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Abstract: Learning programming is a complex and challenging task for many students. It involves
both understanding theoretical concepts and acquiring practical skills. Hence, analyzing learners’
data from online learning environments alone fails to capture the full breadth of students” actions
if part of their learning process takes place elsewhere. Moreover, existing studies on learning
analytics applied to programming education have mainly relied on frequency analysis to classify
students according to their approach to programming or to predict academic achievement. However,
frequency analysis provides limited insights into the individual time-related characteristics of the
learning process. The current study examines students’ strategies when learning programming,
combining data from the learning management system and from an automated assessment tool used
to support students while solving the programming assignments. The study included the data of
292 engineering students (228 men and 64 women, aged 20-26) from the two aforementioned sources.
To gain an in-depth understanding of students’ learning process as well as of the types of learners,
we used learning analytics methods that account for the temporal order of learning actions. Our
results show that students have special preferences for specific learning resources when learning
programming, namely, slides that support search, and copy and paste. We also found that videos are
relatively less consumed by students, especially while working on programming assignments. Lastly,
students resort to course forums to seek help only when they struggle.

Keywords: automated assessment; computer science; learning analytics; process mining; program-
ming; sequence mining

1. Introduction

In recent years, there has been a growing interest in examining the ways students
approach the challenge of learning programming [1,2]. This topic has drawn the attention
of researchers and practitioners due to the high failure rates that programming courses
often have [3,4]. Indeed, research has shown that students experience several difficulties
when learning programming, including designing a program to solve a certain task, under-
standing programming structures, memorizing the programming language syntax, and
debugging their programs [5,6].

As online learning has become more prevalent, students play an increasingly central
role in their learning process. Therefore, students’ ability to learn on a self-directed basis is
recognized as an essential skill for their study success [7-9], especially in online learning
settings [7,9]. Research has consistently shown that effective use and implementation of
learning strategies is a consistent predictor of a successful learning process and conse-
quently, of academic success. Learning strategies are defined as “any thoughts, behaviors,
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beliefs, or emotions that facilitate the acquisition, understanding, or later transfer of new
knowledge and skills” [10]. Learning tactics—a closely related term—is commonly used to
refer to the cognitive routines, actions a student makes to accomplish a learning objective
or perform a task, i.e., the way a student attempts to learn something [11]. Students’ choice
of learning tactics can be decisive for their success in the challenging and demanding task
of learning programming [12]. In fact, enhancing the process of self-regulation has proven
to lead to better programming performances [8]. Hence, understanding which learning
tactics students undertake when learning programming is of paramount importance to
optimize learning and support academic achievement, as well as to improve programming
course design.

In 2020, as the COVID-19 pandemic spread across the world, a majority of countries
announced the temporary closure of schools, impacting more than 91% of students world-
wide. Without the support that teachers provide to students in face-to-face settings, it
becomes an even greater challenge to assist students throughout their learning process [13].
Therefore, ensuring that students are capable of self-regulating their learning is imper-
ative [14]. This pressing need is addressed by the UN Sustainable Development Goals
(SDGs) [15], which advocates for Quality Education (SDG4) [16].

The availability of immense volumes of students’ digital traces coupled with a bur-
geoning field of learning analytics (LA) has enabled valuable insights into the learning
tactics and strategies that students apply when learning a topic or skill [17]. What is more,
a growing number of publications have provided convincing evidence on the value and
validity of using learner data to understand and enhance learning and teaching through
the analysis of students’ digital traces [17]. In particular, methods that combine the time
and order of learning and tactics (e.g., process and sequence mining) are of particular
relevance to programming education since the order and the sequence of events in coding
are fundamental to the success of how code is constructed, debugged, or executed.

The analysis of learners” data from online learning environments on its own may fail
to account for the full breadth of students’ learning actions if part of their learning process
takes place outside this scope, such as in Integrated Development Environments (IDEs).
With this in mind, authors have analyzed the data collected from auxiliary systems that sup-
port programming students in their learning process (e.g., automated assessment systems
for programming assignments), to examine how different factors affect students” outcomes
and programming mastery, such as code quality, code size, and usage frequency [18-20]. In
this study, we argue that a holistic approach that is based on the analysis of data originating
from several relevant sources to programming education would provide a more accurate
view of students’ learning, considering how the temporality of the learning tactics, the
interconnectedness of events, and the combination of various learning strategies may
influence the outcome of the learning process [21].

The current study makes a novel contribution to the body of literature by examining
the tactics and strategies that students apply when learning programming, using data from
the learning management system (LMS) as well as from an automated assessment tool
employed by the students, with an emphasis on how they approach challenging tasks and
the tactics they undertake to overcome such challenges. We further attempt to discover
the different groups of students who have distinct learning strategies and investigate how
such strategies correlate with performance.

The following research questions have been formulated:

RQ1: How can learning analytics help understand students’ tactics when learning
programming (i.e., when and how they struggle, seek help, and succeed)?

RQ2: How can learning analytics help identify different strategies of programming
learners and how they relate to performance?

This article is structured as follows. In the next section, we examine the existing
literature on LA, delving on its applications in programming education. Then, we present
the methods used in this study, followed by the results obtained. Subsequently, we present
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a discussion of the results, with an emphasis on how the results obtained can help improve
the course design. Lastly, concluding remarks and an outlook of future work are offered.

2. Background
2.1. Temporality in Learning Analytics

Learning is a dynamic process that follows an unidirectional forward path: it is time-
ordered, sequential, and unfolds over time [22,23]. Furthermore, temporality is embedded
in the way programming learning is designed, how learning materials are organized, and
how students are assessed. Research has consistently exhibited that students who use
efficient time management strategies outperform those who do not [24]. The emergence
of the field of LA and the abundance of time-stamped learning events has motivated
researchers to explore methods that enable sense-making of time, order, and relational
information. As such, an expanding repertoire of methods has proven valuable, such as
process mining and sequence mining [17].

Process mining is a relatively young analytical method that allows extracting mean-
ingful insights from time-ordered event logs [17]. The aim of process mining is to discover
the real process (as observed, i.e., not the hypothesized or assumed), evaluate the efficiency,
and help or enhance the (learning) process [25]. Recently, a wide range of applications of
process mining in education have emerged to, e.g., study the process of students’ assess-
ment, and how it conforms to the standard model, study the learning process in Massive
Open Online Courses (MOOCs) and the alignment of such processes using conformance
checking, or examine student efficiency in using time management strategies and how this
influences their grades [26,27].

Sequence mining is another approach that is increasingly gaining ground among
educational researchers. As the name suggests, the primary goal of sequence mining
is to extract meaningful insights from sequential data, i.e., to efficiently summarize the
sequential patterns of learning data and categories/cluster those patterns into a limited
number of groups [28]. Such categories help identify subgroups of, for instance, learning
approaches. The procedure is particularly powerful when the learning process is seen to
be sequential [27]. Scholars have successfully used sequence mining to detect and classify
students’ learning tactics and strategies. To study the multifaceted nature of temporality
of students” ways of learning, the two approaches (process and sequence mining) are
commonly combined [27,29].

2.2. Learning Analytics in Programming Education

Existing LA studies in programming education have mainly relied on frequency
analysis to classify students according to their activity or to predict academic achievement.
Azcona et al. [19] presented a predictive analytics system that aggregates students” digital
footprints from a blended programming classroom to find which factors potentially predict
learning outcomes. They found a positive correlation between the time spent by students on
programming assignments and exam scores. In another study, Pereira et al. [30] employed
LA methods to identify early effective behaviors of novice students. They reported that
among the best predictors of programming efficiency were the frequency of mistakes and
the proportion between pasted characters and written characters in the programming
environment. In the same vein, Filva and colleagues [31] collected and analyzed students’
clickstream data in Scratch (a block-based visual programming language and website
targeted primarily at children) and performed both exploratory and predictive analytics to
classify students according to the frequency with which they clicked on the different parts
of the programming environment. Although informative, frequency analysis provides
limited insights into the individual time-related characteristics of the constructs researched,
as pointed out by Molenaar [32]. Frequency analysis regards the learning process as a set of
disconnected units, ignoring the fact that learning actions are time-ordered and essentially
interrelated [21,32].
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Going beyond frequency counts as representative of learning allowed Fields et al. [33]
to trace and document the iterative ways that users approached particular concepts as well
as the changes in programming styles in the Scratch environment. Blikstein [18] used the
data captured from a programming environment to analyze the changes in the number of
code compilations over time, identify moments of greater difficulty in the programming
process, and trace an approximation of each prototypical coding profile and style. In the
work by Chen et al. [20], cluster analysis confirmed that learning motivation (denoted by
early and on-time submissions) was strongly associated with final grades, and not the
number of submissions made by students. Furthermore, Watson et al. [34] developed
a unique approach for predicting performance based upon how a student responds to
different types of errors compared to their peers. In the same line, Jiang et al. [35] used
sequence analysis to calculate the trajectories followed by students when solving block-
based programming assignments to identify common patterns in their behavior. Lastly,
Matcha et al. [12] used sequence and process mining to detect students’ tactics and strategies
from LMS data from a programming MOOC. Accounting for the individual time-related
characteristics has allowed to illustrate how events occur within the flow of continuous
events in a particular time window. However, the aforementioned studies analyzed
data exclusively from programming environments [18,20,33-35] or from LMSs alone [12].
Learning programming involves both understanding theoretical concepts and acquiring
practical skills. Hence, analyzing learners” data from a single learning environment fails to
capture the full breadth of students’ learning actions if part of their learning process takes
place elsewhere.

This study takes the previous literature as a departure point by combining, synchro-
nizing and analyzing data from two complementary systems (an LMS and an automated
assessment tool) to gain a holistic understanding of how students approach the task of
learning programming where it occurs, and the tactics they implement when they success-
fully undertake a programming challenge, while accounting for the temporal dimension of
the learning process. We further examine the different types of students using unsuper-
vised learning to investigate if differences exist in terms of the learning strategies used or
academic performance.

3. Methods
3.1. Context

The programming course analyzed in this study is part of the Bachelor’s Degree in
Telecommunications Engineering at Universidad Politécnica de Madrid (UPM). It is a
third-year blended course that accounts for 4.5 ECTS (European Credit Transfer System),
equivalent to 115-135 h of student work. This course teaches the basics of web devel-
opment, including HTML (HyperText Markup Language), CSS (Cascading Style Sheets),
JavaScript, and more advanced technologies, such as node.js, express, and SQL (Struc-
tured Query Language). The course is structured into nine units, each of which contains
several modules.

The course materials are delivered to students through the Moodle LMS. These ma-
terials include 27 slideshows (with both theoretical content and code snippets), 22 video
lessons, 17 solved exam exercises from past years, and the instructions of the 9 program-
ming assignments. In these assignments, a code template is provided to students with
some basic features that are already implemented in the code, as per the AMMIL (Ac-
tive Meaningful Micro-Inductive Learning) methodology [36]. They need to follow the
instructions in order to complete a set of missing features. The students work on these
assignments offline and use a student-centered automated assessment tool—developed
by the course faculty staff—which runs a test suite on their code and provides them with
a score according to the code’s compliance with the assignment requirements. The tool
also provides feedback messages (pre-set by the instructors) designed to help students find
errors or missing features in the code. The students are allowed to run these tests as many
times as they may wish. Once they are satisfied with the score, they can submit their work
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in the LMS by using a command provided by the automated assessment system itself. A
complete description of this tool is available in [37].

Students are required to submit all of the assignments, which account for 30% of the
final grade. The remaining 70% corresponds to one final exam conducted at the end of
the course. In order to pass the course, students needed to achieve a grade greater than
or equal to 4 out of 10 in the exam and obtain a grade of at least 5 out of 10 in the course
final grade.

3.2. Data Sources

The complete cohort of 292 students enrolled in the course participated in the study:
228 men (78%) and 64 women (22%). The age of the participants ranged from 20 to 26 years
old (mean = 20.9, standard deviation = 1.1).

The log data of all the enrolled students were gathered from two different sources:
(1) the Moodle LMS and (2) the automated assessment tool utilized in the course. The
students gave their informed consent to share their data for research purposes, and confi-
dentiality and anonymity at all times were assured.

3.2.1. LMS Data

The logs originated from the students’ learning actions—involving the course activities
and materials available in the Moodle LMS during the entire duration of the course—were
extracted from this platform. The logs included the timestamp, user ID, course module
ID, and the learning action performed. Table 1 shows all the learning actions recorded
and their descriptions. After data preparation (see Section 3.3), the total number of logs
collected from the LMS amounted to 42,046. The final exam grades of the course recorded
in the grade book were also extracted from the LMS.

Table 1. Description of the LMS logs.

Learning Action Description

View the written instructions of a programming assignment including the

View assignment instructions . .
grading rubric

View course information View course instructions and planning

View forum post View a forum post related to the assignments

View sample exam View a solved exam from a previous academic year

View slideshow View lesson slides including explanations and code examples
Watch video Watch a video lesson

Write forum post Write a forum post

3.2.2. Automated Assessment Tool Data

The logs of students’ learning actions performed while working on the assignments
were extracted from the automated assessment tool. These logs included the timestamp,
user ID, assignment ID, and the learning action performed, as well as the score obtained
each time they used the tool to test their code. Although all the interactions with the
automated assessment tool took place offline, since students used it locally in their own
computers to test their code while solving an assignment, once they submitted their
solution, they automatically submitted the complete logging history of their interactions
with the tool for that particular assignment. Thus, the data gathered by the automated
assessment tool includes the full breadth of students” work on the assignments since the
moment they started coding until submission, including all the trials they performed
in-between to check the completeness and correctness of their solution. Table 2 shows the
learning actions recorded by the automated assessment and their descriptions. After data
preparation (see Section 3.3), the total number of logs collected from this tool amounted
to 39,940.
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Table 2. Description of the automated assessment tool logs.

Learning Action Description

Start assignment Download the assignment

Score F Run the tests and get a score under 5

Score C Run the tests and get a score between 5 and 7
Score B Run the tests and get a score between 7 and 10
Score A Run the tests and get a score of 10

Submit assignment Submit the assignment to the LMS

3.3. Data Preparation

The data from both sources were anonymized and cleaned: traces of the learning
actions that took place before the start or after the end of the course were discarded. Traces
from teachers, administrators, and test users were removed as well. The data from the
two sources were then ordered chronologically and grouped into sessions. A session was
defined as an uninterrupted sequence of learning actions where the time gap between any
two consecutive actions is below 15 min for the LMS logs, and 30 min for the automated
assessment tool logs (roughly the 95th percentile of the time gap between two successive
learning actions), as per the approach proposed in [38].

3.4. Data Analysis

Our first step was to perform a frequency analysis of both the logs that took place in
the LMS and in the automated assessment tool, to explore the distribution of the learning
actions throughout the course. Then, we used methods that account for the sequence and
process in which these learning actions occurred, with emphasis on how and when students
learn, struggle, and get support. These methods are detailed in the following subsections.

3.4.1. Identification of Learning Tactics

In order to answer RQ1, we used clustering to identify learning tactics, i.e., distinct
groups of learning sessions according to their shared patterns of similar learning actions.
The clustering was performed for each data source separately. First, a sequence object was
constructed from the chronologically ordered learning actions grouped into sessions as a
preparation for sequence mining. Sequence mining allowed us to gain a deeper insight
into the overall sequence of learning actions that students carried out within a learning
session [38—40]. The clustering of the learning sessions was performed following the
method described in detail by [39,41,42], using the Agglomerative Hierarchical Clustering
(AHC) based on Ward’s algorithm, a technique that has proven suitable for detecting
students’ learning tactics [38—40]. The optimal matching method based on minimal cost
(in terms of insertions, deletions and substitutions, for transforming one sequence into
another) was used as distance metric for the clustering algorithm. The optimal number of
clusters for each dataset was based on the dendrograms.

This step resulted in two sets of clusters of learning tactics: a set of clusters of learn-
ing tactics on the LMS, and another set of clusters of learning tactics on the automated
assessment tool. Both sets of clusters of learning tactics were plotted and described in detail.

The two sets of clusters were then combined and analyzed using process mining,
which allowed us to understand what students do on the LMS system while they are
working on an assignment offline (e.g., when they complete an assignment successfully
or struggle to do so), and when they are not working on the assignment (e.g., studying
or planning). The process maps of the combined clusters were created following the
methods of [27,43], using the BupaR package [44]. BupaR offers sequential process maps
that highlight the flow and frequencies of examined learning tactics. A relative frequency
process map was constructed where the node metrics of the process map represent the
relative frequency of the tactic (i.e., the percentage of the total activity each tactic accounts
for); the edges represent the associative internode relative frequencies (i.e., the percentage
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of sessions of a given tactic that shift to another one), and median time between the tactics
(i.e., how many minutes it takes in median to shift from a tactic to another).

3.4.2. Identification of Types of Learners According to Their Learning Strategies

To answer RQ2, we used K-means clustering [45] to classify students according to
their learning strategies. We used the frequency with which each student carried out each
learning tactic as an input to perform the clustering. The frequencies were standardized
(SD =1, mean = 0) and centered (divided by SD) beforehand, as a preparation step for
K-means clustering to make variables comparable and also to minimize the influence of
individual measures on the results of the clustering of students’ strategies. The elbow
method suggested three clusters as the optimum number, which was selected for our study.

The Shapiro-Wilk test was used to check the distribution of variables, which indicated
that the variables did not follow a normal distribution. Hence, the Kruskal-Wallis non-
parametric one-way analysis of variance was used to compare the final exam grade among
clusters [46]. Post hoc pairwise comparisons were performed through Dunn’s test to verify
the magnitude and significance of the difference in grades among clusters, using Holm's
correction for multiple testing [47].

4. Results

In the LMS, viewing the slideshows was the most frequent learning carried out by
students, followed by viewing the assignment instructions, reading the forum posts, and
watching the video lessons (Table 3). Although resorting to reading forum posts for
help-seeking was a recurring activity among students, the number of posts written was
somewhat low.

Table 3. Summary statistics by quartile of students’ learning actions both in the LMS and in the
automated assessment tool

Context Learning Action 25% Median 75% Total
LMS View assignment instructions 21.00 30.00 40.00 9381
View course information 7.00 11.00 15.00 3391
View forum post 9.75 23.00 42.25 8744
View sample exam 3.00 8.00 14.00 2997
View slideshow 17.00 33.00 50.00 10,934
Watch video 10.00 17.00 30.00 6375
Write forum post 0.00 0.00 1.00 224
Automated Start assignment 7.00 8.00 9.00 2336
assessment tool Score A 23.00 32.00 40.00 9405
Score B 9.00 18.00 29.00 6848
Score C 6.00 13.00 20.00 4770
Score F 19.75 36.50 58.00 12,903
Submit assignment 11.00 12.00 14.00 3678

Students used the automated assessment tool to test their code from the early stages
of the development of the assignments; therefore, the most common score was an F. The
number of Bs and Cs is lower than the number of Fs and As. A possible explanation might
be that some students did not use the automated assessment tool repeatedly during the
development but rather resorted to using the tool only before submitting to ensure that
they are obtaining the highest score.

4.1. Identification of Learning Tactics
4.1.1. Identification of Learning Tactics in the LMS

The overall sequence distribution plot (Figure 1) accounts for the sequential nature of
the logged data (n = 16,574 sequences), adding to what can be inferred from the frequency
analysis. The plot reveals that most students started by reading the programming assign-
ment instructions. Then, driven by the requirements of the programming assignments,
they often resorted to viewing slideshows or watching videos. Slideshow viewing was
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increasingly common towards the end of the learning sessions, usually being the last
resource consulted by the students. Reviewing exams from past years was commonly
performed at the end of the session as well. This might indicate that the students used
these to practice after a study session or when they were stuck working on the assignments
as a last resort after searching for answers on the forum, slides, and videos.

=16475)

Freq. (n

00 02 04 06 0.8

1.0

_ 1 3 5 7 9 11 13 15 17 19
O View assignment instructions B View sample exam B Write forum post
@ View course information O View slideshow
@ View forum post @ Watch video

Figure 1. Overall sequence distribution plot of students’ learning actions in the LMS.

To identify distinct groups of learning sessions according to their shared patterns of

similar learning actions, i.e., learning tactics, we used AHC. The clustering resulted in four
distinct learning tactics (Figure 2):

Slide-oriented instruction (n = 9258, 56.2%): This cluster is dominated by actions
mostly related to studying and viewing the course materials. In particular, viewing
slideshows was the prevailing learning activity. This tactic was the most frequent
among the students.

Video-oriented instruction (n = 2054, 12.5%): The most predominant action in this clus-
ter was video-watching. These were sessions in which students consumed the videos
to acquire the necessary knowledge and skills to be able to tackle the assignments.
Assignment-viewing (1 = 2784, 16.9%): This cluster contains single activity sessions
in which the only traced learning activity carried out by the students was viewing the
assignment instructions.

Help-seeking (n = 2379, 14.4%): This cluster is dominated by forum consumption.
Students’ first action in this learning tactic was reading the forum messages, followed
by reviewing the assignment instructions and sometimes consulting the slides or
videos or even write a forum post.

4.1.2. Identification of Learning Tactics in the Automated Assessment Tool

The overall sequence distribution plot (Figure 3) of the automated assessment tool
logged data (n = 6753) illustrates how students often started their learning sessions by
downloading the code template for the assignment (Start assignment) or by running
the tests and scoring an F, which means they had downloaded the code in a previous
session (as suggested by the presence of Start assignment actions at the end of the
plot). Nonetheless, there were learning sessions that began by students obtaining a
score higher than an F (C, B, or A). This might be an indicator that students split the
assignment work into several sessions and perhaps came back to work after a break,
or after help-seeking or self-instruction in the LMS or offline. As anticipated, scoring
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an A was more common towards the end of the sessions, which implies that most
students got an A after using the tool to run the tests several times.

Slide-oriented instruction

T——————

Video-oriented instruction

[s0] 00

P o

g 3

S iS

o o

© 1357 91 15 19 © 1357 911 15 19

Assignment viewing Help-seeking

@ @

‘_O ‘_O

fo fo

o o

© 1357 911 15 19 © 1357 911 15 19

O View assignment instructions B View sample exam
@ View course information 8 View slideshow
@ View forum post @ Watch video

| Write forum post

Figure 2. Sequence distribution plot of students’ learning actions in the LMS within each cluster.
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Figure 3. Overall sequence distribution plot of students’ learning actions using the automated
assessment tool.

The use of AHC to group the sessions according to the action sequence resulted in
four distinct learning tactics (Figure 4):

e Assignment approaching (n = 3136, 46.4%): This cluster shows learning sessions in
which students progressively improved their score until they got an A. It can be seen
that most students managed to quickly score at least a B, and often achieved an A
score towards the end of the session, which led them to submit the assignment.

e Assignment struggling (n = 2280, 32.7%): This cluster is initially dominated by stu-
dents obtaining an F score and shows a much less straightforward improvement
towards succeeding at the assignment than the previous cluster, indicating that stu-
dents found difficulties when completing the assignment.
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e  Assignment exploring (n = 941, 13.9%): This cluster includes sessions in which stu-
dents only downloaded the code template for an assignment and ran the tests once
to get an idea of what the assignment looked like, as mentioned earlier, so they
could watch out for similar content when viewing the slides or watching the videos.
Compared to the previous tactics, this one was not very common among students.

e Assignment succeeding (1 = 468, 6.9%): This cluster shows that students immediately
score an A and submit the assignment.

_ Assignment approaching Assignment struggling
| i|
_ < —_
s tv ]
& o fc
Q <
O 1| T 7| T I1I3l l1lgl I2I5l |3l1l I3l7l I4I3l l4l m o 1I T # T |1|3| |1|g| |2|5| |3|1| |3|7| |4|3| |4|gl|
_ Assignment exploring B Assignment succeeding
(=<} [ee}
o o
33 i3
o]l o |
o 1I LI 7| T I1|3I l1|9I I2l5I |3|1l I3I7I l4|3l |4l9[| o 1I LI 7I T l1l3l I1|9I l2I5l l3l1l I3l7l |4I3l I4Igl|
@ Score A O Score C @ Start assignment
@ Score B @ Score F O Submit assignment

Figure 4. Sequence distribution plot of students’ learning actions using the automated assessment
tool within each cluster.

4.2. Putting It All Together

The two sets of clusters were then combined and analyzed using process mining. We
first examined students’ choice of tactics when they were not working on the assignments
(e.g., studying or planning). We then explored the tactics students used while working
on the assignments. Two types of sessions were closely examined: sessions in which
students completed an assignment successfully and sessions in which students showed
signs of struggling.

4.2.1. Learning Tactics Applied When Studying (Not Working on the Assignments)

Figure 5 presents the process map of the sessions in which students were not working
on the assignments. As can be seen, Slide-oriented instruction was the most common
tactic carried out by the students (roughly two thirds of the total activity). Video-oriented
instruction was a recurrent tactic (around 16% of the activity), meaning that the students
used videos mainly for self-instruction. The presence of the Assignment viewing tactic
(representing about 17% of the total activity) suggests that, when students were not working
on the assignments, students also carried out planning-related actions, such as consulting
the assignment instructions to learn about the assignment requirements so they could
prepare themselves and organize their time.
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Figure 5. Process model for the learning sessions that did not include any assignment work.

i

4.2.2. Learning Tactics Applied When Struggling

Figure 6 shows the process map of the sessions in which students had difficulties
completing the assignments, i.e., sessions that included at least one Assignment struggling
tactic. In 89.1% of these sessions, the students started directly by working on an assignment
without accessing the LMS beforehand. More than half of the students did not make use of
any additional tactic after struggling. In around 20% of the sessions, the students resort to
Slide-oriented instruction, after a median of 10 min of struggling, in search for answers in
the learning materials. In 15% of the sessions, they resorted to Help-seeking in the forum,
after a median of 24.6 min of struggling. Moreover, a majority of the students who resorted
to help-seeking concluded the learning session after doing so, i.e., did not work on the
assignment or access the learning resources. Lastly, it is worth noting that Video-oriented
instruction was not among the frequent learning tactics applied by students showing signs
of struggle.

6.75%
(45.7 mins)

17.04%
mins)

2042%
10.2 mins) (

27.16%
Assignment struggling (6.22 mins) Slide-oriented instruction
61.52% 22.87%

47.16%

14.1%
(11.52 mins)
21.34%
(30.5 mins)

15.01%
(24.63 mins)

Help-seeking
1561%

Figure 6. Process model for the learning sessions that included at least one Assignment struggling session.

4.2.3. Learning Tactics Applied When Not Showing Signs of Struggle

Figure 7 shows the process map of the sessions in which students succeeded in
completing the assignments. These sessions usually started directly by using the automated
assessment tool, often to work on the assignment actively (Assignment approaching, 69.4%),
although sometimes just for exploration (Assignment exploring, 19.36%). Slide-oriented
instruction was the only LMS-related learning tactic used in these sessions. Although
only 11.3% of the sessions began this way, students resorted the slides at a later point in
the learning session than in struggling sessions (almost half an hour after starting their
assignment work, in median). One of the most interesting findings is that Help-seeking
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behavior was not present in this type of session, implying that the students resort to forums
only when they are struggling with the assignments and rather use the slideshows instead
as supporting material. Furthermore, Video-oriented instruction was again not among the
frequent learning tactics applied by students, implying that students use videos mainly
for self-instruction and not so much as supporting materials when they are completing
the assignments.

Assignment approaching (1.25 mins) Slide-oriented instruction
55.39% 28.34%

5.18%
(43.06 mins)

19.36%

11.25%

71.87%

22.85%
(29.84 mins)

14.98%

58.03%

6.93% 10.73%
(43.62 mins) (-3.45 mins)
0.12% 71.92%
(30.45 mins)
0.1% 21.03%
(59.98 mins) K—\' (26.58 mins)

Assignment exploring
16.27%

Figure 7. Process model for the learning sessions that included assignment work but no Assignment struggling sessions.

4.3. Identification of Types of Learners According to Their Learning Strategies

In order to answer RQ2, we clustered students according to their learning strategies

(i.e., the frequency with which they carried out each of the eight learning tactics identified
in Section 4.2), which resulted in three distinct and cohesive groups of learners (silhouette
value = 0.56). Figure 8 shows the mean normalized frequency of each of the learning tactics
for each group. The three identified groups are as follows:

Determined (n = 27, 9.2%): Determined students are the ones who had a higher
frequency of learning sessions both using the LMS and the automated assessment
tool. They struggled with the assignments more often than the other two groups.
However, the results also show that they are the group with the most sessions of the
type Assignment approaching, meaning that they also had very productive working
sessions in which they successfully solved the assignments. This group also shows an
increased help-seeking behavior and made intensive use of the slideshows and videos,
especially the latter.

Strategists (n = 148, 50.7%): The students in the strategists group had an intermediate
number of learning sessions both using the LMS and the automated assessment tool.
They only surpassed determined learners in two learning tactics Assignment exploring
and Assignment succeeding, which were the shortest session types, indicating that they
did not need as many working sessions to complete their assignments. Moreover,
these learners seem to have used the slideshows as their go-to self-instruction tactic.

Low-effort (n = 117, 40.1%): Lastly, low-effort students had the fewest number of
interactions with both the LMS and the automated assessment tool. The most com-
mon session type for these students was Assignment succeeding, which may suggest
avoidance towards the use of the automated assessment tool. They manifested a low
frequency of self-instruction, showing a slight preference for video-oriented tactics
over slide-oriented ones.
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Figure 8. Mean frequency for each session type in each learner group.

The results of the Kruskal-Wallis test (Figure 9) exhibit a significant (p < 0.0001)
association between the identified learner groups and the students’ performance in the
course final exam, which was graded on a scale of 0 to 10. The distribution of the grades for
Determined learners was centered around a B score (7.36/10). In the case of the Strategists,
the mean score was slightly higher (7.53/10), although the distribution of grades was also
more disperse. Lastly, Low-effort students showed a varied distribution of grades, with
students at both ends of the grading scale (centered at 5.79/10). The pairwise comparisons
showed that grades of the Low-effort students were indeed significantly lower than those
of the two other groups with a moderate effect size. However, there were no statistically
significant differences between Strategists and Determined learners in terms of grades.

Brvsarans2) = 36.38, p = 1.08 x 10°%, € = 0.13, Cl,,, [0.07, 0.21], n , = 292

=6.9x10°

P Holm-corrected

=8.0x10"
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(n=27) (n=117) (n = 148)

Cluster

Pairwise test: Dunn test; Comparisons shown: only significant

Figure 9. Violin plot comparing the grades among the three learner groups through Kruskal-Wallis test and Dunn

pairwise test.
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5. Discussion

The current study sought to analyze students” approaches to learning programming in
context, i.e., in the LMS and the automated assessment tool, using methods that account for
frequency, sequence, and process with emphasis on how and when students learn, struggle,
and get support during their learning process.

RQ1: How can learning analytics help understand students” approaches to learning
programming (i.e., when and how they struggle, seek help, and succeed)?

Using sequence and process mining has allowed us to establish that students choose
slides as their preferred learning resource both for self-instruction and as a reference when
working on the assignments. This finding may be explained by the fact that slideshows
contained both theoretical explanations of programming concepts and code excerpts.
Students can copy these code chunks and build on them to solve the assignments. What
is more, students can perform a text search on the slides to quickly find any specific
concept they might be looking for. In turn, video-oriented instruction was far less frequent.
Students were more likely to watch videos in purely self-instruction sessions (i.e., in times
they were not working on the assignment). To make videos more appealing to students
while working on the assignments, a possible improvement might be adding bookmarks,
links on the slides pointing to these bookmarks, and subtitles to make them both accessible
and searchable [48,49].

During sessions in which the students struggled with the assignments, they were
more likely to revisit the assignment instructions, resort to the slides for answers, and
seek help in the course forums. However, the majority of students who sought help in the
forums concluded their learning sessions by so doing, suggesting an inability to find a
timely response for their query. What is more, the long sequence of forum browsing can be
interpreted as protracted search for a solution.

Students’ reluctance to actively participate in the forum might be explained by their
anxiety to publicly externalize their questions or needs, their skepticism about receiving a
timely response, or their preference for other sources of information (e.g., course materials,
a person, book, or a website). Similarly, the forums had few responses from the students
(eventually teachers had to reply). Therefore, rewarding forum participation may be a
good strategy to increase peer collaboration and support [50-52].

Our findings of students’ preferences in terms of learning materials are comparable
to those of [12], who found programming students were more inclined towards being
reading-oriented rather than video-oriented. Students’ preference for reading materials
over videos does not seem to be an unique finding of programming education but rather
applies to other areas of engineering as well [29,38]. However, in our study, synchronizing
the logs and using process and sequence mining allowed us to contextualize students’
preferences while studying, solving or struggling with the programming assignments.
Mapping the different scenarios helped us understand the different processes of learning,
the various types of learning design needed in each process, as well as how to adapt
support to the situation. Although Blikstein [18] successfully identified moments of greater
difficulty during students’ programming work, analyzing data from the programming
environment alone did not allow the author to determine which tactics students applied
when struggling.

RQ2: How can learning analytics help understand different strategies of programming
learners and how they relate to performance?

Three different groups of learners were identified according to their learning strategies.
The group categorized as Determined showed repeated use of the automated assessment
tool, the learning materials available on the LMS, as well as the forum. Students in this
group achieved a satisfactory grade in the final exam, which was comparable to that of the
Strategists who scored the highest. According to existing literature, these two strategies
result in the highest academic achievement [29,53,54].

The group of Strategists had a lower frequency of study sessions, help-seeking, and
struggling sessions compared to the Determined ones. However, they surpassed the Deter-
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mined learners in Assignment succeeding and Assignment exploring. This may indicate that
they had previous knowledge of the topics covered in the course or studied from external
resources. However, it remains largely speculative how to justify this and it is an issue
open for further research.

Lastly, Low-effort learners scored, on average, significantly lower than the other two
groups [29] and showed much higher variance. As the name implies, their frequency
of study sessions, help-seeking, and other working sessions was lower than that of the
other groups.

Reporting distinct groups of programming learners is common in the learning ana-
lytics literature; however, there are significant differences among disciplines and cluster
characteristics pertaining to the context [12,20,31,35,55]. By clustering students’ learning
tactics, [12] found three distinct groups of learners (highly selective, strategic, intensive),
with very similar profiles and performance to those found in this work. Conversely, [20]
identified five distinct clusters of students according to the overall frequency of their learn-
ing actions (effective, high-effort, average, blind-trial, and low-effort) and found that early
and on-time submissions were more highly associated with final grades than the number of
assignment submissions. Lastly, [35] identified four different student profiles according to
their programming patterns (quitters, approachers, knowers, and solvers), each presenting
different performance levels.

6. Conclusions and Future Work

The current study makes a novel contribution to the body of literature by examining
students’ behavior when learning programming ‘where it occurs’, using a combination of
methods to gain an in-depth understanding of the programming learning. Combining data
from more than one source and using process and sequence mining allowed us to identify
that students prefer different resources at different stages of their learning process. Text-
based resources seem to be the preferred resource overall, namely slides that support e.g.,
search as well as copy and paste. In turn, videos were not as frequently used by students,
especially while working on the assignments. Furthermore, when students struggled to
solve the assignments, they resorted to the course forums to seek help. However, they
were less likely to find timely support from their peers and may have possibly sought help
elsewhere. Lastly, three different groups of learners were identified in this work according
to their learning strategies (Determined, Strategists, and Low-effort), whose profiles are in
consensus with those found in previous works in the literature [12].

Several instructional improvements to the programming course design are suggested
on the basis of the findings of this study. First, to help students gain a deeper understanding
of the programming concepts, students should be encouraged to watch the videos while
they work on the assignments by, e.g., adding subtitles to the videos to increase accessibility
and enable text search [48,49]. Second, to embolden a culture of peer collaboration within
the course, rewarding forum participation is suggested [50-52]. Further, the automated
assessment tool could be improved by adding more granularity of the data recorded about
students’ programming behavior (e.g., increments on code size and code quality). Lastly, to
increase students’ awareness of their learning process, the design of learning dashboards,
which were earlier found to be beneficial for academic success [14,56], should be considered.
Such support tool could be integrated in the LMS.

The present study is not without limitations. First, although combining data from the
LMS and the automated assessment tool provides much more accurate insights on students’
learning process than relying on a single data source, activities that might be relevant to this
learning process but take place elsewhere are overlooked, e.g., instant messaging between
peers or consulting public programming forums. Moreover, this study investigated a
single programming course. Although the sample is moderate in size, investigating the
replicability of our findings in a larger and more diverse sample is needed in order to
produce generalizable conclusions.



Sustainability 2021, 13, 4825 16 of 18

The work conducted in this study opens several lines of future work. Adding more
data sources to model students’ behavior (e.g., code quality and complexity) may allow
extracting more useful insights about students’ learning of programming. That would
allow us to improve course design and provide relevant interventions. Complementing
programming course learning design with innovative teaching practices, (e.g., educational
escape rooms [57,58] or gamification [52]) could help stimulate subgroups of students who
are less motivated. Repeating this study after implementing the suggested changes to
the course design (e.g., rewarding forum participation and enhancing the presentation
of the videos) would add value to the field of learning analytics, since it would provide
empirical proof of whether the findings of the methods adopted by the researchers in this
increasingly growing field can truly fulfill their objective of improving learner support and
teaching, e.g., in terms of improved course learning design to further support students and
ultimately to improve their learning outcomes
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