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Abstract: The relationships between a variety of hydro-meteorological variables and irrigation wa-
ter use rates (WUR) were investigated in this study. Standardized Precipitation Index (SPI), Poten-
tial Evapotranspiration (PET), and Normalized Difference Vegetation Index (NDVI) were explored 
to identify the relationship with the WUR. The Yeongsan river basin, the agricultural land of which 
is mostly occupied by well-irrigated paddy, was used for the pilot study. Four different temporal 
scales of SPI-3, 6, 9, and 12 were tested, and PET was calculated using the Thornthwaite method. To 
calculate NDVI, the surface spectral reflectance data, which was acquired by Moderate Resolution 
Imaging Spectroradiometer (MODIS) equipped on the Terra satellite, were used. As a result, there 
was a statistically significant relationship between SPI9 and the WUR during drought periods in 
which negative values of SPI9 were obtained. The WUR was strongly correlated with both PET and 
NDVI. Compared with SPI, the variability of WUR in this study area was more sensitively affected 
by PET and NDVI, which can cause a potential lack of agricultural water supply. The finding of this 
study implies that SPI9, PET, and NDVI are the critical factors for predicting water withdrawal 
during drought conditions so that they can be used for irrigational water use management. Alt-
hough a part of the findings of this study has been discussed by a few previous studies, this study 
is novel in that it quantifies the relationship between these factors using actual field observations of 
streamflow withdrawal for irrigation. 
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1. Introduction 
The impact of drought on water resources systems is quantified by a variety of meth-

ods since there are various definitions of drought. Therefore, there is no consensus on the 
evaluation of the duration and severity of the drought [1]. In general, drought can be gen-
erally classified into four categories: Meteorological, agricultural, hydrological, and soci-
oeconomic drought. [1,2]. Among various drought indexes, meteorological drought index 
has been widely used due to its straightforward definition and easy data accessibility. SPI 
(Standardized Precipitation Index; [3]) is a well-known meteorological drought index 
characterizing a lack of precipitation on a range of timescales [4,5]. 

On the other hand, SDI (Streamflow Drought Index) has been used as a hydrologic 
drought index, which is based on the same calculation methodology with the SPI. SDI is 
defined as a shortage of streamflow comparing to its normal condition [6–8]. To define a 
drought condition, i.e., to judge whether there is lack of streamflow, the proper value for 
threshold level should be determined. Here, the threshold level is generally investigated 
using flow-duration curve of seasonal, monthly, and daily scale [9]. Therefore, the 
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drought condition is defined as a period when the streamflow is less than the threshold 
value. For drought management, SDI analysis is preferred in the regions where the 
amount of streamflow withdrawals dominates the total water supply, as the shortage of 
streamflow directly leads to the lack of water supply. Hence, a drought management plan 
for regions where the streamflow is a dominant source for the water supply should be 
established by considering hydrologic drought information. 

Water shortages arise from natural variability but also anthropogenic impacts, such 
as water diversions and withdrawals. In relation to agricultural water use, since persistent 
meteorological droughts also lead to a decrease in soil moisture, dependence on stream-
flow withdrawals increases to compensate for the lack of precipitation. Then, it eventually 
causes further decrease in streamflow. To prevent the risk of water shortage, a soft-path 
solution, which includes smart technologies and policies that focus on optimal operation 
and efficiency of water supply systems, has been widely used [10]. The soft-path solution 
[11] aims to improve the overall efficiency of water supply rather than adopting new 
sources [12,13]. For example, it delivers diverse water services to meet water demand at a 
community level [14]. 

The soft-path solution has various uncertainty sources which can be reduced by the 
data collection and regarding analysis. The prediction of water availability is one of the 
critical tasks in water resources management because a proper water use strategy should 
be preceded for sustainable water use, especially under intense drought conditions. Be-
sides, water use can be a key variable for the prediction of water availability. In the case 
of agricultural water use, it has been well-known that the water use/withdrawal data are 
strongly correlated with meteorological variables. Under the below-normal conditions of 
water availability, such as rivers, lakes, and reservoirs, it can cause a severe water shortage 
due to high water demand. Then, it eventually threatens water supply and associated food 
production [15–17]. 

Therefore, this study aims to identify the relationships between meteorological vari-
ables and irrigation water use rates based on the assumption that water withdrawal for 
agricultural use is affected by natural weather conditions. For this purpose, this study 
explores the relationship between drought conditions and the amount of irrigation water 
withdrawal from the river. Various drought indicators, such as meteorological drought 
index, potential evapotranspiration (PET) and Normalized Difference Vegetation Index 
(NDVI) are investigated in this study. 

2. Materials and Methods 
2.1. Procedure 

First, a wide range of SPI are calculated using the cumulative precipitation series in 
consecutive periods of 3-, 6-, 9-, and 12-month. The PET, which is highly correlated with 
agricultural drought, are calculated using Thornthwaite method [18]. NDVI, which is 
well-known as an agricultural drought assessment index, are calculated using the remote 
sensing data. Irrigation water withdrawal from the river is adopted for water use rate 
(WUR) data. This study then explores the relationship between SPI, PET, NDVI and WUR 
(Figure 1). 
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Figure 1. Research procedure and data used in this study. 

2.2. Target Watershed 
The target watershed is the Yeongsan river basin, located in the southwestern part of 

the South Korea (Figure 2a). The Yeongsan river basin is still an agricultural-based water-
shed even after the rapid industrialization of South Korea since 1960s. The total area of 
the basin is approximately 3455 km2, and 85% of land use is occupied by forest and agri-
cultural land. The agricultural land can be divided into two different types, a well-irri-
gated paddy where irrigation water is stably secured from irrigation facilities and rain-
fed paddy where irrigation water depends on natural rainfall. The well-irrigated paddy 
occupies 70% of the entire Yeongsan river basin, thus Yeongsan river basin is very de-
pendent on streamflow withdrawal for irrigation. Figure 2b shows that streamflow with-
drawal facilities irrigation, the total number of facilities is 230. The size of the circle in 
Figure 2b represents the amount of permitted water withdrawal authorized by the gov-
ernment. The streamflow withdrawal facilities are evenly distributed across upstream and 
downstream of the watershed, but most of large-scale facilities are located downstream. 
The average amount of permitted water withdrawal is 25,041 m3/day, the largest amount 
is 1,086,220 m3/day, and the smallest amount is 120 m3/day. 161 facilities are permitted to 
use 0~10,000 m3/day of streamflow, and 59, 9, and 2 facilities are permitted to use 
10,000~100,000 m3/day, 100,000~500,000 m3/day, and more than 500,000 m3/day of stream-
flow, respectively. 
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(a) (b) 

Figure 2. Yeongsan river basin located in southwestern of the South Korea; (a) the Yeongsan river basin of South Korea; 
(b) Streamflow withdrawal permit for irrigation water use in the Yeongsan river basin. 

Ministry of Environment of South Korea has managed the provision of water use 
permission to users of streamflow to prevent over-exploitation of streamflow. The total 
amount of authorized withdrawal is limited to the amount of the reference flow, which 
refers to the 10-year frequency of the low flow. Here, the low flow is defined as the value 
of the flow rate, which is maintained above more than 355 days in a year. This has been 
considered as the standard value of streamflow to be secured for the sustainability of the 
water environment in South Korea. The amount of water withdrawal from the river is 
monitored by monthly, and the amount of actual withdrawal is controlled when a severe 
drought occurs. The WUR is defined in this study as the ratio of water withdrawal from 
the river per water use permission. The dataset of WUR was collected from 2011 to 2018. 

The irrigation water for rice paddy is mainly supplied from streamflow withdrawal 
facilities. Starting with the farming season, streamflow withdrawal begins in April, and 
the WUR becomes the highest in June, and then the WUR drops in September and be-
comes nearly zero in October (Figure 3). By comparing inter-annual variability of the 
WUR, it was observed that the highest WUR was in 2017. The year 2017 was a dry year 
given that the amount of total precipitation (903.6 mm) was about two third compared to 
the annual mean precipitation (Figure 4). It implies that less precipitation may cause 
higher WUR to compensate for the lack of surface run-off into the agricultural land. 
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Figure 3. The irrigation water use rate in Yeongsan river basin. 
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Figure 4. Change in average temperature from April to September. 

There was an increasing trend in irrigation water use rate. Although the record length 
is short, Figure 4 shows the change in average temperature from April to September. 
There are strongly increasing trends. The increase in temperature led to an increase in 
evapotranspiration and a decrease in soil moisture. Therefore, recently there was increas-
ing in irrigation water use. 

2.3. Meteorological Data 
The meteorological data were collected from automated synoptic observing system 

(ASOS) which has been operated by Korea Meteorological Administration (KMA). The 
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general climate characteristics of South Korea are represented as humid climate with high 
temperature in summer and dry climate with low temperature in winter. While 52% of 
annual precipitation is concentrated in summer (three months from June to August) due 
to the effect of East Asia Monsoon. Figure 5 showed monthly precipitation, temperature, 
and PET for 8 years (2011–2018). The average annual precipitation in the Yeongsan river 
basin was 1375 mm (Figure 5a), and the average annual temperature was 14.3 °C. The 
monthly mean temperature was the highest at 27 °C in August, on the contrary it was the 
lowest at 0.4 °C in January (Figure 5b). 

 
 

(a) (b) 

  

(c) (d) 

Figure 5. Monthly precipitation, temperature, PET and NDVI in 2011–2018 in study area. (a) Precipitation; (b) Mean tem-
perature; (c) PET; (d) NDVI. 

PET was calculated using the Thornthwaite equation which uses observed tempera-
ture and latitude as input variables [18]. PET in July (159.1 mm) and August (152.3 mm) 
were largest as similar to the monthly temperature seasonality, and 46% (631.2 mm) of the 
annual PET was concentrated from May to September. 

Prec(m
m
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2.4. NDVI 
The NDVI is a well-known indicator for monitoring vegetation conditions using the 

remote sensing technique. The pigments of chlorophyll content in the vegetation absorb 
the solar radiance in the wavelength of visible light (approximately 400 nm to 700 nm) for 
the photosynthetic process, and strongly reflects the near-infrared (NIR) light (approxi-
mately 700 nm to 1100 nm). Therefore, the value of NDVI is calculated by Equation (1), 
representing the normalized difference between absorptive and reflective reflectance to 
enhance the signals of vegetations photosynthesis [19,20], 

NDVI = (NIR − RED)/(NIR + RED) (1) 

where NIR and RED are the spectral reflectance of the near-infrared band, and the visible 
red band in the multi-spectral data, respectively. The values of NDVI are always calculated 
in the range from −1.0 to 1.0. The values of NDVI from 0.5 to 1.0 indicates the highly vege-
tated regions, while the values less than 0 are typically shown in the regions without vege-
tations such as water or soil regions. 

In this study, the surface spectral reflectance data, acquired by Moderate Resolution 
Imaging Spectroradiometer (MODIS) equipped on Terra satellite, were used to calculate 
NDVI for the study area. The various types of the Terra/MODIS data are freely available 
through the Land Processes Distributed Archive Center (LP DAAC) within NASA Earth 
Observing System Data and Information System (EOSDIS) [21]. In this study, the atmos-
pherically corrected surface reflectance data acquired within the 8-day composite period, 
which is called MOD09A1 product, were employed to calculate the spatial distribution of 
NDVI for 8 years (2011–2018). The NDVI distributions for 8-day intervals, were processed 
as the monthly NDVI distribution using the maximum value composite (MVC) approach 
[22]. Figure 6 shows the spatial distribution of averaged NDVI. In summer (from June to 
August), the values of NDVI higher than 0.5 account for 87.8% of this study area while it 
tended to decrease as 11.3% in winter (from December to February). The monthly varia-
tion of NDVI were a quite large in South Korea. It generally began to increase from April 
and reached the highest in August (Figure 5d). 
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Figure 6. The spatial distribution of averaged NDVI in Yeongsan river basin. 

3. Results 
3.1. Relationship between SPI and WUR 

SPI was calculated based on the cumulative precipitation of 3, 6, 9, and 12 monthly 
time scales (Figure 7). The X-axis represents time, and Y-axis represents different time 
scales of SPI (SPI3, SPI6, SPI9, and SPI12). Regardless of the time scales, the most severe 
drought has occurred in 1995 (i.e., 3-month SPI: −1.66; 6-month SPI: −2.46; 9-month SPI: 
−2.17; 12-month SPI: −2.31) and followed by severe droughts in 1978, 1988, 2009, and 2018 
(Table 1). It seems that a drought event occurs with a 10-year cycle, which implies that 
water resources management has been exposed to drought risk frequently with approxi-
mate decadal cycle. 

Table 1. Major droughts of Yeongsan river basin. 

Occurrence Year 
Drought Severity 

SPI3 SPI6 SPI9 SPI12 
1978 −1.91 −2.62 −2.08 −2.85 
1988 −1.17 −1.90 −2.02 −2.18 
1995 −1.66 −2.46 −2.17 −2.31 
2009 −0.42 −1.85 −1.59 −2.12 
2018 −0.65 −1.62 −0.62 −1.63 



Sustainability 2021, 13, 4969 9 of 17 
 

 
Figure 7. SPI3, SPI6, SPI9, SPI12 in Yeongsan river basin. 

Figure 8 represents SPI time-series (red lines with right-vertical axis) and the WUR (blue 
bars with left-vertical axis) from 2011~2019. It is difficult to find the relationship between SPI 
time-series and the WUR. It only shows that the WUR gradually increases over time. How-
ever, interestingly, it is found that the WUR was the highest during the severe drought in 2017. 
To explore the relationship under only the drought conditions, scatter plots for the WUR and 
SPI, where the values are less than zero are presented in Figure 9, whereby only the cultivating 
periods, May to September, are plotted. 

  

(a) (b) 

  

(c) (d) 

Figure 8. Time series of SPI and irrigation water use rate. (a) SPI3; (b) SPI6; (c) SPI9; (d) SPI12. 
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As shown in Figure 9, it seems that there is a negative correlation between the WUR 
and drought conditions indicated by SPI6 to SPI9. In particular, the highest correlation 
was shown in SPI9, the least correlation was shown in SPI12 (Table 2). Generally, the 
drought is relieved by passing wet summer season (June to August under strong season-
ality with temperate climate), thus, drought rarely last longer than a year in Korean Pen-
insula. As mentioned above, the relationship between the severe drought and the WUR 
was demonstrated, and it was found that longer accumulative duration shows stronger 
relationship with the WUR unless it persists longer than a year. 

 

 

(a) (b) 

  

(c) (d) 

Figure 9. SPI (SPI < 0) and irrigation water use rate (WUR) from May to September. (a) 3-month; (b) 6-month; (c) 9-

month; (d) 12-month. 
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Table 2. Correlation analysis with irrigation water use rate and SPI. 

 
Correlation (Pearson/Spearman) 

SPI3 SPI6 SPI9 SPI12 
Pearson 

(Linearity) 
−0.187 −0.538 −0.667 −0.234 

Spearman 
(Monotonicity) −0.195 −0.461 −0.561 −0.261 

The Pearson correlation coefficient [23] and Spearman rank correlation coefficient 
[24,25] were calculated to analyze the correlation between SPI and the WUR for different 
drought durations (3-, 6-, 9- and 12-month). Pearson correlation coefficient reflects the 
magnitude of the linear relationship represented by a parametric method, and Spearman 
correlation coefficient shows the monotonic relationship between two variables expressed 
by a non-parametric method. Both correlation coefficients return closer value to 1 (or −1) 
when the two different datasets have a strong positive (or negative) relationship. Ebi et al. 
[26] assumed a linear or monotonic increase in global or regional temperatures can lead 
to inefficient planning processes that under-estimate the magnitude, pattern, and timing 
of the risks faced by human and natural systems. PET is often modelled as a function of 
temperature alone, thus a temperature-based method was adopted to calculate PER in this 
study. Therefore, the relationships between a variety of hydro-meteorological variables 
and irrigation WUR were investigated through Spearman and Pearson correlation coeffi-
cients. The correlation coefficients between the SPI with different accumulation period 
and the WUR were summarized in Table 2. The calculated Spearman correlation coeffi-
cients (rs) range from −0.195 to −0.561, and the Pearson correlation coefficients (r) range 
from −0.187 to −0.667. Absolute value of both r and rs were calculated as less than 0.3 (i.e., 
above than −0.3) with SPI3 and SPI12. On the other hand, SPI6 and SPI9 showed statisti-
cally significant negative correlation. Especially, SPI9 shows the strongest correlation with 
the WUR. 

3.2. Relationship between PET, NDVI and WUR 
The evapotranspiration (ET) is very important factor in designing of hydraulic facil-

ities and planning of agricultural irrigation. Despite that, there is no available observed 
data of ET in the study area. Therefore, in this study, the PET was alternatively estimated, 
based on the mean temperature (Figure 5c) using the Thornthwaite method [18]. Then, 
the relationship between PET and WUR was quantitatively explored by correlation anal-
yses. 

As shown in Figure 5c, The PET in Yeongsan river basin has strong monthly varia-
bility since PET is strongly affected by temperature. The annual PET was about 788 mm 
for 8 year. Figure 10 shows the relationship between PET and WUR. As the Spearman and 
Pearson correlation coefficients were 0.86, and 0.90, respectively, so that the relationship 
between two variables could be implied to have a strong monotonic and linear relation-
ship. The significance probability (p-value) for both the Spearman and Pearson correlation 
coefficients calculated in this study were less than 0.01, which implies that the estimated 
PET in Yeongsan river basin has statistically significant correlation with WUR under 1% 
of significance level. Therefore, a linear regression model was developed using the ordi-
nary least square (OLS) method to quantify the relationship between PET and WUR, as 
shown in Figure 10. The performance of the constructed regression model was evaluated 
by the coefficient of determination (R2) and the root mean squared error (RMSE). The re-
gression model returned fair prediction results with 0.81 of R2 and 12.88 of RMSE. 
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Figure 10. The spatial distribution of averaged NDVI in Yeongsan river basin. 

As shown in Table 2 and Figure 10, the WUR was more affected by the PET than the 
SPI. Meanwhile, several related studies have reported that the PET or Actual ET was 
strongly correlated to NDVI [27–29]. It can be inferred that the strong correlation between 
NDVI and PET is due to the photosynthetic activity of vegetation in the agricultural land. 
The increase in the remotely observed NDVI values in the study area means that the crops 
in the area actively grow by photosynthetic process. The vegetation consumes the soil 
moistures as part of the natural process, and this process potentially increases the amount 
of transpiration. Consequently, the increase in NDVI values can lead to an increase in the 
amount of PET which can eventually cause the water loss. 

Figure 11a shows the relationship between PET and NDVI in this study. As discussed 
above, the correlations between two variables were statistically significant as the correla-
tion coefficients were over 0.9 (p-value < 0.05) for both Spearman and Pearson correlation 
analyses. Based on the results of correlation analyses, the feasibility of the use of NDVI 
for quantitative prediction of the WUR was also investigated as shown in Figure 11b. The 
NDVI was also highly correlated to the WUR with the correlation coefficients over 0.8 (p-
value < 0.05) for both Spearman and Pearson correlation. The linear regression model con-
structed by OLS method yielded the prediction results with 0.63 of R2 and 17.98 of RMSE. 
The performance of the linear regression model was relatively inaccurate than the regres-
sion model using PET. Despite that, this approach based on the satellite data could be 
attractive to couple with various meteorological and hydrological data. 
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Figure 11. The linearity analysis of irrigation WUR and PET. (a) Relationship between PET and NDVI; (b) relationship 
between NDVI and WUR. 

4. Discussion 
In this study we quantitatively analyzed the relationship between the WUR and hy-

dro-metrological variables (SPI, PET, and NDVI) collected in the agricultural land. The 
major result was as follows; WUR was highly correlated with PET and NDVI while the 
WUR was less sensitive to SPI (<0, from May to September). We inferred that these results 
could be caused by following reasons. First, the agricultural land in this area was mainly 
occupied by the rice paddy, and the irrigated paddies which are supplied with water by 
the irrigation facilities around the stream accounting for 70% of the total farmland area. 
The optimum average daily temperature for rice cultivation is about 20–22 °C, and the 
growth of this kind of crops is notably activated from July to August when the optimum 
temperate is satisfied under the climatic condition of this area. This seasonal trend could 
be also described by the Figure 5d which illustrated that the values of NDVI reached to 
the maximum value in the summer season. Moreover, as shown in Figure 10, the maxi-
mum values for PET were observed in the summer due to simultaneous impacts of both 
the increase in the transpiration by progressive photosynthesis of crops and the increase 
in the evaporation by the maximum temperatures in a year. Consequently, seasonal trends 
of PET and NDVI were significantly dominated by the variability of temperature for a 
year, and these two variables can be strongly correlated. 

We compared the WUR and SPI from April to September for the years 2011 and 2017. 
A deficit of precipitation from April to September, which consumes large volumes of irri-
gation water, was occurred in 2017 (Figure 12). It led to more consumption of agricultural 
irrigation water than non-drought year 2011. Bae et al. [30] investigated propagation from 
meteorological to hydrological droughts in South Korea. They focused on agricultural res-
ervoir and dam storage levels with SPI. A deficit of precipitation from April to September 
led to decrease in storage of an agricultural reservoir. It means that a decrease in water 
sources arose due to lack of precipitation. In this study, it was confirmed that the agricul-
tural water use increased according to the meteorological drought. In addition to the de-
crease in water source, the increase in water use due to the meteorological drought was 
expected to accelerate the hydrological drought. 



Sustainability 2021, 13, 4969 14 of 17 
 

  

(a) (b) 

Figure 12. WUR relative to SPI from April to September in 2011 and 2017. (a) SPI; (b) WUR. 

Sung et al. [31] proposed a deep learning-based model to estimate WUR using pre-
cipitation and PET. Correlations were explored to identify relationships among accumu-
lated meteorological variables for various time durations (3-, 4-, 5-, and 6-month cumula-
tive) and the WUR, which revealed that the three-month cumulative meteorological vari-
ables and the WUR were highly correlated. It was confirmed that SPI9 can be used as a 
good indicator for WUR prediction. The framework in this study can provide a forecast 
model for deficiency in stream water use, which is coupled with a weather forecast and 
SPI for previous consecutive months. 

To support the sustainable agricultural production, stable means of agricultural wa-
ter supplies are required to recharge the soil moisture content which is lost by ET. In the 
study area where the irrigated paddies are highly occupied, the agricultural water can be 
supplied by the well-operated irrigation facilities, which intake water from rivers regard-
less of the occurrence of the meteorological drought. For this reason, the variability of the 
WUR was more sensitively affected by PET and NDVI, which causes a potential lack of 
agricultural water supply than the metrological drought factor. Therefore, anthropogenic 
activity, such as streamflow withdrawal for the agricultural land where the irrigation fa-
cilities were sufficiently secured could more securely response to the potential water de-
mand caused by ET rather than the deficiency of precipitation. 

The results from this study showed similar trends with the findings of previous stud-
ies that investigated the impact of drought intensity on the agricultural production. For 
instance, Dutta et al. [32] mentioned that NDVI was not significantly affected by SPI in 
the agricultural area where the irrigation facilities were sufficiently secured. Moreover, 
Kurukulasuriya et al. [33] and Vanschoenwinkel and Passel [34] emphasized that the type 
of agriculture, which is dependent on the irrigation system, is less sensitive to the change 
in local climatic characteristics than the type of rain-fed agriculture. 

This study clarified that the amount of streamflow withdrawal in agricultural land 
eventually depends on the ET and can be consequentially correlated to NDVI. The regres-
sion equations empirically derived from the collected data showed highly correlated re-
sults for both WUR versus PET and WUR versus NDVI. Therefore, the PET and NDVI 
should be considered as crucial factors for planning the amount of streamflow intake in 
agricultural area. 

5. Conclusions 
Hydrological drought, such as streamflow deficit, causes a water shortage for the 

community. Therefore, it is necessary to monitor and predict the use of streamflow with-
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drawal in advance. For this purpose, the relationship between the WUR and drought in-
dex, SPI, was investigated. Although the total amount of aggregated precipitation demon-
strated a weak relationship, during the drought period in which negative values of SPI 
occurred, there was a statistically significant relationship between SPI and the WUR. Be-
sides, the longer the cumulative duration of SPI, the higher the correlation, up to nine 
months. This is due to the seasonality of climate in Korea, confirming the large amount of 
rainfall during the humid summer season can alleviate drought conditions. Hence, SPI12 
has shown no predictability of the WUR, i.e., less correlation was detected. On the con-
trary, the WUR was highly correlated with PET and NDVI while the WUR was less sensi-
tive to SPI. 

Both soft-path and hard-path approaches are seeking the way to manage the water 
shortages, but hard-path approaches have some disadvantages of costly and complicated 
decision-making processes. On the other hand, one of the great advantages of the soft-
path approaches is the ability to adjust and control the water use so that it can reduce the 
water deficit in streamflow. The soft-path approaches have also received much attention 
due to its efficiency. To adjust and limit the water withdrawal on streamflow, monitoring 
of the water withdrawals and good skill of prediction of the water use must become the 
highest priority in drought management. 

The increasing trend of PET is more rapid than the precipitation in South Korea, 
which would lead to the decrement of water availability. Water availability is expected to 
decrease in the future, thus, managing water use and improving efficiencies is required 
for the security of agricultural water use under the influence of climate change. 

Once predictions around the amount of water withdrawal are made, the changes in 
WUR can be quantified. It will be possible to adjust the volume of water withdrawal. In 
particular, SPI, PET and NDVI have been widely used in South Korea for drought man-
agement and operation due to its easy implementation. Therefore, based on the finding of 
this study, it implies that these indexes-SPI9, PET, NDVI-can be used for the irrigational 
water use management. Previous studies have suggested that the amount of water with-
drawal of streamflow is dependent on the occurrence of drought, but to the best of the 
knowledge of the authors, there has been no research conducted using the observed data 
of water withdrawal from streamflow. 

Although some previous studies often implied that the ‘well-irrigated paddy’ has no 
relation with streamflow deficiency [33,34], this study found that the WUR for irrigation 
purpose on well-irrigated paddy is strongly affected by prolonged meteorological 
drought evaluated by such as SPI9. This relationship is clearer under extreme drought 
conditions. To make the finding of this study more practical to the field, future studies can 
be implemented with more exhaustive datasets and applied to various agricultural lands. 
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