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Abstract: In this work, the synthesis, characterization, and photocatalytic performance of zinc ox-
ide/activated carbon fiber nanocomposites prepared by hydrothermal method were investigated.
Zinc oxide nanoparticles (ZnO-NP) were deposited as seeds on porous activated carbon fiber (ACF)
substrates. Then, zinc oxide nanorods (ZnO-NR) were successfully grown on the seeds and assembled
on the fibers’ surface in various patterns to form ZnO-NR/ACF nanocomposites. The nanocompos-
ites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier
transform infrared (FTIR) spectrometry, UV–vis diffuse reflectance spectra (DRS), and Brunauer–
Emmett–Teller (BET) surface area analysis. SEM images showed that brush-like and flower-like
ZnO-NR patterns were grown uniformly on the ACF surface with sizes depending on the ZnO-NP
concentration, growth time, and temperature. The FTIR spectrum confirmed the presence of the
major vibration bands, especially the absorption peaks representing the vibration modes of the
COOH (C = O and C = C) functional group. Adsorption and photocatalytic activities of the syn-
thesized catalytic adsorbents were compared using methylene blue (MB) as the model pollutant
under UV irradiation. ZnO-NR/ACF nanocomposites showed excellent photocatalytic activity (~99%
degradation of MB in 2 h) compared with that of bare ZnO-NR and ACF. Additionally, a recycling
experiment demonstrated the stability of the catalyst; the catalytic degradation ratio of ZnO-NR/ACF
reached more than 90% after five successive runs and possessed strong adsorption capacity and
high photocatalytic ability. The enhanced photocatalytic activities may be related to the effects
of the relatively high surface area, enhanced UV-light absorption, and decrease of charge carrier
recombination resulting from the synergetic adsorption–photocatalytic degradation effect of ZnO
and ACF.

Keywords: zinc oxides nanorods; activated carbon fibers; photocatalysis; methylene blue

1. Introduction

Metal oxide semiconductors have been widely studied as photocatalysts to remove
organic pollutants from air and water [1–4]. The photocatalysis process takes place through
the activation of the metal oxides by suitable photon energy that generates the active sites
of electron-hole pairs, which induce the catalytic activities on the metal oxides’ surfaces [5].
Among these metal oxides, TiO2 is considered as the earliest, most common, and ideal
material because of its good stability and quite simple preparation method [6–9].

Zinc oxide (ZnO) is a metal oxide with a relatively wide band gap of 3.37 eV and
the exciton binding energy of 60 m eV has been extensively studied as a photocatalyst
for the decomposition of many organic pollutants. Additionally, ZnO nanostructures are
considered as prominent photocatalyst candidates to be used in photodegradation due to
their low cost, nontoxicity, and efficiency in absorption across the solar spectrum compared
to TiO2 [10]. In several reports, ZnO nanostructures exhibited good photocatalytic activities
for the removal of organic pollutants such as organic dyes [11].
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In this regard, several experimental studies have been reported on the enhancement
of the photocatalytic performance of ZnO by doping with several elements [12], hybridiza-
tion [13], mixing heterostructures with other semiconductors [14], and in the form of
ZnO-based nanocomposite materials [15–19]. However, ZnO nanostructures in powder
form are quite difficult to recycle from aqueous solutions after activation and experience
deactivation when the nanoparticles are agglomerated or lost in the catalytic solution due
to their small size.

Many scientists have begun to focus on finding a practical solution to the immobiliza-
tion of ZnO nanostructures on a suitable substrate with various porosities such as porous
ceramics, zeolite, FTO glass, Teflon, PDMS, rGO, and carbonaceous materials [20–28].
Among the several studies cited above, carbon materials such as carbon nanotubes (CNTs),
carbon fibers (CFs), carbon quantum dots (c-dots), reduced graphene oxide (rGO), and
activated carbon fibers (ACFs) have been used as support substrates for ZnO nanostruc-
tures [22,23].

ACFs have been widely used to remove dyes and water pollutants due to their
large specific surface area of (1000–3000 m2/g), strong adsorption capacity, and highly
porous medium with a complex structure composed mainly of the graphitic structure
of carbon atoms [26–28]. Most of these studies reported that ACFs have a favorable
and synergistic effect on photodegradation efficiency when used as a flexible substrate
or mixed with ZnO nanostructures. ACF is considered as a promising, highly efficient
adsorption carbon material that can contribute to the photocatalysis mechanism, both
alone and in combination with various semiconductor materials [29,30]. Furthermore,
introducing ACFs to photocatalytic nanocomposites can not only improve their visible
light catalytic efficiency, and enhance their generated electron-hole recombination rate,
but also optimize their photocatalytic stability and enhance the charge transfer of the
photogenerated (electron-hole) pairs.

In the past few years, studies have reported on the photocatalytic activities of
ZnO/ACF nanocomposites prepared with different morphologies using various methods
such as electrospinning, sol-gel, and hydrothermal methods [31–34].

For example, Li et al. [32] and Mu et al. [33] have studied the immobilization of ZnO
nanostructures on ACFs by hydrothermal method and reported an improved photocatalytic
degradation of dyes with good catalyst recyclability. More recently, another study reported
the assembly of ZnO nanorod (ZnO-NR) arrays on the ACFs by an integrated sol-gel and
hydrothermal method [34]. The preliminary results showed excellent methylene blue (MB)
degradation of 77.5%. The removal of MB from aqueous solutions is of great importance
from an environmental point of view. Thus, MB is usually used as a prototype contaminant
in photocatalytic processes [35].

Due to the synergistic effect between the strong visible light adsorption of the ACFs
and UV-light photocatalytic activity of ZnO nanostructures, the photocatalytic degrada-
tion of MB is expected to demonstrate that ZnO/ACF nanocomposites exhibit enhanced
photocatalytic activities under both UV and visible light irradiation. To the best of our
knowledge, except for the few reported results reviewed above, there is no available
systematic analysis of the photocatalytic activities of the hierarchical nanostructures of
ZnO/ACF nanocomposites using MB as a model organic pollutant.

In this contribution, unique ZnO nanostructures were prepared using a facile, sim-
ple, low-temperature, and cost-effective hydrothermal method in a Teflon-lined stainless
steel sealed autoclave reactor, through which the optimum preparation conditions were
controlled to enhance the nanostructures’ quality and reproducibility, promote uniform
and self-assembly of ZnO on ACFs, and boost their crystalline structure photocatalytic
and adsorption properties. The novelty of using this hydrothermal autoclave reactor,
compared to the conventional hydrothermal processes used in the few reported studies,
allows deposition of seed crystals and formation of crystalline phases that are unstable at
certain temperatures and pressures. Additionally, nanomaterials that tend to vaporize can
also be safely synthesized using the sealed reactor. Prepared samples were characterized
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using XRD, SEM, FT-IR, UV-vis, and BET techniques and evaluated via the photocatalytic
degradation of MB under UV irradiation.

2. Materials and Methods
2.1. Materials

The Kynol™ activated carbon fiber samples, ACF-1603-10 (ACF10), used in this study
were obtained from American Technical Trading, Inc. (Pleasantville, NY, USA). This type
of ACFs is obtained by carbonization and gasification of a phenolic resin precursor. The
average fiber length was about 3 mm and average fiber diameter 10 µm, with specific area
of 1000 m2 g−1 as stated by the manufacturer. Methylene blue (basic blue 9, C.I. 52015;
chemical formula, C16H18N3ClS, Merck) was used without further purification. Hexam-
ethylenetetramine, HMT [(CH2)6N4, 99%], and zinc nitrate hexahydrate [(Zn (NO3)2·6H2O,
98%], zinc acetate dihydrate Zn (CH3COO)2·2H2O, ammonia dihydrate NH3.H2O, and
potassium hydroxide (KOH) of analytical reagent grade were purchased from Sigma-
Aldrich (St. Louis, MO, USA) and directly used without modification.

2.2. Synthesis of ZnO-NP, ZnO Seeds on ACF, and ZnO-NR on ACF Nanocomposites

Pure ZnO-NPs and ZnO-NR grown on ACF were synthesized by a chemical precipita-
tion and hydrothermal method as follows.

Firstly, 0.5 M of zinc acetate dihydrate was dissolved in 50 mL of double distilled
water in which ammonia dihydrate was dissolved in 50 mL solution and added dropwise.
The mixture was stirred for 1 h to obtain pure ZnO-NP.

Secondly, the ZnO-NP/ACF nanocomposite was synthesized by adding 0.5 g of
ACF to the mixture, then the final mixture was stirred at 75 ◦C for 4 h. The obtained
nanocomposite was filtered, washed several times with double distilled water and ethanol,
dried at 100 ◦C for 5 h, and annealed in a tube furnace at 400 ◦C for 2 h to obtain the
ZnO-NP/ACF with a seed layer.

Thirdly, for the growth of the ZnO-NR on ZnO-NP/ACF nanocomposite, an aqueous
solution containing equimolar concentrations (25 mM) of zinc nitrate hexahydrate and
(HMT) was prepared in 100 mL deionized water. The solution was separately agitated in a
magnetic stirrer at 1000 rpm for 30 min. Then, 0.5 g of ZnO-NP/ACF nanocomposite was
added to the solution and the mixture was subjected to a hydrothermal process by putting
it into a Teflon-lined stainless steel sealed autoclave reactor at 120 ◦C for 2 h in a muffle
furnace. For enhancing the reactivity and homogeneity of the solution, a magnetic stirrer
was used. Then, the autoclave was cooled to room temperature.

Finally, the obtained ZnO-NR/ACF nanocomposite was filtered, flushed with DI
water until the pH of the final solution was 7.0, and dried in a vacuum oven at 100 ◦C for
5 h. The amount of ZnO-NR loadings was determined by the weight difference of ACFs
before and after the hydrothermal process.

A schematic diagram of the major steps in nanocomposite synthesis is illustrated in
Figure 1.
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2.3. Characterization

The XRD diffractograms (with CuKα radiation and λ = 1.5406 Å) were performed
using a Rigaku Ultima IV diffractometer. The UV-vis absorption spectra were recorded
in the range 200–750 nm by a Varian/Carry 5000 spectrophotometer. The FTIR spectra
were recorded in the wave number range of 4000–500 cm−1 using a BRUKER Alpha II
spectrometer. The morphologies of samples were analyzed by FE-SEM (Quanta FEI 450).
The N2 adsorption–desorption was measured at 77 K (Micrometrics Tri Star II Plus).

The specific surface area and pore volumes of the ACF and ZnO-NR/ACF nanocom-
posite were determined by standard gas adsorption methods at 77 K. Using an adsorption
model developed by Brunauer, Emmett, and Teller (BET) [36], the surface area (SBET) was
estimated. The total pore volume (VP) was determined from the amount of N2 adsorbed at
the relative pressure (P/P0) around 0.99. The desorption average pore diameter DP was
determined by the Barrett–Joyner–Halenda (BJH) method.

2.4. Photocatalytic Degradation of MB

The photocatalytic activities of the prepared photocatalysts (ZnO-NR and ZnO-
NR/ACF) were evaluated by observing the degradation of methylene blue (MB) (a typical
pollutant in the textile industry). MB stock solution was prepared by dissolving it in
distilled water at 100 mg L−1 into a 250 mL beaker. Then, 10 mg of ZnO-NR, ACF, and
ZnO-NR/ACF photocatalysts (each in a separate 10 mL bottle) were added to the MB
solution at pH 6.7 ± 0.1. To ensure adsorption/desorption equilibrium of MB on these pho-
tocatalysts, the solutions were mixed using a magnetic stirrer in dark medium for 30 min
and centrifuged at 3000 rpm for 5 min. The UV-vis absorption spectrum of the solution
was measured in the range of 200–750 nm. Then, the mixture was exposed to a UV lamp
(6 Watts, λ = 365 nm). The initial MB concentration was 50 mg L−1 and the temperature of
the reaction solution was maintained at 30.0 ± 0.5 ◦C. Ten samples were taken with fixed
time intervals of 10 and 20 min after UV radiation, and their absorption spectrum was
recorded. The residual concentration of MB dye in the solution was measured at the major
peak 664 nm using a UV-visible spectrophotometer. Blank (containing no dye) sample
was used as a control and a calibration curve of absorbance versus concentration was
constructed. Samples were collected at 10 min time intervals (up to 4 h) and centrifuged to
remove the catalyst before analysis. The degradation efficiency of the MB was calculated
by Equation (1).

% Degradation =
Co − Ct

Co
× 100 (1)

where C0 = initial MB concentration and Ct = MB concentration after time t.
Additionally, recycling experiments were conducted to explore the stability and pho-

tocatalytic ability of the ZnO-NR/ACF nanocomposite after five successive cycles. To test
the recyclability of the ZnO-NR/ACF nanocomposite, it was removed from the irradiated
solution and washed with DI water before starting the next cycle.

3. Results
3.1. XRD Analysis

The X-ray diffraction (XRD) patterns of ZnO-NR, ACF, and ZnO-NR/ACF nanocom-
posite are presented in Figure 2. The main peaks were indexed with Miller indices (h k l)
which correspond to interplanar spacing of ZnO and ACF.
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Figure 2 shows all major peaks of the ZnO-NR/ACF nanocomposite and no obvious
change could be identified in 2 θ values after the nanorods’ growth on the ACF surface,
indicating that ACF patterns were not disturbed. The indexed XRD reflections of ZnO-NR
reveal a good agreement with all diffraction peaks assigned to the hexagonal wurtzite
structure [JCPDS 36-1451] with lattice constants of a = 3.259 Å and b = 5.216 Å. The major
reflections (002), (100), and (004) of ACF are present at both ACF and ZnO-NR/ACF
patterns, which may indicate that ZnO-NR were self-assembled onto the ACF surfaces.

Moreover, all patterns showed a high degree of crystallinity and no traces of any
impurity phases were observed in all XRD patterns. The sharp diffraction peaks indicate
the good crystallinity of the prepared samples. The average crystallite sizes of the pure
ZnO-NR and ZnO-NR in the ZnO-NR/ACF nanocomposite were estimated by Debye–
Scherrer’s formula [30]. Peaks with the highest intensities (100), (002), and (101) were used
to calculate the average size of the ZnO-NRs. The average crystallite size calculated was
63.35 nm for pure ZnO-NR and 42.25 nm for ZnO-NR in the ZnO-NR/ACF nanocomposite.
It is worth noting that the crystallite size is not necessarily the same as NR size depicted
from the SEM images.

3.2. Scanning Electron Microscopy (SEM)

The SEM images of bare ACF and ZnO-NR/ACF nanocomposite are shown in
Figure 3a–e, taken in different scanning areas and at selected magnifications. Figure 3a
shows the SEM image of a felt of bare ACF without ZnO seeds or nanorods. The felt was
composed of three smooth surface ACFs with diameters of approximately 8 to 12 µm and
lengths ranging between 50 and 100 µm. Figure 3b shows that the ZnO-NRs were grown
over the whole surface of the ACFs. The growth time was 2 h at temperature of 120 ◦C and
under high pressure.
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Figure 3. SEM images of bare ACF (a) and ZnO-NR loaded ACFs with different densities (b–d), ZnO-NR loaded on fiber
after bending (e), and flower-like Zn-NR patterns (f).

Results revealed that the experimental conditions of the growth process, such as
temperature, pressure, the pretreatment of the ACF substrates, and the concentration of
the precursors have great influence on the ZnO-NRs’ morphologies, and production of
the optimum size and shape of the nanostructures. In addition, it could be clearly seen
in Figure 3c that the ZnO-NRs were uniformly assembled on the ACFs’ surface in all
directions. In this process, fibers were floating freely in the growth solution during the
NRs’ growth so that all the surfaces of the ACF felt were exposed to Zn ions.

The uniformity of the ZnO-NPs seed layer is quite crucial during the growth process,
because it introduces nuclei sites which let the ZnO-NR grow in dense patterns (Figure 3d).
Furthermore, to ensure firm connection between the ZnO-NRs, ZnO-NPs, and the ACFs’
surface, the ZnO-NR/ACF sample was washed several times with distilled water and
agitated at a constant rate of 200 rpm for 2 h at room temperature. As shown in Figure 3e
of the agitated sample, the ZnO-NRs were still well attached to the ACF surface even after
fiber mechanical bending. The presence of flower-like and brush-like ZnO-NR patterns
grown on some ACF fibers was also observed in the hierarchical nanostructures. This may
be attributed to the formation of a few multi-particles and dense seed nucleation sites,
which in turn provided better adsorption capacity for MB removal due to the relatively
increased surface area and porosity of ZnO-NR/ACF compared to bare ACF and ZnO
samples.
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3.3. UV–Vis Absorption Spectrum of Bare ZnO-NRs and ZnO-NR/ACF

To explore the optical characteristics of the photocatalysts, the UV–vis absorption
spectra of bare ZnO-NRs and ZnO/ACF were recorded in Figure 4a. It can be seen from
the figure that the absorption edge of pure ZnO-NRs was about 380 nm. However, for ZnO-
NR/ACF, the absorption edge was about 370 nm and exhibited a slight red shift compared
with ZnO-NRs. Moreover, a considerable decrease in the absorbance was observed for
the ZnO-NR/ACF in the whole spectrum range. This decrease in the absorbance of the
nanocomposites following the growth of ZnO-NRs might have been due to obstruction of
the light by the NRs’ heterostructures.
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DRS spectra and Tauc plots were analyzed to investigate the effect of ACFs’ support
on the band energy of the ZnO-NR. A Tauc equation was used to calculate the energy gap
(Eg) of the samples [37]:

(αhν) 1/n = A (hν − Eg)

where h, ν, α, and Eg are Planck’s constant, frequency, absorption coefficient, and band
gap energy, respectively. A is a constant, and n = 1/2 for directly allowed transitions.
Figure 4b illustrates that plotting (αhν)2 versus photon energy (hν) reveals a linear region
and the straight-line extrapolations to zero absorption represent (Eg) for bare ZnO-NR
(Eg = 3.25 eV) and ZnO-NR/ACF (Eg = 3.10 eV). The reason of such difference in the
optical Eg for different morphologies is related to the variation of the stoichiometry, size of
the ZnO nanostructures, and the concentration of point defects. Furthermore, the decrease
in the energy gap of ZnO-NR/ACF may be attributed to the change of energy level after
loading of Zn-NRs on the ACF surface. This slight reduction of the band gap (about 2%)
facilitated surface functionalization for the formation of hydroxyl radical (HO·).

3.4. FT-IR Analysis

To evaluate the surface chemistry of the synthesized nanocomposites, FTIR analysis
was carried out. Figure 5 depicts the FT-IR spectra of the ZnO-NR, ACF, and ZnO-NR/ACF
in the wave number range of 4000–500 cm−1. The absorption peak at 3439 cm−1 may
be assigned to the bending vibrations of the adsorbed water molecules and stretching
vibrations of OH groups. The absorption peaks in the range of 1620–1730 cm−1 correspond
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to C = O stretching. The carbonyl signal can be attributed to carboxylic acids, ketones, alde-
hydes, or esters. The C–H groups’ stretching vibration peaks are at about 2840–2940 cm−1,
while the peak at 1038 cm−1 corresponds to the C-O stretching. This peak became more
prominent for ZnO-NR/ACF due to the bonding between O atoms from ZnO with C on
the ACF surface [29]. Moreover, the peaks at about 500–750 cm−1 (which appeared in
ZnO-NR/ACF and ZnO-NR samples and are absent in the bare ACF spectrum) are related
to the stretching mode of the Zn–O bond [33,38]. These FTIR spectra indicated a successful
attachment between ZnO and ACFs. Similar results were observed by others [32,33,39].
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3.5. BET Analysis

The surface area analysis using the BET method was employed to compare the surface
properties of ACF and ZnO-NR/ACF nanocomposite. When zinc oxide nanorods (ZnO-
NR) were grown on the seeds and assembled on the ACF surface, ZnO-NR/ACF realized a
significant increase in specific surface area from 981 to 1050 m2/g. Additionally, there was
a decrease observed of total pore volume and pore diameter from 0.95 cm3/g and 3.75 nm
for ACF to 0.81 cm3/g and 2.53 nm for ZnO-NR/ACF, respectively (Table 1).
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Table 1. Textural properties of ACF and ZnO-NR/ACF.

Sample SBET (m2/g) Vp (cm3/g) * Dp (nm)

ZnO-NR 27 ± 0.5 0.15 4.31
ACF 981 ± 0.5 0.95 3.75

ZnO-NR/ACF 1050 ± 0.5 0.81 2.53
* Obtained from the volume of N2 adsorbed at P/P0 = 0.98.

The results indicated that the surface area and pore properties of ACF and ZnO-
NR/ACF are larger than those of MB adsorbent or other adsorbents; i.e., the molecular size
of the MB dye is 1.7 × 0.76 × 0.33 nm [40], which is less than the average pore diameter
of ACF (3.75 nm) and ZnO-NR/ACF (2.53 nm), indicating that the MB dye molecules can
easily enter the inner space of ACF and the photocatalyst nanocomposite and then disperse.
Analogous effects were observed where commercial activated carbon fiber (ACF) was used
for adsorption of methyl orange (MO) [41].

3.6. Photocatalytic Activity

In order to optimize the experimental conditions for the best photocatalytic perfor-
mance of the nanocomposites, a systematic study was performed to find the optimum
ZnO-NR, ACF, and MB concentrations for samples with excellent performance. Experi-
ments with various pH media (acidic, neutral, and basic) were also conducted (see Table 2).
The presented results revealed that the optimum results were obtained with samples of
20% wt. ZnO-NR load, pH of 7, and 50 mg/L MB concentrations at a degradation time
of 120 min. The photocatalytic activities of the optimized samples were evaluated by
observing the degradation of MB in the presence of ACF, ZnO-NR, and ZnO-NR/ACF
under UV-light irradiation (Figure 6a). During the first 30 min (dark adsorption test), all
samples showed a stable adsorption–desorption equilibrium in MB solution. For com-
parison, we also studied the photocatalytic degradation of MB by direct photolysis, i.e.,
without using a catalyst under identical experimental conditions. A negligible degradation
of MB (~2%) over 2 h was observed, indicating that the properties of methylene blue are
more stable. ACFs showed ~50% of the MB dye reduction during the first 2 h of UV-light
irradiation, likely due to the high surface area, porosity, and superior adsorption properties,
as indicated in the BET results. The photocatalytic results also showed that about 86%
of MB was removed by ZnO-NRs, whereas a higher MB reduction of 99% was observed
for ZnO-NR/ACF nanocomposite. The enhanced photocatalytic performance in the case
of the ZnO-NR/ACF nanocomposite is attributed to the synergistic effects between ZnO
nanorods and activated carbon fibers (ACFs), which can decrease the rate of recombination
of electron-hole pairs caused by the trapping of excited electrons from the conduction band
of ZnO-NR [26,27,41–47].

In addition to MB molecules’ adsorption by highly porous activated carbon (AC) or
ACFs [48–51], it has been reported that their photocatalytic activity relies on the particle
size, phase structure, adsorption capability, and e−/h+ recombination rate [52]. It is
suggested that the adsorption and degradation processes take place simultaneously in
the ZnO-NR/ACFs. In addition, their unique microstructural features may play a role in
enhancing electron transportation and reducing the recombination of electron-hole (e−/h+)
pairs [53,54].
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Table 2. Optimization of experimental conditions for better adsorption and photocatalytic degrada-
tion of methylene blue (MB).

Sample
(at 500 mg/L)

MB Concentration
(mg/L) pH MB Photodegredation (%)

at 120 min
ZnO-NR

Load (% wt.)

ZnO-NR

25 4 82%

100%50 7 86%

100 12 77%

ACF

25 4 56%

050 7 58%

100 12 61%

ZnO-NR/ACF

25

4 88%

10%7 87%

12 88%

50

4 81%

20%7 99%

12 81%

100

4 82%

40%7 92%

12 78%

The photodegradation reactions for MB (Figure 6b) exhibit pseudo-first-order kinetics
and are estimated using Equation (2):

Ln
(

C
Co

)
= −k t (2)

where (k) is the rate constant and (t) is the UV irradiation time.
The degradation of MB by the ZnO-NR/ACF photocatalyst exhibited quite fast kinet-

ics with a rate constant of k = 0.042 min–1, which is more than 2.5 times the rate constant
of the ZnO-NR photocatalyst (k = 0.017 min–1) and 7 times the rate constant of bare ACF
(k = 0.006 min–1). The photodegradation kinetics show that the photocatalytic activity of
ZnO-NR/ACF was considerably higher, with faster kinetics, compared to that of ZnO-NR
and ACF. This result can be explained in terms of the formation of the unique assembly
of the microstructure with a large surface area of ZnO-NR/ACF compared to bare ACF.
These findings are in good agreement with the obtained SEM and XRD results.

The unique microstructural features and high surface areas of ZnO-NR/ACF demon-
strated great potential for photocatalytic application as illustrated in the photocatalytic
degradation of methylene blue (MB) in solution (as seen in the UV–vis spectra in Figure 6c).
In addition to their excellent photocatalytic degradation properties, Figure 6d demon-
strated robust recyclability for ZnO-NR/ACF nanocomposites; after five times of their
reuse, no significant changes were observed. The decrease in photocatalytic performance
of ZnO-NR/ACFs was less than 5% in the presence of 50 mg L−1 of MB, after t = 750 min
and at 500 mg of the photocatalyst under UV irradiation.
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3.7. Photocatalytic Degredation Mechanism of MB under UV-Light Irradiation

Degradation of MB in the aqueous solution under UV-light irradiation and photocat-
alytic mechanism of the ZnO/ACF nanocomposites have been investigated by few research
studies [27,28,34]. However, the proposed mechanism for ZnO-NR/ACF used in this study
is illustrated in Figure 7.
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The proposed mechanism is summarized as follows:

• ZnO-NRs irradiated under UV light allow excited electrons to be transferred from
the valence band (VB) to conduction band (CB). As a result, holes (h+) and electron
(e−) will be generated in the VB and CB, respectively. The band gap is defined as the
energy difference between the VB and CB.

• Electrons in the CB of ZnO-NRs are easily transferred to CB of ACFs due to the high
electric conductivity of carbon. This leads to the excitation of MB molecules adsorbed
onto the ZnO-NR/ACF surface.

• Photoelectrons resulting from the reaction react with O2 molecules in the solution
forming (O2·−), while holes (h+) react with H2O to form (·OH) that follows chain
reactions.

• The (O2·−) and (·OH) radicals react with MB molecules to convert the organic pollu-
tants or into nontoxic forms or completely decompose them to CO2 and H2O. Both of
the photodegradation processes are responsible for the degradation of the MB.

4. Conclusions

In summary, ZnO-NRs were grown successfully on the surface of a Zn-NP-seeded
activated carbon fiber (ZnO-NP/ACF) via a sequential sol-gel and hydrothermal syn-
thesis method in a growth solution of hexamethylenetetramine mixed with zinc nitrate
hexahydrate solution at 95 ◦C. The structural and optical properties, morphology, and
photocatalytic activities of the resultant ZnO-NR/ACF with optimum hydrothermal times
and initial concentrations were investigated. The ZnO-NR/ACF sample with optimum
concentration showed higher photocatalytic activity and MB degradation (99% in 2 h) com-
pared to the pristine ACF and ZnO-NR samples, which may be attributed to the increase
of effective charge transfer from ZnO-NRs to ACFs due to the electric conductivity of
ACFs, increase in the nanocomposite surface area, and multidirectional light-capture by the
ZnO-NR flower-like and brush-like patterns. Moreover, ZnO-NR/ACF nanocomposite can
be used repeatedly with almost no change in photocatalytic activity after five cycles. Such
nanocomposite with improved properties shows great potential to be used as an effective
photocatalyst adsorbent and opens new horizons for its practical application in removing
organic pollutants from aqueous solutions.
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