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Abstract: Reliable prediction of landslide occurrence is important for hazard risk reduction and pre-
vention. Taking Guixi in northeast Jiangxi as an example, this research aimed to conduct such a land-
slide risk assessment using a multiple logistic regression (MLR) algorithm. Field-investigated land-
slides and non-landslide sites were converted into polygons. We randomly generated 50,000 sampling
points to intersect these polygons and the intersected points were divided into two parts, a training
set (TS) and a validation set (VT) in a ratio of 7 to 3. Thirteen geo-environmental factors, including
elevation, slope, and distance from roads were employed as hazard-causative factors, which were
intersected by the TS to create the random point (RP)-based dataset. The next step was to compute
the certainty factor (CF) of each factor to constitute a CF-based dataset. MLR was applied to the
two datasets for landslide risk modeling. The probability of landslides was then calculated in each
pixel, and risk maps were produced. The overall accuracy of these two models versus VS was 91.5%
and 90.4% with a Kappa coefficient of 0.814 and 0.782, respectively. The RP-based MLR modeling
achieved more reliable predictions and its risk map seems more plausible for providing technical
support for implementing disaster prevention measures in Guixi.

Keywords: multiple logistic regression (MLR); certainty factor (CF); landslide hazard; risk prediction
and mapping

1. Introduction

Landslide hazard is one of the frequent geo-hazards, especially in south China, and it
has brought severe damages and losses to human society, as well as to the environment [1–3].
According to incomplete statistics, from the beginning of the 21st century to present time,
landslide hazards in China have caused as many as 1200 casualties and the estimated
economic loss is as high as 5–10 billion yuan, which further restricts the socioeconomic
development in the hazard-affected regions [2]. It is therefore essential to conduct an
accurate and reliable risk prediction for landslide prevention and early warning.

For this purpose, it is necessary to understand the physical process, or rather, the
mechanism of landslides. In general, studied landslides are presumably triggered by
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precipitation, which may cause landslides when the rainfall is intense, soil resistance is
relatively small, and the slope inclination is relatively high. The landslides cover a larger
area if the slip length is longer [3–7]. However, the works of Zhang et al. [8], Ou et al. [9],
and Zhou et al. [10] also revealed the important role of road construction and housing
development in landslide events. Hence, it is critical to consider geological conditions,
environmental conditions, and human activities in landslide risk assessment.

With the advent of the big data era, traditional geological methods have gradually
become unable to meet current needs to deal with the more and more abundant big geodata.
Artificial intelligence (AI) has long been used in scientific research but it was further pro-
moted by machine learning (ML) and especially by deep learning (DL) techniques because
of the capacity for processing hyper-dimensional data and for accurate prediction [11]. AI
has not yet been widely applied in geoscience; it may therefore be of critical importance
to develop and apply relevant algorithms or adapt the available algorithms to tackle big
geodata for ore mineralization prediction or geo-hazard risk assessment to serve our soci-
ety [12,13]. This will clearly be a meaningful exploratory experiment [13]. Landslide risk
prediction is one of the important tasks for ML application in environmental geoscience.

As early as the 1970s, developed countries started to study the risk of geo-hazards,
mainly landslides, in the world. In 1999, the United Nations General Assembly proposed an
initiative on “the international strategy for disaster reduction” to reduce social vulnerability
and the risk of natural disasters. In response to this initiative and based on previous
research, countries in North America and Europe carried out studies on geo-hazard risk
and its relationship with land use, making great progress in the domain of hazard mitigation
and risk reduction [14]. For example, Lumb [15] analyzed the relationship between rock-
soil types of slope mass and the occurrence of landslide. Collison et al. [16] suggested
that the incline stability is associated with the vegetation coverage in tropical regions.
Evans [17] revealed the fact that rainfall distribution in mountainous areas was affected to
a certain extent by the elevation of the incline. Mark et al. [18] used 1500 landslide data to
study the relationship between the shallow landslide frequency and terrain, and concluded
that the steeper the incline, the greater the probability of a landslide.

Studies have also been undertaken to determine the concrete landslide causative
factors. For example, Jiang and Eastman [19] used genetic algorithms to optimize the
hazard-causative factors in landslide susceptibility mapping; and in terms of information
entropy, Wan et al. [20] harnessed a data mining technique to determine the key controlling
factors and their thresholds to provoke landslide hazards. At present, there are in fact
a number of methods for landslide risk zoning, e.g., analytic hierarchy process (AHP),
Fuzzy comprehensive evaluation, information quantity, certainty factor (CF) approach, and
multiple logistic regression (MLR) analysis [21–24]. However, there are problems with the
single evaluation model, e.g., its limitation in objectively determining the weight of the
causative factors, subjective disturbances to the processing of variables in the modeling
process, and negligence of the auto-correlation of the causative factors. It is thus a chal-
lenge to objectively, quantitatively, and accurately conduct hazard risk assessment at a
regional scale [25,26]. Machine learning algorithms have also been utilized for landslide
research [8,10], and a series of models are available, such as support vector machines
(SVMs) [27], artificial neural networks (ANNs) [28], random forests (RFs) [29], boosted
regression trees (BRTs) [30,31], and limit learning machine (LLM) [32]. These algorithms
have been reported to have high accuracy for landslide risk assessment, though they have
clear disadvantages such as a complex modeling process, unstable model performance,
and weak explanatory capability [33,34]. For example, it is difficult to select the penalty
coefficient c and kernel function g for SVM models, and to determine the number of neuron
nodes in the hidden layer of backpropagation (BP) neural networks, etc. [35]. At present, the
selection of these parameters lacks a systematic method and largely relies on the experience
of researchers, which brings great uncertainty and difficulty for machine learning model-
ing. The combination of the MLR method based on GIS and some quantitative evaluation
methods may have great potential in geo-hazard risk zoning and assessment. For example,
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Xu et al. [36] evaluated the landslide susceptibility provoked by an earthquake based on
GIS and certainty coefficient analysis, and Miao et al. [37] conducted the susceptibility
analysis of Lanzhou landslide hazard based on GIS and a MLR model. Qian et al. [38] and
Ou et al. [9] used a combination of binary MLR and an information value (IV) approach to
study the geo-hazard risk of Renhe watershed and Jiangxi, respectively. It is seen that MLR
has a high potential for this kind of risk assessment. For this reason, this paper intends to
utilize MLR to establish the functional relation between the landslide hazard (probability)
and its geo-environmental factors, and to produce a risk map to provide technical support
for disaster reduction and prevention action taking Guixi as an example.

2. Methodology
2.1. Study Area

Situated in the northeast of Jiangxi, Guixi is a county covering a surface area of
2292 km2, extending geographically between 116◦57′43′′ E and 117◦28′06′′ E and between
27◦ 50′53′′ N and 28◦37′33′′ N in space (Figure 1). Dominated by the humid subtropical
monsoon climate, Guixi is characterized by a hot summer and mild winter, plentiful pre-
cipitation, and four distinct seasons. The mean annual temperature is 18.2 ◦C and the
average annual precipitation is 1790 mm with a maximum of 2761.2 mm and a minimum
of 1056.8 mm. The rainfall period is mainly concentrated in March to July, with an accu-
mulated average of 1229 mm, accounting for 68.7% of the annual precipitation. However,
it is less humid in the period from September to January. The terrain is complex in the
study area, with an elevation ranging from 20 to 1504 m and a slope from 0 to 73◦. Guixi is
generally high in altitude in the south as a part of the Wuyishan Mountains (Mts), which is
composed of granitic massif, and low in the north as a plain, with Red Basin and hills in
the center. Xinjiang is the main river in the central part of Guixi flowing from east to west,
60 km in length of which passes through the study area. The basin encompasses more than
50 km2 in surface and includes 11 tributaries, e.g., Baita and Luotang Rivers from the south,
and Yingshi, Taqiao, and Sili Rivers from the north.

Landslides are the most widespread and harmful geo-hazard in Guixi. According to
field investigation, this hazard occurs frequently in spring and summer, especially in June
and July; they are mostly small in scale and distributed on both sides of the roads. Most of
the landslides contain a clear sliding surface, i.e., soil-rock interface, and are shallow slides
(<10 m, mostly <3 m in thickness).

2.2. Data

The selection of landslide causative factors based on field observation is the first
key step in risk zoning and assessment. In combination with the results of other au-
thors [8–10,39–44], the following geo-environmental factors were obtained and prepared
in order to achieve our objectives: elevation, slope, aspect, proximity to roads, proximity
to rivers, proximity to faults, lithology of strata, land cover, average annual precipitation,
accumulated average precipitations of March–July, May–July, and March–June, and the
normalized difference vegetation index (NDVI) standing for the condition of vegetation de-
velopment,. The sources of these data are listed in Table 1 and details of their quantification
are presented in the following sections.
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Figure 1. Location map of the study area, Guixi, Jiangxi, China.

Table 1. Data types and sources.

Data Type Source Type

Geological map 1/50,000 scale geological map shapefile
Rivers and roads Google Earth shapefile

Meteorological data Ground stations shapefile and grid

Topographical data
ASTGTMV003 30m from NASA

(www.earthdata.nasa.gov,
accessed on 11 August 2020)

grid (30 m)

Land cover types and NDVI
Landsat data from USGS data server

(https://glovis.usgs.gov,
accessed on 8 May 2020)

grid (30 m)

www.earthdata.nasa.gov
https://glovis.usgs.gov
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In the study area, 273 landslides were recorded based on the field survey, and they
were divided randomly into two parts in a ratio of 7:3: training set (TS, 191 landslides) and
validation set (VS, 82 landslides). Additionally, 514 non-landslide points (i.e., no risk) were
identified and selected in the areas where slope is less than 3◦, e.g., urban areas or cropland
where there is low probability of landslide occurrence. A total of 360 non-landslide points
were added to the TS for the successive risk modeling and 154 points were incorporated
into the VS for verification and validation purposes.

2.3. Geo-Environmental Factors

The geological and environmental factors involved in the study are presented in
the following.

2.3.1. Elevation

Elevation is a fundamental characteristic of landform. A number of studies have
revealed that there is an obvious relationship between geo-hazards and elevation [45–50],
as the latter is an important indicator of the potential energy of a slope. The higher the
incline in elevation, the higher the potential of energy.

2.3.2. Slope

Slope is a critical environmental factor that affects the occurrence of geo-hazards as
it determines the possibility of slope mass displacement, or rather, soils in the weathered
crust that have vertically different layers. The slope indirectly affects the relative stability
between the layers and this determines, to a large extent, the mechanism of the incline
deformation and formation of tension joints or fissures that make the slope massif unsta-
ble [51,52]. Slope may also influence rainwater permeation and water erosion. However,
landslides may occur only when the slope reaches certain thresholds, e.g., 28–38◦ [53],
in natural conditions. Generally, bank slopes of large rivers, lakes (reservoirs), seas, and
ditches, open front hillsides, railways, highways, and slope-cutting for building, etc., are
all prone to landslides (Figure 2b).

2.3.3. Aspect

Different aspects result in different exposure to sunlight, which brings about differ-
ences in vegetation coverage, evapotranspiration, soil erosion, and especially, a different
weathering process. These will, in turn, influence the slope runoff, rainfall penetration,
the physical and mechanical properties of slope mass, and finally, the stability of the
incline [8,54]. Aspects are presented in Figure 2c.

2.3.4. Lithology

Stratigraphic lithology is an important factor for all geo-hazards. On the one hand,
lithology determines the development of joints and fractures of rocks under stress or ten-
sion. On the other hand, if the lithological characteristics of a given slope are different
from those of the underlying rocks, there will be a high potential to form an interbed-
ding or unconformity surface favorable for landslide. Given the same other condition,
different lithologies may have different resistance to landslide events, e.g., rigid granitic
massif would be more resistant than shale and mudstone. Instead of using AHP as in
Roccati et al. [24], we followed Zhang et al. [8] in assigning a proneness weight to each
category of lithology shown in Table 2. The assignment rule is that the higher the value,
the higher the tendency of the lithology to landslides.
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Figure 2. Geo-environmental factors used in the study: (a) land cover, (b) slope, (c) aspect, (d) NDVI.
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Table 2. Proneness weight of the different lithological formations.

Lithology
Granitic and

Volcanic
Rocks

Sandstone Metamorphic
Rocks

Limestone
and

Carbonatite

Mudstone
and Shale

Weight 1 5 7 8 10

2.3.5. Proximity to Faults

The influence of the fault structure on the landslide mainly lies in that whether it is a
normal or a reverse fault, a certain width of the fracture zone is generated on both sides of it.
In areas where fractures or joint fissures are well developed, dense, weak, and vulnerable
zones may be formed [37]. Thus, the nearer to the faults, the higher susceptibility to
landslide; and the bigger the scale of the faults, the greater the impacts they exert. In
this study, the distance to faults was calculated by a buffer operation within GIS, and
the fault buffers were defined as 0–30 m, 30–60 m, 60–90 m, 90–120 m, and >120 m for
small scale faults (<10 km in length), which were assigned a weight value of 13, 10, 7, 4,
and 1, respectively, and 0–60 m, 60–120 m, 120–180 m, 180–240 m, and >240 m for bigger
faults (≥10 km in length), which were assigned a weight value of 20, 15, 10, 5, and 1,
respectively [8,10] (Figure 3c).

2.3.6. Proximity to Roads

Slope cutting and excavation for road construction and housing development de-
stroyed the stability of the incline, provoking landslides [8,10,24]. In terms of our under-
standing about the impacts of road construction on landslides in the field, it was noted that
distance plays a key role in such hazard events, i.e., the closer to the road, the higher the
propensity of landslide. Thus, the distance to roads was regarded as a critical factor which
was calculated by a buffering operation. The road buffers were defined with intervals of
0–30 m, 30–60 m, 60–90 m, and 90–120 m, and assigned, respectively, a weight value of 10,
8, 4, and 1 [8,10] (Figure 3a).

2.3.7. Proximity to Rivers

River development is also an unignorable factor for geo-hazards because it erodes and
liquidizes its banks or bottom slopes on the two sides, causing collapses and landslides [8].
The development of a river system favors the occurrence of the geo-hazard. Similar to other
linear factors, the closer to the rivers, the higher the propensity of landslides. Hence, the
distance to rivers was also used as an environmental factor. It was buffered into different
zones, e.g., 0–30 m, 30–60 m, 60–90 m, 90–120 m, and 120–150 m for small rivers and
streams, and 0–60 m, 60–120 m, 120–180 m, 180–240 m, and 240–300 m for the main river,
i.e., Xinjiang River. A weight was allocated to each buffer zone based on its proclivity to
landslide, e.g., zones 0–30 m, 30–60 m, 60–90 m, 90–120 m, and 120–150 m were assigned,
respectively, 12, 10, 6, 3, and 1, and zones 0–60 m, 60–120 m, 120–180 m, 180–240 m, and
240–300 m, respectively, 20, 16, 10, 5, and 1 [8,10] (Figure 3b).

2.3.8. Precipitation

A large number of landslides show that precipitation is the first important cause of
their occurrence. There are generally two cases: either sufficient precipitation duration or in-
tensity [37]. The rainy season in southern China goes from March to July. During this period,
there is usually a lot of rainfall and heavy periods of rainfall occur in June–July of each year,
and landslide hazards frequently take place in these two months. Therefore, the annual
mean precipitation, the accumulated average precipitation of March–July, March–June,
and May–July of the past 20 years were obtained from 40 ground weather stations, and
then calculated and interpolated with the inverse distance weighting (IDW) method into a
grid. These precipitation layers were selected for our risk modeling to investigate which
months’ combination of rainfall would best reveal its role in the landslide events.
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Figure 3. Geo-environmental factors used in the study: (a) roads, (b) rivers, (c) faults, (d) annual
average precipitation.

2.3.9. Land Cover Types

Land use refers to all activities that humans impose on land for survival and devel-
opment. This can be not only production activities such as planting crops, trees, pasture,
construction of factories, roads, etc., but also non-production activities such as construction
of scenic tourist areas and nature reserves. With increasing demand from human beings,
land use has become more and more intensive, resulting in a decline in woodlands/forests
and grasslands in some regions or countries [55]. Such land use and change may exert a



Sustainability 2021, 13, 4830 9 of 19

significant impact on soil erosion, especially, when there is concentrated rainfall [55,56].
The development of burn-and-slash agriculture makes land prone to landslide hazards. In
fact, there are at present six land cover types in the study area, namely farmlands, water
bodies (rivers and lakes), built-up areas, forests, shrubs, and finally bare land, and these
were allocated a proclivity weight of 0, 0, 0, 1, 4, and 10, respectively [8,10] (Figure 2a).
Here, forest cover has the least proclivity while bare land without vegetation protection is
the most vulnerable category when the other conditions are the same.

The land cover map was produced from Landsat TM images dated 31 May (Spring)
and 7 November 2010 (Autumn) based on the approach proposed by Wu et al. [57].

2.3.10. NDVI

The NDVI (normalized difference vegetation index) reveals information about vegeta-
tion cover, e.g., vegetation vigor, density, biomass, and its root system. Roots are able to
hold soil and stabilize the hillside mass, and reduce the impact of precipitation on the soil.
The level of vegetation coverage, in particular forest cover, reflects the degree of vegetation
protection of the land surface. Under the same conditions, areas with greater vegetation
coverage are less prone to landslide hazards.

The NDVI of the study area was generated from Landsat 5 TM images acquired in
late autumn (late October and early November) in the five-year period 2005–2010. After
atmospheric correction using the COST model [55,58], an averaged five-year NDVI was
produced to represent the natural vegetation (e.g., forests, woodlands, and shrublands) as
croplands were harvested and herbaceous vegetation became withered at that time. This
mean NDVI image ranges from −0.297 to 0.823 (Figure 2d).

2.4. Methods
2.4.1. MLR Model

Based on the linear regression in which the dependent variables are binomial, the
MLR model applies a logical function to solve the nonlinear problems and this conversion
has made MLR highly successful in the field of machine learning. For this reason, it has
been increasingly drawing the attention of geographers, biologists, and environmentalists
in recent decades thanks to its ability to analyze spatially explicit causes and predict the
potential changes and events in the ecosystem [55]. It has hence been widely applied
in deforestation [59,60], land use change [61–63], and landslide prediction [64]. Within
MLR, independent variables can be continuous or discrete and do not necessarily meet
the requirement of normal distribution. Supposing that the probability of occurrence of
geo-hazards is P, and the probability of non-occurrence is 1 − P, then ln[P/(1 − P)] is
taken as the dependent variable, the hazard-causative factors xi (i = 1, 2, 3, .... n) as the
independent variables, and the MLR model can be expressed as a linear regression in
Equation (1).

ln[P/(1− P)]= α0 + α1 x1 + α2 x2 + · · ·+ αn xn (1)

The probability of landslide occurrence can be computed with Equation (2).{
Z = α0 + α1 x1 + α2 x2 + · · ·+ αn xn

P =
exp(Z)

1+exp(Z)
(2)

where P is the calculated probability of landslide occurrence, xi (i = 1, 2, 3, ... n) are the
geo-environmental factors as independent predictive variables, αi (i = 1, 2, 3, ... n) are the
coefficients of these predictive variables, and α0 is a constant.

After calculation of the probability of landslide occurrence, the landslide risk zoning
map can be created.

2.4.2. Modeling Procedures

For landslide risk zoning, it is requisite to determine the potential role of the geo-
environmental factors in the landslide event, in other words, to understand which factors
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have a greater effect on this hazard occurrence than others. In this research, the prediction
and assessment of landslide hazards in Guixi was conducted using two MLR models, i.e.,
CF-based and RP-based MLR models.

CF Calculation

Proposed by Shortliffe and Buchanan for certainty reasoning in medical diagnosis in
1975 [65], the CF was redefined and improved by Heckerman in 1986 [66]. It is a probability
function [67], which is used to examine the tendency of factors governing the occurrence of
an event. As the evaluation process is relatively simple and accurate, it is widely used in
geo-hazard risk assessment [68–72]. The premise is to assume that the geo-hazards that
have occurred and those that will probably take place in the future are under the same
geological and environmental conditions. The calculation formula is shown in Equation (3):

CF =

{ ppa−pps
ppa(1−pps)

, ppa ≥ pps
ppa−pps

pps(1−ppa)
, ppa < pps

(3)

where PPa is the conditional probability, or rather, the ratio of the area or number of
landslide hazards appearing in subset a to the area of subset a. PPs is the probability of
occurrence of the whole event, and in our case, it can be represented as the ratio of the
landslide area or number occurring in the whole study area to the surface area of the
study area.

According to Equation (3), the CF varies from −1 to 1. The closer the CF to 1, the
greater the possibility of a landslide hazard or vice versa. When CF is 0, it indicates the
same probability of landslide occurrence and non-occurrence.

Superimposing the training samples (landslides and non-landslides) on each factor
layer that has been divided into subsets, the CF approach was applied to calculate the CF
value of each subset of the 13 geo-environmental factors. The CF-based dataset was hence
produced and the areas and numbers of the subsets of a part of the factors are presented in
Table 3.

Table 3. Division and CF values of the main geo-environmental factors.

Variable Subset Area of Subset (km2) Area of Landslide (km2) CF

Elevation

20–267 1658.736 0.3951 −0.268
267–515 355.597 0.1134 −0.018
515–762 160.439 0.0135 −0.742
762–1009 73.526 0.0063 −0.735
1009–1257 32.552 0.0018 −0.831
1257–1504 8.955 0.0000 −1

Slope

<3 271.531 0.0234 −0.735
3–9 774.307 0.1395 −0.446

9–15 448.984 0.1800 0.188
15–21 296.966 0.1062 0.092
21–27 220.882 0.0567 −0.209
27–33 144.243 0.0171 −0.634
33–39 79.566 0.0063 −0.757
39–45 36.940 0.0009 −0.926
>45 16.386 0.0000 −1

Aspect

Flat 23.6754 0 −1.000
North 143.12 0.0261 −0.44

Northeast 299.695 0.063 −0.354
East 313.212 0.0576 −0.434

Southeast 302.942 0.0621 −0.369
South 281.11 0.0873 −0.043

Southwest 301.716 0.0909 −0.074
West 323.207 0.0684 −0.348

Northwest 311.566 0.0549 −0.459
North 146.109 0.0198 −0.582
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Table 3. Cont.

Variable Subset Area of Subset (km2) Area of Landslide (km2) CF

Proximity
to roads

0–30 73.5246 0.306 0.922
30–60 71.1603 0.1251 0.815
60–90 69.0336 0.0369 0.393
90–120 66.8322 0.0117 −0.462

Proximity
to rivers

0–30 50.4495 0.054 0.696
30–60 48.5829 0.045 0.649
60–90 47.0187 0.0459 0.667
90–120 45.9873 0.027 0.446
0–60 69.4548 0.0243 0.071

60–120 62.4204 0.0126 −0.379
120–180 57.9708 0.0135 −0.283
180–240 54.7452 0.0243 0.268

Proximity
to faults

0–30 37.4526 0.0198 0.386
30–60 38.0592 0.0189 0.346
60–90 38.9853 0.0153 0.171
90–120 39.2265 0.0189 0.326
0–60 17.5698 0.0045 −0.212

60–120 17.9028 0.009 0.354
120–180 17.7084 0.0054 −0.062
180–240 17.1873 0.0063 0.114

NDVI

−0.297–−0.073 10.034 0.0000 −1
−0.073–0.151 30.311 0.0027 −0.726
0.151–0.375 687.569 0.0954 −0.572
0.375–0.599 737.238 0.3429 0.301
0.599–0.823 824.746 0.0891 −0.668

Annual
average

precipita-
tion

1604.7–1683.8 160.9317 0.0144 −0.723
1683.8–1762.8 204.5124 0.0081 −0.877
1762.8–1841.9 947.5398 0.1251 −0.594
1841.9–1920.9 698.8761 0.1863 −0.179
1920.9–2000 277.9641 0.1962 0.54

RP Resampling

Within GIS, 50,000 RPs were generated and used to intersect samples (i.e., landslide
event polygons for training), and 1858 points were retained in the polygons (0 or 1) in the
dependent variable layer, in which 589 points fell in the landslide areas and 1269 points
in the no-risk areas. These points were superimposed and intersected with each geo-
environmental factor layer to obtain the values corresponding to the landslides and no-risk
areas. Thus, an integrated dataset including the training set, i.e., RP-based dataset, was
produced.

MLR Modeling

The RP-based and CF-based datasets were input into SPSS20.0 for binary MLR analysis,
where landslide events were treated as a dependent variable and other geo-environmental
factors as independent (predictive) variables. The first and second landslide risk models,
i.e., RP-based MLR-1 and CF-based MLR-2, were thus obtained. The regression coefficient
of each factor was considered as its contribution weight to the landslide event.

Risk Mapping

After modeling, the two models were applied back to the predictive variables to
calculate the landslide hazard risk of the whole study area. Landslide risk zoning was
conducted based on the calculated probability, which was further graded into different risk
levels, e.g., when the probability is 0–0.2, the zone is considered stable (no risk), 0.2–0.4 low,
0.4–0.6 moderate, 0.6–0.8 high, and 0.8–1.0 extremely high risk.

2.4.3. Verification and Reliability Analysis

Overall accuracy (OA) and Kappa coefficient [8,11,57,73,74] were the metrics to evalu-
ate the accuracy and reliability of the landslide risk models produced by MLR modeling
using RP- and CF-based datasets against the VS. As Landis and Koch [74] interpreted, if
KC reaches 0.81–1.00, the prediction reliability is “almost perfect” [8].
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2.4.4. Multicollinearity Diagnosis

Collinearity means that two predictive variables are linearly correlated to each other
in a regression model, and if there are more than two variables involved, we call it multi-
collinearity. In such a case, it is not possible to conduct regression modeling as independent
variables cannot independently predict the dependent variable. MLR modeling is suscep-
tible to such collinearities among the predictive variables. Tolerance (TOL) and variance
inflation factor (VIF) are two criteria for diagnosing multicollinearity [75,76]. If TOL is <0.1
or VIF > 10, it indicates a strong multicollinearity among the independent variables [77].

3. Results

The intermediate processing and final results are presented in Tables 4–7, and Figure 4
in this section for further discussion.

Table 4. Results of random points (RP)-based MLR modeling (Model MLR-1).

Variable β SE Wals df Sig exp(β) Order

Elevation −0.007 0.001 55.015 1 0.000 0.993 7
Slope 0.135 0.016 75.712 1 0.000 1.145 3

Aspect 0.003 0.001 7.854 1 0.005 1.003 6
Proximity to roads 0.440 0.025 298.674 1 0.000 1.552 1
Proximity to rivers 0.024 0.021 1.259 1 0.262 1.024 4
Proximity to faults −0.007 0.033 0.039 1 0.843 0.993 7

NDVI −2.155 1.028 4.389 1 0.036 0.116 12
Lithology −0.145 0.037 15.269 1 0.000 0.865 10
Land use 0.010 0.078 0.016 1 0.899 1.010 5

Accumulated average precipitation of March–July 0.310 0.061 25.917 1 0.000 1.364 2
Accumulated average precipitation of May–July −0.119 0.032 14.123 1 0.000 0.888 9

Accumulated average precipitation of March–June −0.206 0.028 54.259 1 0.000 0.814 11
Annual average precipitation −0.032 0.016 3.922 1 0.048 0.969 8

Constant −6.675 3.885 2.952 1 0.086 0.001

Table 5. Results of certainty factor (CF)-based MLR modeling (Model MLR-2).

Variable β SE Wals df Sig exp(β) Order

Elevation 1.720 0.728 5.584 1 0.018 5.585 5
Slope 2.645 0.358 54.524 1 0.000 14.083 1

Aspect 0.782 0.600 1.699 1 0.192 2.186 8
Proximity to roads 2.608 0.150 301.480 1 0.000 13.572 2
Proximity to rivers 0.592 0.258 5.266 1 0.022 1.808 10
Proximity to faults −0.085 0.573 0.022 1 0.882 0.918 12

NDVI 1.403 0.254 30.580 1 0.000 4.067 6
Lithology 2.225 0.313 50.623 1 0.000 9.256 4
Land use 0.729 0.570 1.640 1 0.200 2.074 9

Accumulated average precipitation of March–July −1.582 0.813 3.787 1 0.052 0.206 13
Accumulated average precipitation of May–July 0.553 0.757 0.533 1 0.465 1.738 11

Accumulated average precipitation of March–June 2.400 0.674 12.681 1 0.000 11.019 3
Annual average precipitation 0.908 0.599 2.294 1 0.130 2.479 7

Constant 2.999 0.389 59.515 1 0.000 20.058

Note: β—regression coefficient of each predictive factor in the model, SE—standard error, Wals—Chi-square value, df—degree of freedom,
and Sig—significance.

Table 6. Overall accuracy (OA) and Kappa coefficient (KC) of the two MLR models versus the
validation set (VS).

Model Overall Accuracy (%) Kappa Coefficient

RP-based MLR-1 91.5% 0.814
CF-based MLR-2 90.4% 0.782
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Table 7. Observation accuracy of the predicted risk map versus the observed landslides.

Risk Level
Distribution of the Field Observed Landslides

MLR-1 MLR-2

No risk 4.76% 6.60%
Low risk 3.66% 1.83%

Median risk 4.76% 2.93%
High risk 9.89% 6.60%

Extremely high risk 76.92% 82.05%

Figure 4. Landslide risk maps: (a) from model MLR-1, and (b) from model MLR-2.

3.1. MLR Models

RP-based and CF-based MLR models are shown in Tables 4 and 5, respectively, where
the estimated coefficients of the predictive factors (independent variables) are demon-
strated. These models were utilized to compute the probability of landslide risk for the
whole study area. The observation accuracy of the two modeling results are illustrated in
Table 6. The two obtained models MLR-1 and MLR-2 are expressed in Equations (4) and (5):

P =
exp(−6.675− 0.007x1 + 0.135x2 + . . . + 0.310x10)

1 + exp(−6.675− 0.007x1 + 0.135x2 + . . . + 0.310x10)
(4)

P =
exp(2.999 + 1.720x1 + 2.645x2 + . . . + 0.908x13)

1 + exp(2.999 + 1.720x1 + 2.645x2 + . . . + 0.908x13)
(5)

In Equations (4) and (5), x1—elevation, x2—slope, x3—aspect, x4—proximity to roads,
x5—proximity to rivers, x6—proximity to faults, x7—NDVI, x8—lithology, x9—land cover,
x10—accumulated average precipitation of March–July, x11—accumulated average pre-
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cipitation of May–July, x12—accumulated average precipitation of March–June, and x13—
average annual rainfall.

It is worth mentioning that in Tables 4 and 5, we can calculate the odds ratio (OR) [55,62]
using exp(β) between the geo-environmental factors to understand the likelihood contribu-
tion to the hazard event of one factor over the other.

Evaluated versus the VS, the OA and KC of the two MLR models are 91.5% and 0.814
and 90.4% and 0.782, respectively (Table 6). Based on the interpretation of Landis and Koch
(1976), the modeling result of Model MLR-1 reaches “almost perfect” while that of MLR-2
is “substantially” good, though the observation accuracy of the latter appears to be slightly
higher as more field-observed landslides are located in the predicted high and extremely
high zones (Table 7 and Figure 4).

3.2. Collinearity

The results of the collinearity diagnosis are demonstrated in Table 8. For model MLR-1,
the TOL of all rainfall factors was <0.1 or VIF > 10, which means that they are correlated
and it is not necessary to use all of them for MLR modeling. However, for model MLR-2,
the TOL was >0.1 with VIF < 10, indicating that there was not a serious multicollinearity
problem among the independent factors for CF-based MLR modeling.

Table 8. Collinearity of the geo-environmental factors of the two models: MLR-1 and MLR-2.

Variable

MLR-1 MLR-2

Collinearity Statistics Collinearity Statistics

Tolerance VIF Tolerance VIF

Elevation 0.403 2.479 0.919 1.088
Slope 0.541 1.847 0.705 1.419

Aspect 0.919 1.088 0.857 1.167
Proximity to roads 0.596 1.678 0.587 1.702
Proximity to rivers 0.863 1.159 0.871 1.148
Proximity to faults 0.937 1.067 0.928 1.078

NDVI 0.389 2.570 0.851 1.176
Lithology 0.652 1.534 0.686 1.458
Land use 0.932 1.073 0.847 1.181

Accumulated average precipitation of March–June 0.014 73.495 0.178 5.623
Accumulated average precipitation of May–July 0.011 92.400 0.129 7.745

Annual average precipitation 0.009 106.564 0.124 8.074
Accumulated average precipitation of March–July 0.002 571.362 0.116 8.649

3.3. Landslide Risk Maps

The calculated risk probability from the two models, MLR-1 (Equation (4)) and MLR-2
(Equation (5)), ranging from 0 to 1.0, was classified into five grades: stable (no risk, 0–0.2),
low (0.2–0.4), moderate (0.4–0.6), high (0.6–0.8), and extremely high risk (0.8–1.0). The
zonation map of landslide hazard was thus created and presented in Figure 4.

The two maps show that the areas of Guixi susceptible to landslide hazard are largely
spread alongside the roads. The high risk and extremely high risk areas are mainly
distributed in the towns of Wenfang, Jintun, and Zhangping in the south and Baitian in the
north of the study area. The central part of Guixi is a relatively flat plain with a low risk
of landslides.

As seen in Tables 4 and 5, the regression coefficients of the geo-environmental factors
obtained from MLR analysis denote the order of importance. For example, the importance
of roads, slope, and rainfall has been well illustrated in MLR-1 and MLR-2. Road construc-
tion and housing development destroy the original stability of the slope massif, triggering
the downward slide of the overlying geological strata and the weathered crust along the
bedding surface or the downhill slide of the slope massif on the unconformed surface
with the underlying rocks. Hence, these human activities form a key part of the landslide
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disaster. Precipitation is considered the most important triggering factor of this kind of
disaster, especially in south China.

4. Discussion
4.1. Digitization and Weight Assignment

In order to model and predict the landslide risk in Guixi by the MLR algorithm,
we employed 13 geological and environmental factors either as continuous or discrete
variables, together with field observation data. The non-numeric factors (e.g., geological
strata, faults, road, and rivers) were first digitized and then allocated a propensity weight
either to different lithology or to buffers of the linear features in line with their proximities
to the latter to make these factors digitized. Thence, such processing made data-driven
approaches possible and successful in the landslide risk modeling of this study.

4.2. Importance of the Variables in Landslide Events

As revealed in Tables 4 and 5, the first three important geo-environmental factors of
Model 1 (MLR-1) are the proximity to roads, the accumulated average precipitation of
March–July, and the slope, and of Model 2 (MLR-2) are the slope, the proximity to roads,
and the accumulated average precipitation of March–June. Both models have illustrated
more or less the similar correlation of the hazard-causative factors such as roads, slope,
and accumulated average rainfall of March–June or March–July with landslide events.
The accuracy of the RP-based Model 1 seems to be higher than the CF-based Model 2
(Table 6). As already mentioned earlier, most of the observed landslides were distributed
along the roads or behind the houses, and resulted directly from human activities, i.e.,
road construction and housing development. This is the same as what we discovered in
Jiangxi [8–10].

Collinearity analysis reveals that, for RP-based MLR modeling, one of the rainfall-
related factors is enough, e.g., annual average precipitation or accumulated average precip-
itation of March–July or May–July. As demonstrated in Table 4, the accumulated average
precipitation of March–July is more important than other rainfall factors, and hence can be
selected for final risk mapping.

4.3. Lowering the Threshold of Slope

We noted that 234 landslides, taking up 85.9% of the total, took place in zones with
a slope ranging from 3◦ to 21◦. Yet, Fan et al. suggested that the sliding threshold be
28◦–38◦ for natural landslides [53]. This means that the threshold has been lowered by
the intervention of human activities. This finding is also supported by two other parallel
studies [8–10] in the same province.

4.4. Comparison with the Results of Others

Another study [8] employed an RF algorithm to predict the landslide risk in Guixi and
achieved the mapping work with an OA of 91.23% and KC of 0.82. This is close to those of
Model 1 of this study, indicating that RP-based MLR modeling and prediction can achieve
the same satisfactory results as RF algorithm. Ou et al. [9] conducted a comprehensive
regional-scale study on landslide hazard mapping in Jiangxi using MLR based on an
information value (IV) approach and achieved an accuracy of 86%. This is also comparable
to what we have effectuated. In future work, a comparative analysis is to be conducted
using SVM and BRT algorithms, as [31] reported that these algorithms may lead to relevant
risk prediction and evaluation.

5. Conclusions

The prediction of landslide geo-hazards is a complex nonlinear process. This study
has not only indicated ways of processing geo-environmental data, especially non-digital
data for quantitative analysis, but also exhibits the fact that even the same modeling
algorithm may reach different results if the sampling scheme is different. It is therefore
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necessary to select a reasonable one for achieving reliable risk prediction. The RP-based
MLR approach seems more reasonable than the CF-based one and will be recommended
for extension to similar landslide hazard prediction elsewhere. The prediction and its
results may provide technical support and relevant advice to decision-makers for disaster
reduction and prevention management in the study area.

This study also illustrates the unfavorable role of anthropogenic activities in caus-
ing such geological disasters, confirming the results of Zhang et al., Ou et al. and
Zhou et al. [8–10]. Man exploits natural resources, modifies the land surface, and, at
the same time, directly breaks the original balance of the landscape. This is the origin of
the artificial landslides that are related to the road system development and urbanization.
Apart from a better and more comprehensive geological survey before road construction
and housing development, man has to think of optimal land use planning to minimize the
man-made disasters.
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