainly
occurred in and around the community. The destinations with a high frequency of visits
were distributed along urban roads. However, participant travel seldom occurred in the
north of the community, which is adjacent to the inner ring road (i.e., North Zhongshan
Road), suggesting that busy traffic is the main barrier for older adults’ daily travel. We
also found that 09:00 to 10:00, 15:00 to 16:00 and 18:00 to 19:00 were the main periods for
taking a long walk. Meanwhile, female’s travel distance was two times more than that of
male (Figure 11).
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3.1.2. Activity Space—Concave Hull

We found that the concave hull algorithm was significantly better than the commonly
used convex hull algorithm in terms of processing GPS data to identify the travel scope.
The concave hull algorithm effectively reduced the impacts from abnormal GPS data
points, which the convex hull algorithm is easily affected by. In addition, the boundary
of the space generated by the concave hull algorithm was clearer than that generated by
the convex hull algorithm. We found that the activity space was centered around the
community and extended through the urban streets. The whole range of activity space
of our study population was 1512 ha, with 46.3% of the body area located within 1.5 km
walking distance. The mean of walking distance was 2.12 km with the standard deviation
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of 2.13 km. Branch areas were mostly located along the street network. The far-end nodes
included supermarkets, hospitals, and sports facilities (Figure 12a). We noticed that the
POIs visited by males were near the participants’ houses and in the boundary of the
activity space. However, the POIs visited by females were more evenly distributed in space
(Figure 12b). Compared to men, female older adults’ travel destinations were further away
from their neighborhoods of residence. Using the concave hull approach, the polygon
(Figure 12a) depicts the activity space based on overlayed walking trajectory GPS points.
As the branches of activity space extend further away from the geometric center, the spatial
coverage gradually shrinks. The far ends of the branches are bounded by one or more POIs
(Figure 12b). According to Figure 13 and Table 1, the activity space of age group one (ages
55–64) was centered on the neighborhood of residence. Females showed a wider range of
activity space than males in this group. Group two (ages 65–74) featured evenly matched
activity spaces between males and females. For Group three (ages ≥ 75), the size of the
activity space decreased prominently, especially for females.
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Table 1. Summary of daily travel time, frequency, and distance (mean ± standard deviation (SD))
among older adults in different age groups.

Age Group
Travel Time Travel Frequency Travel Distance

(minutes) (times/day) (kilometers)

Ages 55–64 26.0 ± 24.8 2.6 ± 2.2 2.4 ± 2.3
Ages 65–74 19.2 ± 18.5 2.1 ± 1.6 1.9 ± 1.7
Ages ≥ 75 20.7 ± 23.7 1.8 ± 1.2 2.0 ± 2.4

On the branches of the activity space, the POIs visited by males were distributed in the
west of the neighborhood. Here, the far end of the activity space was dominated by females.
In addition, we found that the maximum walking time for a single trip was 60 min and
observed a significant decline in activities ranging between 30 and 50 min. Most participants
had a continuous walking time within 15 min, especially around 5–10 min (Figure 14).
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3.2. Points of Interest (POIs) in the Activity Space
3.2.1. Daily Point of Interest

We found that the most commonly visited POIs of our participants were radially dis-
tributed around the study site. The radial direction is related to the location of community
entrances, as well as the surrounding road network (Figure 15). In addition, we found that
travel distance is the main factor that influences participants’ preference for POIs, especially
when participants are given multiple choices. The most commonly visited POIs within a
5-min walking distance included nearby green spaces, community centers, outdoor fitness
spaces, convenience stores, and restaurants. The most commonly visited POIs within
a 10-min walking distance included: banks, markets, drug stores, sports facilities, and
community hospitals. Integrating the travel trajectories of older adults with their actual
living environments can intuitively indicate the characteristics of the travel paths and the
places where the older adults most often stay.
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3.2.2. Utility of Public Service Facilities

We found the types of POIs visited by participants on a daily basis mainly included
green spaces and public service, commercial, and medical facilities. These POIs were
frequently located within a 60 min walking distance. We also found that the accessibility
and safety of these facilities were essential for older adults to make their travel behavior
choices. For example, our clustering analysis over 102 days of accumulation indicated that
the parks most frequently visited by participants included Siping Science and Technology
Park and Songhe Park, which were close to our study site despite their small scales. In
addition, the quality of spaces affected the duration of stay in the parks. For example, there
were fewer shaded areas in the Siping Science and Technology Park than that in the Songhe
Park, leading to the shorter time staying in the Siping Science and Technology Park during
the summertime (Figure 16).
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4. Discussion

This study contributes to our understanding of how older adults living in a high-
density urban area use existing public services in the built environment. We used the
dynamic and refined GPS data of older adults’ daily activities and established a trajectory
database using GIS. This database presents the spatial structure of the activity space of
older adults, which is essential to optimize the built environment to facilitate older adults’
daily activities and travel behaviors. Our results indicate that activity space is centered
around our study site, 46.3% of participants’ walking trajectories were less than 1.5 km.
Most of our participants carried out their daily activities within a 15-min walking distance,
especially a 5–10 min walking distance. Accessibility was found to be the most important
factor for our participants to choose parks and public facilities. A wide road with heavy
traffic was a critical barrier reducing accessibility. In addition, our results reveal that even
a homogeneous group of older adults with similar socio-economic statuses and living
environmental conditions may still engage in different daily activities. Specifically, older
adults in the younger age group (55–64 years old) had a comparatively smaller travel
range than those in the older age groups (i.e., 65–74 and 75–84 years of age), partially
due to their working affiliation with the nearby university or helping to take care of
their grandchildren. Furthermore, our male and female participants had different spatial
patterns in their POIs, with male participants visiting more POIs close to their homes and
around the boundary of activity space, while the POIs visited by female participants were
more evenly distributed. Those differences indicate that new age-friendly construction and
renewal of the built environment should not only focus on older adults’ common needs
between age/gender groups but also consider the differentiated features within the group
to increase the applicability and safety of public facilities. Although we did not involve
older adults with self-care and mobility difficulties in this experiment, we believe that
providing targeted social services and support to those adults is equally important.

Another contribution of this study is its use of the innovative methods for data col-
lection and analysis. Although micro-data investigation has attracted increasing attention
since the beginning of this century, the main tools adopted in urban planning to date are
still limited to behavior blogs and investigations. By using real-time individual GPS trajec-
tory data based on the PostgreSQL and data visualization platforms, we obtained objective
measures of older adults’ daily travel behaviors and were able to identify activity spaces
for the participants, as well as analyze the functions of spaces that the participants were
interested in visiting. Specifically, we described the spatial range of the older adults’ daily
activities in the community using the innovative concave hull algorithm. Moreover, by
using information on the commonly visited POIs and the trajectory data, we investigated
how supporting facilities and routes affect travel behaviors. This new method measured
not only specific travel behaviors, such as commuting and shopping, but also many re-
peated and seemingly irregular daily travel behaviors, thus providing a comprehensive
picture of older adults’ daily lives. With the advent of digitization of personal behavior,
fine-grained individual trajectory data would become more available. To make the most
of this opportunity, concave hull has the potential for better measuring people’s daily
exposure in the built environment for health-related research.

By identifying the activity space of older adults, this study provides an empirical basis
for further investigating the mechanism of how the built environment affect older adults’
daily activities and travel behaviors. This study also provides an actionable direction
for tailoring the elderly-oriented design in the community. In summary, the implications
of this study include: (a) evaluating the allocation of public resources based on usage;
(b) providing a new measurement method for individual accessibility based on spatial
constraints; (c) transforming static substantial spatial planning into dynamic life-based
space planning and guiding community planning to focus more on the needs of individual
residents; (d) matching the schedules and promoting the activity arrangements of various
public service facilities in the city to help elderly individuals to choose appropriate times
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for medical treatment, fitness, and other activities, thereby enables those individuals to
receive the greatest service benefits by coordinating time and resources.

5. Conclusions

There is increasing interest in examining the influence of the built environment on
activity space to promote health. This paper provided a specific case study in Shang-
hai, China that used advance technology to identify the activity space of older adults.
This study lays a solid data foundation for building an aging-friendly environment and
provides ideas for improving the community’s livability for aging-in-place through an
evidence-based approach. By establishing and accumulating a high-resolution spatiotem-
poral behavior database with the community as a unit, we provided evidence for service
allocation decisions. We also formed a flexible mechanism that offers timely responses and
expands the effects of simulations and predictions. The technological routes, innovative
algorithms, and partial results provided in this study could be applied to examine the
extent to which the selection of spatial elements influences the health outcomes among
older adults. Therefore, those methods and results could contribute to the development
of age-friendly cities, smart cities, and healthy cities by providing more targeted services
for older adults, improving the efficiency of space and social resources, and advancing the
relevant management models.
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