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Abstract: Understanding the decision-making behavior of pedestrians is essential for urban design-
ers and developers in enhancing the commercial and aesthetic value of streets and other urban spaces.
However, limited research has been conducted on the activity scheduling behavior of pedestrians.
The majority of the studies conducted on outdoor facilities utilize spatial representations by links and
are unable to sufficiently represent the highly flexible behavior of pedestrians. This study proposes
a new method to discretize data from the global positioning system (GPS) into a two-dimensional
grid-based spatial representation with a high spatial resolution. The information regarding the stay
at the point of interests (POIs) is extracted from the discretized data, and the activity scheduling
model is estimated. The estimation results indicate that the visitors’ attributes, such as the age of
the representative and number of children, affect the probability of the activity choice and the time
spent at the POI. The probability of choosing the main gate increases in the latter half of the stay,
confirming the existence of time pressure. The information on the decision-making behavior of the
visitors to a facility, obtained from the GPS data, can be applied to the data-oriented spatial design
process to create attractive and lively spaces.

Keywords: pedestrian behavior model; activity scheduling; Global Positioning System; grid-based
spatial representation

1. Introduction

The research literature on urban studies reports that high-quality urban spaces deliver
higher value to the users in terms of economic, social, health, and environmental factors [1].
In particular, recent empirical studies have suggested that high-quality public spaces,
including streets, squares, and plazas, promote social and psychological health [2] and
pose a positive impact on the well-being and liveliness [3]. Public spaces are vital as social
spaces rather than being limited as channels of movement or intersections for pedestrians.
Thus, the creation of attractive and lively public spaces requires an understanding of the
pedestrians’ behaviors in terms of attractiveness, value and the reason for manifesting
various behaviors in such spaces.

Pedestrian behavior can be categorized into the following three interrelated levels [4]:

• Strategic level (departure time choice and activity pattern choice);
• Tactical level (activity scheduling, activity area choice, and route choice);
• Operational level (direction and speed).

The development of pedestrian behavior models has been primarily focused on the op-
erational level, which involves determining the direction and the speed of a pedestrian and
interactions with other pedestrians and obstacles [5–9]. However, research on the higher-
level decision-making behaviors is limited to exit choices in evacuation scenarios [10–12]
and route choices within a facility [13,14]. Moreover, research on activity pattern choice
and activity scheduling is limited as well.
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Understanding activity scheduling is particularly important in the urban design
and the development process, to increase the commercial and aesthetic value of urban
spaces such as streets. The activity scheduling models can be categorized into two major
types: rule-based models that determine the activities based on predetermined rules
and utility maximization models that determine the activities based on the concept of
utility maximization [15]. The utility maximization models are based on microeconomics
and are most applicable for general activity-based models, owing to their mathematical
rigor, regardless of the pedestrian models. The applications of the activity scheduling
models based on the utility maximization models include nested logit-based activity-choice
models [16] and dynamic activity choice models [17,18].

The activity choice of pedestrians may not be explicit. This characteristic can be
observed in cases where the act of walking becomes an activity such as shopping, sight-
seeing, and so on [19]. This behavior is common because people make itineraries without
a predetermined destination and then explore attractive places along the way [20]. One
of the few attempts to describe such pedestrian behavior is a model which combines the
destination choice, the route choice, and an impulse stop in an inner-city shopping area [21].
Additionally, recent studies have demonstrated that the combination of positive utility
and space-time constraints can better explain the pedestrian-specific behavior such as
detours and short stays in the path choice [22]. Moreover, several studies have shown that
the application of dynamic models with agent effects for the activity choice outperforms
the static models such as multinomial logit models [17,18]. Although these studies can
determine the order of activities, they do not consider the allocation of the activity time.
This study attempts to apply the dynamic activity scheduling model [23] for addressing
the issue regarding pedestrian activity scheduling. Notably, the management of travel
time that represents the minimum time required for allocation was challenging for the
original model [23]. Therefore, the proposed model is extended to handle this minimum
required time.

The widespread use of Global Positioning System (GPS) devices has enabled the collec-
tion of large amounts of tracking data, which has in turn allowed data analysis by several
approaches, including understanding the travel behaviors of people [24,25] and improving
mobility services [26]. This is no exception in the case of analyzing pedestrians [27,28]. Typ-
ically, pedestrian networks are not as readily available as road networks, which is another
major problem in handling pedestrian activity [27]. In addition, outdoor facilities such as
the ones considered in this study have open spaces, including lawn areas and plazas and
it is difficult to represent these spaces with the conventional link expressions. Therefore,
the proposed method adopts a spatial representation with a detailed spatial resolution
grid (15 m grid per square and 10 s sampling), which allows for the representation of open
spaces. Furthermore, the proposed model can be combined with sequential path choice
and a grid-based spatial representation [22] to appropriately represent the aforementioned
pedestrian-specific behaviors.

The contributions of this paper are as follows:

• A processing method is proposed to discretize the GPS data into a two-dimensional
grid-based spatial representation with high spatial resolution in order to represent the
complex behavior of pedestrians.

• The decision-making behavior of the visitors is clarified based on the activity choice
and the time allocation in an outdoor facility by using the dynamic activity schedul-
ing model.

The proposed model can be applied to the data-oriented spatial design to create
attractive and lively spaces by clarifying the decision-making behavior of the visitors
regarding their activity choice and the time allocation based on the GPS data.

This paper is organized as follows. Section 2 presents a literature review of the spatial
representation of the GPS data and the activity scheduling models for pedestrians. The
data acquisition, data processing methods, and activity scheduling model are detailed in
Section 3, and the results are discussed in Section 4. Lastly, the study is summarized and
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the future scope is discussed in Section 5.

2. Literature Review

This section presents a literature review of the spatial representation of the GPS data
and the activity scheduling models for pedestrians.

2.1. Spatial Representation of GPS Data

A recent study conducted with the GPS data of pedestrians proposed a method
to simultaneously estimate the path choice model parameters for a pedestrian during
estimating the various errors for each link [28]. However, the study assumed that the
pedestrian networks were known. An additional study proposed a method for automatic
generation of a pedestrian network using multiple GPS traces, because pedestrian networks
are generally not as readily available as road networks [27]. The similarity between these
studies is constituted by the usage of links representing the space; however, they cannot
adequately represent the highly flexible behavior of pedestrians.

Conversely, the grid-based (or cell-based) representation is a more flexible spatial
representation of the pedestrians, and several of such representations are primarily ap-
plicable for indoor usage, especially in cellular automata models [6,29,30]. Additionally,
the grid-space representation was applied to a network representation for route choice
models [13], development of an indoor tracking algorithm [31], and pedestrian behavior
prediction for robot path planning [32]. As depicted in these models, most of the research
using grid-based spatial representation has focused on indoor environments. Consequently,
a pedestrian path choice model representing pedestrian detour and stay behavior was
proposed for outdoor environments [22]. Although the grid-based spatial representation
in this study was used as an epitome of outdoor facility, a purely numerical and virtual
experiment was conducted. In the only study of grid-based spatial representation based on
actual GPS data, the impact of the built environment on pedestrian and bicycle commuting
trips was examined using a grid-based spatial representation with a spatial resolution of
20 m [33], wherein the GPS points were assigned to a grid containing each point, and there
was no provision for assigning the points in case the noise was included.

As mentioned earlier, the grid-based spatial representation has primarily focused in
indoor environments, and its application in the outdoor environments is extremely limited.
In addition, a high spatial resolution and consistent trajectory information are required to
obtain detailed information on the location and duration of the activities. Therefore, we
propose a method to satisfy these requirements using only GPS data.

2.2. Activity Scheduling Models for Pedestrians

Research pertaining to pedestrian activity scheduling includes normative pedestrian
behavior theory based on the concept of utility maximization [4], wherein the model
covered route choice, activity area choice, and activity scheduling, and simultaneously
optimized them through utility maximization. Another study applied a nested logit model
to generate the activity schedules by dividing the activity choice at the airport into three
periods: before-check-in, before-security, and before-boarding [16]. Additionally, several
studies have demonstrated that the application of dynamic models for the activity choice
is more representative when compared to the static models such as the multinomial logit
models [17,18]. However, these studies only determined the order of the activities and did
not consider the allocation of the activity time.

Although the pedestrian activity time allocation and the monetary expenditure in a city
center has been modeled, the spatial elements have not been considered [34]. In this study,
the dynamic activity scheduling model [23] was employed to simultaneously consider
the dynamic activity choice and activity time allocation. Moreover, the dynamic activity
scheduling model has been already applied to the pedestrians’ time allocation and activity-
area choice [35]. Instead of using links, the model categorized the pedestrian walking
patterns into activity areas with a scale of 100–300 m and employed the dynamic activity
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scheduling model to represent the activity-area choice and time allocation. However, the
model considered the roughly divided activity areas, which varied from a model focusing
on the activity choice for a specific facility. In contrast, the activity choice and activity
time allocation was modeled in a facility for multiple points of interest (POIs) by using a
detailed spatial representation at the 15-meter level of the resolution grid.

3. Materials and Methods

In this section, the GPS data acquisition experiment was first described. Thereafter, the
proposed data processing method was described in detail. Concretely, this study proposed
a processing method for discretizing GPS data with noise and missing data into a two-
dimensional grid-based spatial representation with a high spatial resolution of 15 m. The
information regarding the duration of stay at the POIs was extracted from the discretized
data, and a dynamic activity scheduling model comprising an activity choice model and
an activity time allocation model was estimated based on this information.

3.1. Data Acquisition

The facility to be analyzed in this study is the “Tango Kingdom,” which is one of the
largest roadside stations in western Japan. The Tango Kingdom covers an area of roughly
34 ha. The park includes various facilities such as restaurants, go-karts, and animal spaces,
making it an outdoor facility suitable for both children and adults.

The data was acquired over a total of two days from 22–23 August 2015, with the
cooperation of the visitors to the Tango Kingdom. Bluetooth low-energy (BLE) transmitters
and GPS loggers were distributed to the subjects and they were allowed to walk freely
around the park as originally intended. A simple questionnaire was also distributed
to determine the age and the gender of the representatives, the group composition, the
number of visits, place of residence, and the purpose of visit. The observations were
obtained from a total of 277 groups of visitors over a course of two days.

The GPS logger used in this study was the i-gotU gt-600 from Mobile Action Technol-
ogy Inc., which uses the SiRF IV chipset and has a horizontal positional accuracy of 2.5 m
(2D RMS). The BLE receivers were installed at a total of 12 locations in the park (Figure 3),
and upon receiving a radio wave emitted by a BLE transmitter, the position, time, chassis
identification number, and radio wave strength of the receiver were recorded on the server.

Based on a comparative analysis between the BLE and GPS [36], both methods ac-
quired accurate information on the activity travel behaviors of visitors. However, the BLE
signal could reach farther under certain conditions, such as large unobstructed spaces,
thereby resulting in false positives and lower accuracy. The proposed method using the
GPS is superior under such conditions as well as enables extraction of the stay information
based on the entire trajectory, even in situations where recording observations is chal-
lenging, such as inside buildings. In the following section, the proposed data processing
methods are described in detail.

3.2. Data Processing Methods

The method of spatiotemporal discretization of the GPS data and that of extracting
the information regarding the stay, known as episodes, are explained in this section. The
spatiotemporal discretization of the GPS data was achieved by the two following steps:

1. Denoising and Smoothing;
2. Allocation to grids.

The following sections explain these steps in detail.

3.2.1. Denoising and Smoothing

There are three major problems in handling the GPS data:

• Large noise in specific locations such as indoor areas or mountainous areas;
• GPS-specific measurement errors;
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• Missing data or unevenly-spaced data.

This study uses the Rauch–Tung–Striebal (RTS) smoother [37], which has been used
in various studies in recent times [38,39], to solve these problems.

The smoothed distribution, p(xk|y1:T), of the estimate, xk, at time, k, under all the
given observations, y1:T , up to the last time point, T, in the data, is expressed as:

p(xk|y1:T) = p(xk|y1:k)
∫ [ p(xk+1|xk)p(xk+1|y1:T)

p(xk+1|y1:k)

]
dxk+1. (1)

Therefore, after computing all the prediction steps p(xk+1|y1:k) and filter steps p(xk|y1:k),
p(xT|y1:T) can be used as the starting point to find the smoothed distribution while going
backward. In this study, the following simple physical system is used as the system model:

xk
ẋk
ẍk
yk
ẏk
ÿk

 =



1 ∆t ∆t2/2 0 0 0
0 1 ∆t 0 0 0
0 0 1 0 0 0
0 0 0 1 ∆t ∆t2/2
0 0 0 0 1 ∆t
0 0 0 0 0 1





xk−1
ẋk−1
ẍk−1
yk−1
ẏk−1
ÿk−1

 (2)

where x and y are the GPS longitude and latitude estimates, respectively. and ∆t is the
sampling rate assumed in the system model. ∆t can be set separately from the GPS
sampling rate. Equally spaced resampled estimates can be obtained even at irregular data
intervals or in the case of missing data (Figure 1), by specifying shorter intervals. In the
case of the acquired data, although the data were acquired at a sampling interval of 5 s, the
interval could be 4 s or 30 s due to missing data or other reasons, depending on the data.
Conversely, the smoothing process can be used to obtain data at the desired intervals, such
as at 5 or 10 s.

(a) (b)

Figure 1. Schematic diagram of the smoothing process. (a) GPS data before processing; (b) Data after the smoothing process.

Although the above smoothing methods can resolve the inherent GPS measurement
errors, they cannot be used for the large noise inherent in certain locations, such as in
indoor or mountainous areas. Additionally, if the time interval of the missing data is
large (e.g., 1 min), the estimates may be highly inaccurate. Therefore, large outliers were
removed before the smoothing process and the data were interpolated (Figure 2). The
outlier removal process is especially performed for a data point with a high movement
speed (more than 10 km/h) when compared to the previous or the next data point, or
a data point that has moved more than 30 m from the previous or the next data point.
The linear interpolation is then performed for a data interval of 30 s or more. A sample
application of the smoothing process is shown in Figure 3. After the smoothing process,
indicated by the red line in Figure 3, it can be observed that the large outliers have been
removed and remain in the same place (the right side of the center in the figure).
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Figure 2. Smoothing process procedure.
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(Lookout Platform)

(Hagoromo Juice) (Tango Tea House)

(Main Gate)

(Petting Farm)

(Clock Tower)

(Ton’s Kitchen)

(Seven Princess Palace)

Leaflet|Data by c©OpenStreetMap, under ODbL.

Figure 3. Application example of smoothing process (yellow: BLE receiver, blue: GPS data before
processing, red: data after smoothing process).

3.2.2. Allocation to Discretized Grids

This section explains the allocation method used to generate the discretized grids. The
pixel coordinates based on the spherical Mercator projection (also known as Web Mercator
or Google Web Mercator) are used as the discretized spatial representation, which is the de
facto standard for map applications on the Web.

https://leafletjs.com
https://openstreetmap.org/
https://openstreetmap.org/copyright
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In the map tiling system using the spherical Mercator projection method, the world
map is represented by a square image of 256 pixels per side (zoom level 0) by scaling
the map up to 85.0511 degrees in the north–south latitude. Each time the zoom level
is increased by one level, the world map of the same area is represented by a square
image twice the size. A map at zoom level 1 is represented by four square images of
256 pixels per side and the images that divide this world map are called tiles. By assigning
the coordinate number, (x, y), to this tile, the tile containing the specified position at the
zoom level, z, can be uniquely defined as (x, y, z). Figure 4 shows an example of a spatial
representation using the spherical Mercator projection method. The number of pixels at
the zoom level, z, is 2z+8 × 2z+8, and a discretized spatial representation is generated by
using these pixel coordinates.

(0,0)

(0,1)

(0,2)

(0,3)

(1,0)

(1,1)

(1,2)

(1,3)

(2,0)

(2,1)

(2,2)

(2,3)

(3,0)

(3,1)

(3,2)

(3,3)

256pixel

256pixel

c©OpenStreetMap contirb
utors

(0,1)
(1,1)

(0,0)
(1,0)

(0,0)

Zoom 0

Zoom 1

Zoom 2

tile

Figure 4. Spatial representation by spherical Mercator projection method.

The size of the discretized grid was set to approximately 15 m considering the size
of the buildings in the park and the accuracy of the data. Resampling to an appropriate
sampling rate for this grid size facilitates the application of the models for sequential
decision processes such as the Markovian Decision Processes (MDPs). When the sampling
rate is changed to 5, 10, or 15 s, the probability of staying in the same grid, transitioning to
the adjacent eight grids, and transitioning to the 16 grids, two grids ahead are calculated,
respectively. Ideally, the transition probability to the neighboring grid must be maximized
while minimizing the transition probability to jump two places ahead. This ensures
consistency with the grid-based representation for path choice [13,22]. In particular, a
sampling rate of 10 s resulted in a transition probability of approximately 23% to the
neighboring grids, whereas the transition to the grid two steps ahead was suppressed to
approximately 0.08 % (Figure 5). The results of resampling at this 10-second-sampling-rate
were used in the following analysis.

https://www.openstreetmap.org/copyright


Sustainability 2021, 13, 4871 8 of 22

Figure 5. Relationship between sampling rate and transition probability.

Subsequently, the grids in which, each of the resampling data points are located,
is counted and a grid network is created excluding the grids with low counts or the
inaccessible grids. Consequently, the total number of target grids is obtained as 255
(Figure 6a). For the places where the transitions are not possible, such as the places which
are not entrances to buildings, settings were made to prevent the transitions, even in the
adjacent grids, as shown by the yellow lines in Figure 6b.

Assigning the smoothed GPS data to the grid containing the point is not sufficient.
This is because it would allow for trajectories which are physically impossible and as
explained earlier, the network is created to exclude physically impossible transitions. Each
data point can be allocated to an appropriate grid by finding an overall plausible series to
follow this defined network. The likelihood of the target grid, i, denoted by d(xi, xnt), is
calculated by using the coordinate, xi, of the center position of the grid, i, and the position
of the nth data element at time, t, is denoted by xnt:

d(xi, xnt) = A · exp
(
−| xi − xnt |2

σ2

)
, (3)

where A is the normalization constant and σ is set to half of the grid size. The time series
of the grids can be obtained by solving the following problem:

argmax ∏
t

d(xi, xnt). (4)

Since the above equation does not change the result under logarithmic conditions, the
following equation can be maximized instead:

argmax ∑
t

log{d(xi, xnt)}. (5)

From Equation (3), log{d(xi, xnt)} can be evaluated as follows:

log{d(xi, xnt)} = −
{
(xi − xnt)

2

σ2
x

+
(yi − ynt)

2

σ2
y

}
. (6)

Therefore, under the network constraints on the connections between the grids, the
grid series which maximizes the logarithmic-likelihood can be obtained by minimizing the
sum of squares in the braces of Equation (6).
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Leaflet|Data by c©OpenStreetMap, under ODbL.

(a)

Leaflet|Data by c©OpenStreetMap, under ODbL.

(b)

Figure 6. (a) Networks where the numbers in the figure correspond to the POI numbers; (b) Setting
up a grid that cannot be transitioned.

The above maximization problem can be solved by using dynamic programming. The
maximum value of the series, St(xi), assigned to grid, i, at time, t, can be described by
using the maximum value of the series, St+1

(
xj
)
, associated with grid, j, at time, t + 1,

as follows:

https://leafletjs.com
https://openstreetmap.org/
https://openstreetmap.org/copyright
https://leafletjs.com
https://openstreetmap.org/
https://openstreetmap.org/copyright
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St(xi) = max
[
log{d(xi, xnt)}+ ∆xixj St+1

(
xj
)]

, (7)

where ∆xixj represents the correlation of the connection between the grids, i and j, and is
given as:

∆xixj =

{
1 if i–j is connected
∞ otherwise

. (8)

This method of spatial allocation only allows for the movement to adjacent grids for
one unit of time, because it uses the correlation of the connection between the grids. Thus,
even for approximately 0.08% of the data where the transitions to two grids are observed,
the use of this spatial allocation method corrects for the transitions to the neighboring grids.
The results of the spatial allocation are shown in Figure 7.

Leaflet|Data by c©OpenStreetMap, under ODbL.

Figure 7. The results of the spatial allocation. The allocation results are represented by circles, and
the color of the circle represents the stay duration.

3.2.3. Episode Extraction

The previous section explained the process of discretization of the location information
obtained from GPS data. This section describes a method to extract the stay behavior from
the spatio-temporally discretized data. An episode is defined as the time from the end of
the stay at one POI to the end of the stay at the next POI. Each target data element consists
of multiple episodes. Each episode also includes the travel time to the destination POI.

https://leafletjs.com
https://openstreetmap.org/
https://openstreetmap.org/copyright
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In order to extract episodes, the target POIs must be set. The 19 POIs shown in Table 1
are included in this study. The numbers in the table correspond to the numbers shown
in Figure 6a.

Table 1. Target POIs.

No. Name Types Description

0 Insect Exhibition Hall Activities Exhibits of beetles and stag beetles from around the
world

1 Go-Karts Track Attractions Go-kart experience for kids and adults
2 Bicycle Riding Attractions Unique bicycle riding experience
3 Komachi Scuola Activities Bread and ice cream making experience
4 Nishiri (Pickles Shop) Shopping Japanese pickled vegetable shop
5 Anju Bakery Shopping Freshly baked bread shop
6 Gracia Foods Restaurant
7 Tango Tea House Foods Japanese sweets and tea cafe
8 Lookout Platform Activities
9 Hagoromo Juice and Soft Ice Cream Foods Soft serve ice cream and fresh juice bar

10 Petit Petting Zoo Activities Petting zoo for sheeps, goats, rabbits, and tortoises
11 Ton’s Kitchen Foods Restaurant
12 Seven Princess Palace Foods Family-friendly food court

13 INMOTION Attractions Experience the next generation of standing electric
motorcycles

14 Wooden Play Area Attractions Athletic field for kids
15 Clock Tower Activities
16 Petting Farm Activities Interacting with sheep and ponies, riding ponies
17 Grass Slide Attractions 48 m long grass slide
18 Main Gate Shopping The main gate with souvenirs shop and farmer’s market

The first step in extracting the episodes is making a decision based on the data from the
discretization process of the visits to the POI locations shown in Figure 6a. Subsequently, a
stay which is out of the POI position but returns immediately is considered as a continuous
stay. The stays with a short residence time of 3 min or less are removed after the above
process. Figure 8 shows an example of the results obtained from the above process (−1
indicates a location other than the POIs). The gray line shows the original POI stay, and the
orange line indicates the processed POI stay. Additionally, the time from the end of one
stay to the end of the next stay is extracted as an episode. The episodes such as episode 1,
where the same POI is visited again, are combined into a single episode. A total of five
episodes are extracted in this example.

3.3. Activity Scheduling Model

In this section, the dynamic activity scheduling model is described in detail to explain
the extension of the model for the stated purpose. The dynamic activity scheduling
model [23] is a discrete-continuous model that calculates the combined probability of an
activity-choice and activity-time allocation model. The scheduling process is modeled and
the activity pattern is obtained from the dynamic scheduling process.

The activity-choice model is a discrete choice model with a general multinomial logit
model. Essentially, the deterministic utility component of the activity, j, is Vj, and its choice
probability is expressed as follows:

Pr
(
εn <

(
Vj −Vn + ε j

))
=

exp
(
Vj
)

exp
(
Vj
)
+ ∑n 6=j exp(Vn)

. (9)
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Figure 8. An example of extracted episodes.

The activity time allocation model considers the allocation between the activity, j, to be
performed, and the remaining set of activities, c, which are considered as composite goods.
The probability of the activity time allocation is represented by the following cumulative
distribution function:

Pr
(

ε′c <
(

V′j −V′c + ε′j

))
=

1 + exp

−
(

V′c −V′j
)

σ

−1

, (10)

where σ denotes a scale parameter, and V′j and V′c are the utilities of the activity, j, and the
composite goods, c, respectively. V′j and V′c are given by the following equations:

V′j = ψjzj +
(
αj − 1

)
ln(tj), (11)

V′c = (αc − 1) ln(tc), (12)

where zj is a set of explanatory variables, and ψj is its coefficient; αj and αc are the saturation
parameters, which express the diminishing marginal utility with time. In this model, the
probability of allocating time, tj, to activity, j, is expressed as follows:

Pr(t = tj) =

(
1− αj

tj
+

1− αc

tc

)
· 1

σ
exp

−
(

V′c −V′j
)

σ


·

1 + exp

−
(

V′c −V′j
)

σ

−2

.

(13)

In Habib’s (2011) activity scheduling model, the joint probability of the activity choice
and the allocation time of the activity is represented by a bivariate normal distribution,
given as:
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Pr
(
t = tj ∩ ε ≤ J1(ε j)

)
= Pr

(
t = tj

)
×Φ

(
J1(ε j)− ρJ2(ε

′
j)√

1− ρ2

)
, (14)

where Φ is the cumulative distribution function of the standard normal distribution,
and J1(ε j) and J2(ε

′
j) are transformed into the error distribution of the standard normal

distribution through the inverse function of the cumulative distribution of the standard
normal distribution, Φ−1, as shown below:

J1(ε j) = Φ−1[(εn − ε j) < (Vj −Vn)
]
, (15)

J2(ε
′
j) = Φ−1

[
(ε′j − ε′c) < (V′c −V′j )

]
. (16)

The correlation between the activity choice and the activity time allocation is expressed
through the correlation coefficient, ρ.

In this study, the episodes are used for the activity time of each POI to estimate the
activity scheduling model. It represents the time from the end of the previous activity to the
end of the current activity, including the travel time to the activity location. The inclusion
of the travel time to the activity location indicates that the activity time includes at least
the minimum travel time between the two activity locations. Therefore, the minimum
travel time between activity locations i and j, is introduced and is denoted as, tij, in
Equations (13) and (11) as follows:

Pr(t = tj) =

(
1− αj

tj − tij
+

1− αc

tc

)
· 1

σ
exp

−
(

V′c −V′j
)

σ


·

1 + exp

−
(

V′c −V′j
)

σ

−2

,

(17)

V′j = ψjzj +
(
αj − 1

)
ln(tj − tij). (18)

This concept is equivalent to that of the minimum required time allocation [40].

4. Results and Discussion

In this analysis, there are 262 GPS observations to be used for estimation, excluding
the data where the GPS data were not captured accurately. The total number of episodes
was 1042 and the average number of episodes per group was approximately four.

In the estimation, the total time spent in the facility is assumed to be presented
exogenously. In this case, the final time of the data was set at the end of the stay.

The estimation is started with a model including all the potentially relevant param-
eters, and the parameters with low t-values were cut down in the parameter estimation
results. The adjusted likelihood ratio is evaluated as a measure of the model fit, and the
model with the highest value was adopted. Moreover, the initial likelihood was calculated
using a model incorporating a constant value of baseline utility and with a saturation
parameter [23]. Although the initial number of parameters was 478, the final number of
parameters was 102. The initial and the final likelihoods were −9990.16 and −7489.72,
respectively, resulting in an adjusted likelihood ratio of 0.240 (Table 4).

The subsequent sections discuss the estimation results in detail.
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4.1. Activity Choice Model

The estimation results of the activity-choice model are presented in Table 2. The
estimated value of “Logarithm of the time elapsed since the start of the measurement” is
negative for all parameters, except for the wooden play area and the main gate, indicating
that the probability of choice decreases for many POIs in the latter half of the period. The
Main Gate is always the last POI. The estimate for the Main Gate is positive (0.301) for the
“Logarithm of the time elapsed since the start of the measurement” and negative (−3.849)
for the “Percentage of time remaining”, which together increase the probability of choice
as the time spent nears the total time spent. This demonstrates that the time pressure is
represented and consistent results are obtained.

Table 2. Estimated results (activity choice model).

Variables Name of POI Type of POI POI Number Parameters t-Values

Alternative Specific Constant (ASC)
Lookout Platform Activities 8 −0.576 −1.97

Number of Episode
Go-Kart Track Attractions 1 −0.144 −1.63

Gracia Foods 6 0.350 2.29
Hagoromo Juice and

Soft Ice Cream Foods 9 −0.236 −1.94

Ton’s Kitchen Foods 11 −0.153 −1.77
Wooden Play Area Attractions 14 −0.113 −1.09

Grass Slide Attractions 17 0.176 1.56

12 noon to 3 PM
Seven Princess Palace Foods 12 0.346 1.67

Petting Farm Activities 16 0.576 2.81

After 3 PM
Anju Bakery Shopping 5 −0.691 −1.52
Ton’s Kitchen Foods 11 −1.161 −1.77

Logarithm of the time elapsed since the measurement started (10 s unit time)
Bicycle Riding Attractions 2 −0.137 −2.99

Nishiri Shopping 4 −0.518 −7.57
Anju Bakery Shopping 5 −0.150 −3.89

Gracia Foods 6 −0.329 −3.45
Tango Tea House Foods 7 −0.177 −2.14

Hagoromo Juice and
Soft Ice Cream Foods 9 −0.121 −2.48

Seven Princess Palace Foods 12 −0.102 −2.47
Wooden Play Area Attractions 14 0.101 1.31

Clock Tower Activities 15 −0.193 −1.37
Grass Slide Attractions 17 −0.188 −2.42
Main Gate Shopping 18 0.301 5.33

Representative’s gender (Men = 1, Women = 0)
Go-Kart Track Attractions 1 0.549 2.26

Petit Petting Zoo Activities 10 0.331 2.00

Representative’s age (in 10 years)
Komachi Scuola Activities 3 −0.848 −6.34
Tango Tea House Foods 7 −0.108 −1.37

Seven Princess Palace Foods 12 0.231 4.12
INMOTION Attractions 13 −0.220 −4.55

Wooden Play Area Attractions 14 −0.346 −3.55
Clock Tower Activities 15 −0.344 −1.16
Grass Slide Attractions 17 −0.243 −2.93
Main Gate Shopping 18 0.330 3.78
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Table 2. Cont.

Variables Name of POI Type of POI POI Number Parameters t-Values

Number of children in the group
Go-Karts Track Attractions 1 0.264 2.60
Bicycle Riding Attractions 2 0.223 1.56

Gracia Foods 6 −0.537 −2.20
Tango Tea House Foods 7 −0.315 −1.21
Lookout Platform Activities 8 −0.455 −1.92

Ton’s Kitchen Foods 11 −0.457 −2.81
Seven Princess Palace Foods 12 −0.121 −1.44

Wooden Play Area Attractions 14 0.289 2.73
Petting Farm Activities 16 −0.182 −1.54
Grass Slide Attractions 17 0.370 2.77
Main Gate Shopping 18 −0.187 −1.59

Already visited
Petit Petting Zoo Activities 10 −0.891 −2.53

Distance from the previous activity location (minimum number of steps)
Common − − −0.098 −11.68

Percentage of remaining time (remaining time/total time spent)
Bicycle Riding Attraction 2 0.636 1.80
Anju Bakery Shopping 5 0.329 1.60
Main Gate Shopping 18 −3.849 −8.48

Residents of Kyoto Prefecture
Bicycle Riding Attractions 2 −0.645 −1.95

Gracia Foods 6 −1.125 −1.93

The change in the utility function value is shown when the total time spent is assumed
to be 3 h in Figure 9, to demonstrate the effect of the explanatory variables related to time.
Although the utility value of the Main Gate is extremely small at time 0, it increases with
time, and is the largest after 120 min (1/3 of the remaining time). Practically, this is not
possible because of the influence of other explanatory variables, such as the location of the
decision-making and the visitor’s attributes. However, it is observed that the main gate is
more likely to be chosen in the latter half, which indicates that the probability of returning
home increases.
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Figure 9. An example of time variation of utility function.



Sustainability 2021, 13, 4871 16 of 22

Considering the group attributes, it is observed that when the gender of the repre-
sentative was male, the utility of the Go-Kart Track and the Petit Petting Zoo was high.
It was also observed that the utility of the food court (Seven Princess Palace) and the
Main Gate increased with the increase in the age of the representatives, while the utility
of the handmade experiences (Komachi Scuola) and some of the attractions including the
INMOTION, the wooden play area, and the grass slide decreased. Additionally, it was
observed that the larger the number of children in the group, the higher the utility of the
attractions such as the Go-Kart Track, bicycle riding, the wooden play area, and grass
slide, while the restaurants and cafes (Gracia, Tango Tea House, and Ton’s Kitchen) and the
lookout platform were less likely to be chosen. The food court, Seven Princess Palace, also
recorded a negative value; however, the value was smaller than that of the other restaurants
and cafes and tended to have a smaller impact.

The distance to the location of the activity also had a significant impact on the choice.
Since the utility is reduced by −0.098 per grid (approximately 15 m), the farthest dis-
tance between the POIs, i.e., the insect exhibition hall, and the petting farm (28 grids,
approximately 420 m), reduces the utility by −2.744.

Figure 10 shows the examples of predicting the activity choice probability using the
estimation results. It is assumed that the episode number is 1, the current location is the
Seven Princess Palace (POI 12), the elapsed time is 60 min, and the percentage of time
remaining is 2/3 (120 min). To identify the difference in the probability of choice due
to the difference in the attributes of the groups, a woman in her 60 s (with no children)
was assumed to be the representative in Figure 10a, and a man in their 30 s (with two
children) was assumed to be the representative in Figure 10b. The predicted results
showed that in the case of women in their 60 s, the most probable choices were the Main
Gate, Ton’s Kitchen, and the Petting Farm. In the case of men in their 30 s, the order of
choice probability was the Petit Petting Zoo, the Wooden Play Area, and the Go-Kart track,
indicating that the differences in attributes significantly affect the activity choice probability.
For the cases in which there are children in the group, the utility of the attractions is
especially high. As mentioned above, it is observed that the probability of choosing these
activities increases significantly.

4.2. Activity Time Allocation Model

The estimation of the activity time allocation model is presented in Tables 3 and 4.
The following characteristics were observed for the baseline utility shown in Table 3: In the
lunch time period of 12 noon to 3 PM, positive values were recorded at the lunch places
such as Ton’s Kitchen and the Seven Princess Palace, which tended to increase the length of
stay. The value of the time elapsed since the start of measurement was positive for all POIs
except for the Seven Princess Palace, which indicates the utility of each POI was higher in
the latter half of the activity, indicating a tendency to leave more time to stay in the latter
half. The parameter value for the age group of the representative was also positive in Ton’s
Kitchen and the Seven Princess Palace, indicating that older people tend to spend more
time in these POIs. Considering the distance to the next activity location, the estimated
values were positive and consistent with the travel time during the activity time.

For the saturation parameters shown in Table 4, the smaller the value, the greater
the diminution in the marginal utility, and the shorter the duration of the stay. Smaller
values were obtained at the Go-Kart tracks, Nishiri, and Anju Bakery, which fitted well
to the expectation, since a shorter time period is required for the Go-Kart Track per lap
and since Nishiri and Anju Bakery are smaller shops with a short stay. The saturation
parameters of the composite goods that contributed to the amount of time left for the
rest of the activities were compared with the time of day (Figure 11); the values were
relatively large in the morning and tended to decrease in the latter half of the day. This
result suggested the presence of time pressure in early hours of activity scheduling. As
the time pressure in activity scheduling is considered to arise from activity planning [23],
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more number of shorter activities are expected in the early hours because there are more
planned and unexecuted activities.

(a)

(b)

Figure 10. Examples of predicting the activity choice probability (current position: Seven Princess
Palace, number of episode: 1, time elapsed: 60 min; percentage of remaining time: 2/3). (a) Rep-
resentatives: 60–69 years women with no children; (b) Representatives: 30–39 years men with
2 children.
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Table 3. Estimated results (activity time allocation model).

Variables Name of POI Type of POI POI Number Parameters t-Values

Number of episode
Insect Exhibition Hall Activities 0 0.313 1.28

INMOTION Attractions 13 0.352 2.74
Clock Tower Activities 15 0.778 1.59
Petting Farm Activities 16 0.212 1.50

12 noon to 3 PM
Ton’s Kitchen Foods 11 0.859 1.83

Seven Princess Palace Foods 12 1.105 2.34

Logarithm of the time elapsed since the measurement started (10 s unit time)
Go-Karts Track Attractions 1 0.418 3.81
Bicycle Riding Attractions 2 0.272 2.44
Anju Bakery Shopping 5 0.232 2.31

Petit Petting Zoo Activities 10 0.283 3.86
Ton’s Kitchen Foods 11 0.224 1.16

Seven Princess Palace Foods 12 −0.244 −3.51
Wooden Play Area Attractions 14 0.312 3.24

Petting Farm Activities 16 0.173 1.57
Grass Slide Attractions 17 0.221 2.06
Main Gate Shopping 18 0.399 3.74

Representative’s age groups (ten−year age groups)
Ton’s Kitchen Foods 11 0.662 2.81

Seven Princess Palace Foods 12 0.141 1.22

Number of children in the group
Petit Petting Zoo Activities 10 −0.463 −2.12

Main Gate Shopping 18 −0.156 −1.59

Distance from the previous activity location (minimum number of steps)
Common − − 0.053 5.15
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Figure 11. Saturation parameter values for composite goods by time.
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Table 4. Estimated results (Saturation parameters et al.).

Variables Name of POI Type of POI POI Number Parameters Standard Errors

Saturation parameters (POI)
Insect Exhibition Hall Activities 0 −0.984 0.116

Go-Karts Track Attractions 1 −1.371 0.140
Bicycle Riding Attractions 2 −0.840 0.121

Komachi Scuola Activities 3 −0.773 0.083
Nishiri Shopping 4 −1.075 0.148

Anju Bakery Shopping 5 −1.041 0.122
Gracia Foods 6 −0.667 0.127

Tango Tea House Foods 7 −0.815 0.082
Lookout Platform Activities 8 −0.842 0.115

Hagoromo Juice and
Soft Ice Cream Foods 9 −0.845 0.057

Petit Petting Zoo Activities 10 −0.861 0.108
Ton’s Kitchen Foods 11 −0.919 0.216

Seven Princess Palace Foods 12 −0.367 0.087
INMOTION Attractions 13 −0.993 0.086

Wooden Play Area Attractions 14 −1.070 0.119
Clock Tower Activities 15 −0.984 0.366
Petting Farm Activities 16 −0.920 0.092
Grass Slide Attractions 17 −0.616 0.100
Main Gate Shopping 18 0.195 0.169

Saturation parameters (composite goods)
9 AM to 9:59 AM − − −0.094 0.073

10 AM to 10:59 AM − − 0.010 0.060
11 AM to 11:59 AM − − −0.120 0.045

12 noon to 12:59 noon − − −0.054 0.048
1 PM to 1:59 PM − − −0.109 0.055
2 PM to 2:59 PM − − −0.143 0.049
3 PM to 3:59 PM − − −0.295 0.069
4 PM to 4:59 PM − − −0.217 0.100
5 PM to 5:59 PM − − −0.308 0.412
6 PM to 6:59 PM − − −0.188 0.311

Scale parameter σ 1.060 0.040
Correlation coefficient ρ −0.350 0.062

Log likelihood of constant−only model −9990.16
Log likelihood of full model −7489.72
Adjusted Rho−square value 0.240

5. Conclusions

In this study, we proposed a processing method for the discretization of GPS data
with noise and missing data into a two-dimensional grid-based spatial representation
with a high spatial resolution of 15 m. The information about the stay at the POIs was
extracted from the discretized data and a dynamic activity scheduling model composed
of an activity choice model and an activity time allocation model was estimated based on
this information.

The estimation results of the activity choice model showed that the group attributes,
such as the age of the representative and the number of children significantly affect the
probability of choosing outdoor activities, such as athletic activities and grass sliding
activities. Additionally, the probability of choosing the main gate increased in the latter
half of the stay, confirming the effect of the time pressure. The estimated results of the
activity time allocation model indicate that the time spent in restaurants and food courts
tended to be longer during the lunch hour; the older the visitors, the longer they tended
to stay in the restaurants and food courts. Moreover, the time variation of the saturation
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parameter of the composite goods suggested the existence of time pressure in the early
hours. The time pressure is generated from activities planned but not yet executed.

There are no previous studies which have been able to estimate the activity choice
as well as the activity time allocation from the GPS data. This study therefore contributes
significantly to the literature, even if it is an analysis of the activities in a single facility. In
particular, this method can formulate a novel approach for designing public spaces based
on sensing data. Furthermore, the number of visitors at a newly planned space can be
accurately predicted using the framework of this analysis. As such, the design of lively
public spaces with the practical application of the proposed framework is a major challenge
for us in the future.

In the future, collaboration and integration of the proposed framework with methods
of different spatial scales can be considered. For example, in this study, the total time
spent in outdoor facilities was given exogenously. However, since the total duration
of stay is essentially unknown, city-scaled activity-based models can be employed to
obtain the duration of stay [41–43]. Moreover, the proposed framework can be integrated
with route choice models. The spatiotemporal discretization method in this study can be
applied to recursive-type route choice models, such as the recursive logit model [44]. Such
applications facilitate the integrated modeling of the complex decision-making behavior
of pedestrians.
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