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Abstract: With the rising demand for food products and the direct impact of climate change on food
production in many parts of the world, recent years have seen growing interest in the subject of food
security and the role of rainfed farming in this area. Machine learning methods can be used to predict
crop yield based on a combination of remote sensing data and data collected by ground weather
stations. This paper argues that forecasting drylands farming yield can be reliable for management
purpose under uncertain conditions using machine learning methods and remote sensing data and
determines which indicators are most important in predicting the yield of chickpea. In this study,
the yield of rainfed chickpea farms in 11 top chickpea producing counties in Kermanshah province,
Iran, was predicted using three machine learning methods, namely support vector regression (SVR),
random forest (RF), and K-nearest neighbors (KNN). To improve prediction accuracy, for each county,
remote sensing data were overlaid by the satellite images of rainfed farms with a suitable slope
and altitude for rainfed farming. An integrated database was created by combining weather data,
remote sensing data, and chickpea yield statistics. The methods were evaluated using the leave-one-
out cross-validation (LOOCV) technique and compared in terms of multiple measures. Given the
sensitivity of rainfed chickpea yield to the time of data, the predictions were made in two scenarios:
(1) using the averages of the data of all growing months, and (2) using the data of a combination of
months. The results showed that RF provides more accurate yield predictions than other methods.
The predictions of this method were 7–8% different from the statistics reported by the Statistical
Center and the Ministry of Agriculture of Iran. It was found that for pre-harvest prediction of rainfed
chickpea yield, using the data of the March–April period (the averages of two months) offers the best
result in terms of the correlation coefficient for the relationship between the yield and the predictor
indices.
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1. Introduction

Agriculture is directly and indirectly the world’s main source of food supply [1].
With the rising demand for food products due to global population growth, and also
the direct impact of climate change on food production in many areas, food security
is again becoming a crucial issue for many countries. The agricultural output of each
region very much depends on its climate and the related parameters [2]. One of the most
important determinants of agricultural production efficiency and output and consequently
food security in a region is people’s understanding of the region’s climatic characteristics
and their impact on the yield of different crops. This issue is especially important in
rainfed farming. Rainfed farming is a type of agriculture in which crops are almost
entirely irrigated by rainfall, which makes it extremely dependent on climatic conditions [3].
Legumes are a family of protein-rich agricultural products that are not only essential for
a healthy diet, but also serve as an important source of income for millions of families
who grow them alongside other crops. Farming legumes is also known to improve soil
nitrogen levels, which plays an important role in sustainable production [4]. Chickpea
(Cicer arietinum L.) is a drought-resistant plant that grows well in arid and semi-arid
areas. This plant can tolerate not only high temperatures but also low temperatures
to some extent [5], which makes it a very good option for rainfed farms. With a total
output of 271,487 tons (2017), Iran is the world’s ninth-largest producer of chickpea after
the United States [6]. Almost 80% of Iranian chickpeas are produced in four provinces:
Kermanshah, Lorestan, Kurdistan, and West Azerbaijan. Accounting for nearly 25.2%
of the country’s total chickpea production, Kermanshah province is the largest producer
of chickpea in Iran. More than 80% of Kermanshah’s chickpeas are produced in rainfed
farms, which have an average yield of 456kg/hectare [7]. Kermanshah has a semi-arid
mountainous climate [8], which is perfect for rainfed chickpea farming. However, in
recent years, the province has struggled with water scarcity issues due to the effects
of climate change, especially prolonged dry spells and droughts, and the consequent
overexploitation of groundwater resources [9]. Allowing agriculture to expand beyond
the region’s ecological and environmental capacities has adverse consequences—such as
soil erosion, desertification, land pollution, and environmental degradation—which will
ultimately result in the destruction of the region’s natural resources and the decline of
its agricultural output; trends that will actually move the region away from sustainable
development [10]. Any information about the vegetation cover of a region and how it is
impacted by climatic variables can substantially benefit the management of agricultural
yield in that region [11]. However, the traditional methods of gathering information about
climate and vegetation cover could be not only time-consuming but also inaccurate. Today,
such information can be collected more easily by using remote sensing technologies to
monitor vegetation and climate variables and track their temporal and spatial changes on
regional and global scales. Indeed, these technologies can offer an expansive and integrated
view of any area with extremely high accuracy. By combining the remote sensing data
with climatic measurements, one can create a real-time map of crop characteristics, which
can be used in the quantification of annual net outputs on different scales and also the
differentiation of vegetation covers on continental and regional scales, which could be
highly valuable for effective land management [12,13]. Given the massive volume of
these data (spatial and temporal) which grow with every second, many machine learning
methods have been developed to take advantage of emerging computer hardware and
their computing power in processing these data. Using the aforementioned methods and
data, it is possible to predict the yield of different crops in different areas in order to guide
government policies that prioritize food security, especially the decisions on the export and
import of food products, and also boost the agricultural economy by helping farmers and
agriculture-related businesses make more informed decisions about crops.
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2. Review of Literature

Numerous studies have shown that massive spatio-temporal data obtained from
the maps and satellite images produced by satellite spectroscopy can be combined with
regional meteorological data to accurately predict crop yield on different scales using
statistical models [11,14–18]. The global problems during the recent decades have forced
many researchers to pay more attention to clean energy sources for economic growth and
environmental issues [19–21], therefore using rainfed agriculture would help to reduce
pollutions. To predict crop yield, climate data such as temperature, precipitation, sunshine
hours, humidity, etc. must be given to these models as input data. While climate data very
well describe the environmental conditions that affect crop growth, they are not the only
parameters that affect crop yield and cannot fully represent growth conditions. Climate
data are more useful in crop yield estimations when combined with plant growth data [17].
Satellite images taken with remote sensing tools, such as spectral images in different
bands, can offer direct information about the growth condition of plants. These spectral
bands include optical spectra (visible and infrared) and microwave and thermal bands.
Among these, light spectra such as infrared and red are widely used in the monitoring
of plant growth parameters. Given the nonlinear nature of the empirical equations for
the relationship between crop yield, crop growth indices, and climatic variables and the
massive volume of spatio-temporal data that must be processed in statistical models
to predict crop yield, these predictions require extensive computation. However, such
computations can now be done easily thanks to advanced computer technology. In recent
years, researchers have shown growing interest in the use of machine learning methods to
predict crop yield [22]. Support vector machine (SVM), random forest (RF), and K-nearest
neighbors (KNN) are three of the machine learning methods that have been successfully
used to predict crop yield through classification and regression analysis of remote sensing
data and climatic measurements.

For example, Gandhi et al. [10] used an SVM-based method to predict rice crop yield
in order to facilitate crop selection in 27 districts of Maharashtra state in India.

In a study by Medar et al. [14], support vector regression (SVR) was used to predict
the sugarcane yield in Karnataka, India. These researchers used a combination of climate
and soil data with the satellite maps pertaining to the 2008–2018 period as the remote
sensing data.

Chen et al. [15] used SVM to predict the yield of paddy rice in Chongqing, China,
based on the weather data of 34 stations in this region for the 1985–2012 period. After
compared the results of SVM with those of back-propagation neural network (BPNN) and
multiple linear regression (MLR), this study reported that SVM is a better method for
determining the effects of climate variables on crop yield.

In a study by Ejaz et al. [13], three methods including artificial neural network (ANN),
linear regression (LR), and SVR were used to predict wheat yield in Punjab, Pakistan. These
researchers used fertilizer and pesticide data as well as weather and soil data. All of these
data, which were related to a 21-year period, were collected from the office of statistics and
agriculture in Sargodha.

Kouadio et al. [16] used an ANN to predict the yield of robusta coffee in Vietnam
based on SOM data and then compared the results with the results of RF and MLR. The
data used in this study included soil fertility and soil yield data randomly collected from
44 farms in five districts of Lam Dong Province and the monthly averages of weather data
for a 30-year period.

In a study by Kim & Lee [17], corn yield in Iowa, USA was estimated by the use of
SVM, RF, ERT, and DL. The data used in this study were extracted from MODIS images of
the Terra satellite and SM data obtained from ESA, CCI, which offer comprehensive global
information with a resolution of 0.25◦ from active and passive microwave sensors. For
modeling, these researchers defined 13 time periods consisting of 5 months in which the
crop is grown and harvested.
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Narasimhamurthy and Kumar [18] used RF to predict the rice yield in Andhra Pradesh,
India. They used three types of data including temperature, precipitation, and perception
data to estimate the rice yield in the studied area. The accuracy of their predictions with
RF was 85.89%.

Parviz [23] used two methods, SVR and MLR, to predict barley yield in three Iranian
provinces with arid, semi-arid, and humid climates. The results of this study showed that
SVR is a better method for making a prediction for the considered 36-year period.

In a study by Kuwata and Shibasaki [24], SVR and DL were used to predict corn yield
in Illinois, USA. In this study, DL was said to be preferred because of its advantage in the
automatic selection of important features and also its greater flexibility in dealing with
predefined features.

Tiwari and Shukla [25] conducted a similar study with BPNN and compared their
training times and errors. These researchers used precipitation data and growth indices for
yield prediction.

Han et al. [22] used 8 machine learning algorithms to predict the yield of winter
wheat in 629 districts of a province of China. For this purpose, they defined multiple time
windows and introduced an integrated framework of weather, remote sensing, and soil
data for yield prediction based on the Google Earth Engine. These researchers used three
groups of weather data and remote sensing data and soil data for their predictions.

In a study by Sharifi [26], which aimed to predict barley yield in Boshruyeh, Iran, this
objective was pursued in three stages: (1) building a framework for predicting barley yield
based on five-year weather data such as temperature and precipitation and remote sensing
data such as NDVI And EVI for 24 districts; (2) identifying the best machine learning
method for predicting barley yield by comparing four methods, namely GPR, KNN, DT,
BPNN, which GPR to be the best method; and (3) identifying the best time for predicting
crop yield before harvest. Tables 1 and 2 compares the past studies on the prediction of
crop yield with machine learning methods.

Sharifi [23] investigated prediction of barley yield in Iran, which is one of the rain-
fed crops that can be grown in the region, NDVI, EVI, temperature and evaporation
indicators were considered. Although, other factors such as soil moisture and rainfall can
be considered in the growth of rain-fed barley. The irrigation method based on ground
water, which means that farmers use water pumps to pump water was also investigated.
Studies such as [13,17,20] have considered crops that are grown by irrigation. There have
been other studies related to crops that are mainly located in areas where there is a lot of
rain, such [10,14–16,18,21]. Hen et al. [22] studies winter wheat, criteria such as air pressure
that have slight changes in the growing season and can be considered almost constant. In
irrigation agriculture, due to the fact that water resources are available and there is no vital
need for rainfall, indicators such as rainfall can be ignored, such as [10]. In another study
conducted in Iran for barley, rainfall index, temperature, and speed wind were considered
as indicators affecting plant growth. It was found that wind speed index except in stormy
areas, has no effect on forecasting and can be ignored.

SVR has been widely used in related studies such as [10,13–15,17,19,20,22]. The SVR
that is an optimized model of the SVM method, can be used to predict problems with
continuous data like what we use in this study. Other researchers showed that, according
to the intrinsic characteristics of crops and plant growth conditions, this method is suitable
for forecasting [13,14,20].

Studies that used RF method, showed that this method has an acceptable performance
for predicting the yield of agricultural products in different conditions with different indica-
tor [10,16,17,22]. Kim and Lee [17] specifically demonstrated the capability of this method
in using remote sensing indicators. Due to the unstable nature of climate phenomena and
factors affecting plant growth, using the KNN method along with other methods gives
more reliable performance to the results [22].
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Table 1. Comparison of the past studies on the prediction of crop yield with machine learning methods.

Row Authors Date of
Research

Location of Study
(Country) Crop Tools

Methods

RF MLR E-BPNN DL SVM ERT DT NN KNN GPR BST BGT LR

1 Gandhi et al. [10] 2016 India Rice WEKA-EXCEl *
2 Ejaz and Abbasi [13] 2018 Pakistan Wheat Phyton-Weka * * *
3 Medar et al. [14] 2019 India Sugarcane SciKit-Python *
4 Chen et al. [15] 2015 China Paddy rice MATLAB * * *

5 Kouadio et al. [16] 2018 Vietnam Robusta
coffee MATLAB * * *

6 Kim and Lee [17] 2016 United States Corn R software * * * *

7 Narasimhamurthy and
Kumar [18] 2017 India Rice R software *

8 Parviz [19] 2020 Iran Barley * *

9 Kuwata and Shibasaki
[20] 2015 United States Corn SciKit-Python &

CAFFE * *

10 Tiwari and Shukla [21] 2020 India MATLAB *

11 Han et al. [22] 2020 China Winter
wheat

MATLAB-WEKA-
GEE * * * * * * * *

12 Sharifi [26] 2020 Iran Barley GEE * * * *
13 Present research 2020 Iran Chickpea SciKit-Python * * *

The * symbol in each row indicates which methods (columns) in each research has been used and names of method ab-breviations explained as follow: BPNN: Back-Propagation Neural Networks, RF: Random
Forest, MLR: Multiple Linear Regression, DL: Deep Learning, SVM: Support Vector Machine, ERT: Extremely Randomized Trees, DT: Decision tree, NN: neural network, KNN: K-nearest neighbor, GPR: Gaussian
Process Regression, BST: Boost Trees, BGT: Bagging Tree, LR: Logistic Regression.



Sustainability 2021, 13, 4607 6 of 28

Table 2. Comparison of the past studies based on the data types and sampling features.

Soil Features Climate Data Satellite Data Sampling Features

Row Authors
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1 Gandhi et al. [10] * * * 27 1998*–2002
2 Ejaz and Abbasi [13] * * * * 21 years
3 Medar et al. [14] * * * * * * * 2 2008–2018
4 Chen et al. [15] * * * * * 34 1985–2012

5 Kouadio et al. [16] * * * * * 44 2013–2014
6 Kim and Lee [17] * * * * * * * * * * 94 2004–2014
7 Narasimhamurthy and Kumar [18] * * 13 2005–2015
8 Parviz [19] * * * 3 1982–2017
9 Kuwata and Shibasaki [20] * * * * 90 2001–2010
10 Tiwari and Shukla [21] * *
11 Han et al. [22] * * * * * * * 629 2001–2014
12 Sharifi [26] * * * * 24 2015–2019
13 Present research * * * * * * * * * * 11 2010–2017

The * symbol in each row indicates which data sources (columns) in each research has been used. Data source abbrevia-tions explained as follow: NDVI: Normalized difference vegetation index, EVI: Enhanced
Vegetation Index, LAI: Leaf Area Index, FPAR: Fraction of Photosynthetically Active Radiation, GPP: Gross Primary Production, ET: Evapotranspi-ration.
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In this study, for the first time the prediction of rainfed chickpea farming for 11 counties
with the highest chickpea production in Kermanshah Province of Iran was performed by
the use of SVM, RF, and KNN machine learning methods, and a combination of remote
sensing and local synoptic station data.

The above comparison shows that most of the past studies have been focused on crops
that are either irrigated or cultivated in rainy areas. In Iran, however, rainfed agriculture
in areas with limited access to water accounts for a fairly large portion of the country’s
total agricultural output and therefore plays a critical role in the food security of this
country [3,6]. Considering the climate of Kermanshah and its evolving water scarcity
issues, there seems to be some room for the expansion of rainfed farming in this province.
Also, since this province has an international border (with Iraq) and good access to the
region’s major transit routes, it may be able to play a bolder role in the food security of the
region, which may also generate an economic boost for its own farmers and agriculture-
related businesses. In this study, we tried to predict the yield of rainfed chickpea farming
in 11 counties with the highest chickpea production in Kermanshah by the use of SVM, RF,
and KNN machine learning methods and a combination of remote sensing, weather, and
soil data.

3. Geographical Characteristics of Kermanshah Province

Kermanshah is one of the western provinces of Iran and has a border with Iraq. This
province consists of 14 counties and its capital is the city of Kermanshah. Kermanshah
province has an area of 24,640 km2 (17th largest in Iran), a semi-arid mountainous cli-
mate [8], an average altitude of 1400 m (above sea level), an average temperature of 14 ◦C,
and average annual precipitation of 450 mm, which is of Mediterranean type [27]. The
geographical location of Kermanshah province is shown in Figure 1. The province has a
very diverse climate (for example, while Qasr-e Shirin in the west of the province has a
hot climate, Paveh in the north of the province has a cold climate, and Kermanshah in the
center of the province has a temperate climate). Since time immemorial, rainfed farming
has accounted for a major portion of agricultural output in this area. Kermanshah has
long been one of Iran’s top five provinces in terms of chickpea production and currently
accounts for 20% of total chickpea production in this country. Over the last 12 years, the
average chickpea yield in this province has been 441 kg/hectare. In terms of geographical
coordinates, Kermanshah province is extended between 45◦20′39” and 48◦01′58” eastern
longitudes and 33◦37′08” and 35◦17′08” northern latitudes.
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4. Methodology

In this section, we first describe the factors affecting the growth of rainfed plants.
The methods used to predict is then explained. First, 9 remote sensing indicators and its
sources and features will be explained. Then, using three filters of slope, elevation, and
dryland farm density, we consider only the data related to lands that have appropriate
slope, elevation and in which dryland cultivation takes place. After that the remote sensing
data are combined with seven meteorological data that obtained from Iran Meteorological
Organization. Finally, by adding the actual amount of dryland chickpea yields, our main
data set is created for each year. In the following, the machine learning methods that used
this data set for forecasting are explained. After that validation technique that used to
estimate the accuracy of these methods are explained.

4.1. Crop Yield Parameters

In this study, crop yield predictions were made based on two groups of data: remote
sensing data collected by satellite and weather data collected by regional synoptic stations.
The remote sensing data included the data from MODIS, which provide information about
plant growth during planting, germination, growth, and harvest, and also the soil moisture
and CHIRPS data, which offer information about the water used for irrigation in rainfed
agriculture. The meteorological data, which were intended to give information about the
environmental conditions of the plants, were obtained from ground stations. All collected
data are presented in Appendices A and B.

4.1.1. Indicators of Plant Growth in the Region

MODIS indices that could be related to plant growth and crop yield—including gross
primary production (GPP), enhanced vegetation index (EVI), leaf area index (LAI), fraction
of photosynthetically active radiation (FPAR), normalized difference vegetation index
(NDVI), and evapotranspiration (ET)—were obtained from the Terra satellite. Figure 2a–f
show the averages of these induces for 11 counties in the study area for the period 2010–
2017. It should be explained that the counties in the middle part of the province have a
temperate climate, those in the northern part have a cold climate, and those in the western
part have a hot and dry climate. NDVI, the map of which is illustrated in Figure 2a, is a
simple graphical index developed for remote sensing analysis to assess the presence or
absence of vegetation in an area. This index is computed based on the difference between
near-infrared and red-light spectra. NDVI values close to zero (between −0.1 and +0.1)
usually indicate bare rock, sand, or snow surfaces. Higher positive NDVI values (about
+0.2 to +0.4) indicate shrub and grassland cover. EVI has been developed to cover some of
the limitations of NDVI and particularly to minimize atmospheric effects and differences
in blue and red reflectance [28]. The EVI map of the area is shown in Figure 2b. This
index varies in the range of −1 to +1. LAI, which is plotted in Figure 2c, is the fraction of
the surface area of the vegetation canopy to the surface area of the ground it covers. To
obtain LAI for farmlands, the leaf area of the plants in one square meter of land should be
measured. Another key parameter for the analysis of plant structures in ecosystems and
also in crop yield models is FPAR, which provides a lot of information about photosynthesis,
energy exchange, and carbon exchange of vegetation covers [29]. The FPAR map of the
study area is shown in Figure 2d. FPAR is the fraction of photosynthetically active radiation
(light available for photosynthesis) that is absorbed by the plant canopy. ET, the map of
which is shown in Figure 2e, is the sum of evaporation and transpiration. This index has
been defined because the evaporation from the moist soil surface cannot be easily separated
from the transpiration from the plant surface. It has been shown ET has a relationship
with crop yield and could be effective in its estimation [30]. The GPP map of the area is
shown in Figure 2f. GPP is the ratio of solar energy captured in the plant’s sugar molecules
during the photosynthesis process, which then plants use for their cellular metabolisms,
such as respiration and growth. Soil moisture content is also a key parameter for plant
growth. Figure 2g–h shows the surface soil moisture and subsurface soil moisture, which
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both have an impact on planting, germination, harvesting of rainfed plants. In general,
soil moisture is the water content in the soil, which can be expressed in terms of mass and
volume percentages. In rainfed farming, where crops are not irrigated by any water source
other than rain, soil moisture is an important determinant of crop yield, although it is also
affected by a wide range of variables. In this study, the soil moisture map of the study area
was created using NASA-USDA SMAP Global soil moisture data.
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Figure 2. Satellite images of the indices obtained from the remote sensing data.

The sources of the data used in the study and the temporal and spatial resolutions of
the collected remote sensing data are given in Table 3. The indices related to plant growth
were all obtained from MODIS data of the Terra satellite. The specifications of MODIS data
products used in the study are also listed in the table. Given the differences in temporal
and spatial resolutions, the satellite images were constructed using the monthly averages
of the data.

Table 3. Specifications of remote sensing data used in the study.

Data Spatial Resolution Temporal Resolution Source Product

Normalized difference vegetation index 250 m 16-Day NASA MOD13Q1.006
Enhanced vegetation index 250 m 16-Day NASA MOD13Q1.006

Leaf area index 500 m 4-Day NASA MCD15A3H.006
Fraction of photosynthetically Active radiation 500 m 4-Day NASA MCD15A3H.006

Gross primary production 500 m 8-Day NASA MOD17A2H.006
Evapotranspiration 500 m 8-Day NASA MOD16A2.006
Rainfed croplands 1000 m 2010 NASA USGS/GFSAD1000_V1

Surface soil moisture 0.25◦ 31-days NASA NASA_USDA/HSL/SMAP
Subsurface soil moisture 0.25◦ 31-days NASA NASA_USDA/HSL/SMAP

Precipitation 0.05◦ Daily CHIRPS chirps-v2.0.1981-2019.39yrs.tif.gz

4.1.2. Indicators of Environmental Conditions of Plant Growth

To obtain the factors of environmental conditions of plant growth, the daily weather
data collected by 11 synoptic stations of the Iran Meteorological Organization in the study
area over an 8-year period were gathered. This included eight types of data, namely mini-
mum temperature, maximum temperature, average temperature, sunny hours, maximum
humidity, minimum humidity, average humidity, and dry temperature in growing, ger-
mination, and flowering seasons. Environmental factors also included slope and altitude,
which were determined using the DEM of Kermanshah province. After giving a score to
each 100 m2 parcel of land, this map was transformed into the raster format. Since multiple
layers of data had to be combined, the data of the layers were standardized before overlay.
As the slope map illustrated in Figure 3a shows, a large portion of the province has a slope
of 0–10 degrees. The northwestern and northeastern parts of the province generally have
slopes of more than 10 degrees. In slopes of over 10 degrees, the shallowness of the soil and
poor plowing conditions make the land more susceptible to environmental degradation.
Between the mountains of the province, there are several plains with very gentle slopes
from northwest to southeast. Figure 3b shows the altitude map of the study area. As can
be seen, in Kermanshah province, altitude decreases from east to west. The conditions
are more suitable in the central plains of the province, where the average altitude ranges
from 800 to 1500 m. Some east and northeastern parts of the province, such as Sonqor
County, have an average altitude of over 1500 m. In contrast, the western parts of the
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province—such as Qasr-e Shirin, Sarpol-e Zahab, and Gilan-e Gharb counties have an
average altitude of less than 800 m.
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Figure 3. Altitude and slope Satellite images of the study area.

4.1.3. CHIRPS Data

The rainfall data of the study area were collected from the monthly rainfall data
contained in the CHIRPS dataset. The monthly cumulative rainfall data of CHIRPS have
been obtained by the integration of global monthly precipitation climatology (CHPclim)
data, precipitation estimates based on the TIR band of satellites, and data collected from
ground stations. This dataset covers the geographical coordinates ranging from −50 to
50 degrees and time frames ranging from 1981 to the present. Several previous studies
have shown the good consistency of this dataset with the data of ground stations [31].
According to [32], the average correlation of this dataset with Iran’s rainfall data for spring,
summer, autumn, and winter months is 0.61, 0.56, 0.59, and 0.45, respectively. CHIRPS
dataset was downloaded from the website of the University of California, Santa Barbara
(https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_annual/tifs (accessed on 24
October 2020)). To create the rainfall map shown in Figure 4, we used the 8-year average
of daily rainfall data of Kermanshah. This map shows that the annual rainfall is highest
in the northern counties such as Paveh and lowest in the western counties such as Qasr-e
Shirin. The ArcPy library was used to perform mathematical operations on daily rainfall
raster files in millimeters.
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4.1.4. Rainfed Chickpea Farming and Yield Statistics of the Area

The rainfed chickpea production statistics of the study area were obtained from
the database of the Statistical Center of Iran and the annual reports of the Ministry of
Agriculture of Iran at the county level. Since the location information of rainfed farms by

https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_annual/tifs
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crop type was not available, we used GFSAD products to create raster images of rainfed
farms in the study area. Combining the data of multiple satellite sensors, these products
allow users to determine the type of land in terms of irrigation. Figure 5 shows the map of
rainfed farms in Kermanshah according to GFSAD products (2010) with a resolution of
1 km.
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4.2. Machine Learning (ML) Methods

Machine learning (ML) is a method for data analysis that automates construction of
model. It is a kind of AI (artificial intelligence) based on the theory that computers which
can learn from data, identify patterns and make decisions without being programmed to
perform specific tasks and automatically improve by experience and by implementing of
data. ML learn from past calculations for producing repeatable decisions, reliable, and re-
sults. The repetitive aspect of machine learning is essential because the models are exposed
to new data, also are able to independently modify patterns according to the new data. An
essence aim of a ML learner is to generalize from its experience. Generalization is the ability
of a learning machine to perform accurately on unseen samples after taking a learning data
set. The training samples come from some generally unknown probability distribution
and the learner has to construct a general model about this space that empowers ML
learner to produce appropriately accurate predictions in new cases. Depending on the
nature of the feedback which the ML learner receives from its environment, ML methods
are usually divided into three categories; supervised, unsupervised, and reinforcement
learning. In this study, we use supervised learning methods. Supervised learning methods
build a mathematical model of a data set that includes both the inputs and its related real
outputs—also known as a supervisory feedback—and learn a function that can be used
to predict the output associated with new inputs. The data set is known as training data,
and consists of a set of training samples. Here, we mean data set of remote sensing and
meteorological data which are integrated and described in Section 4.1. An optimal function
will allow the ML method to accurately predict the output for inputs that were not a part
of the training data set. When the algorithm can do the prediction well and improves the
accuracy of its predictions is said learned to perform that task. Supervised methods consist
of two classification and regression algorithms, classification algorithms are used when
the outputs are restricted to a limited set of classes, for example, sorting emails to spam
and unspam emails. Regression algorithms are employed when the outputs may have
any numerical value within a range, for example, what we do in this study prediction
of crop yield according to growing conditions data set. The machine learning methods
used in this study for yield chickpea prediction were random forest (RF), support vector
machine (SVM), and K-nearest neighbors (KNN). First, these methods were trained with a
set of training data, and then their ability to predict new data was evaluated by evaluation
methods which are explained in Section 4.3.
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4.2.1. Support Vector Machine

As in many other machine learning methods, SVM’s modeling process involves two
stages of training and testing. At the end of the training phase, testing data must be
used to evaluate the generalizability of the trained model [33,34]. The solution of the
SVR problem, which is the regression model of SVM, on a dataset consisting of L samples
of form {(x1, y1), (x2, y2), . . . , (xL, yL), x ∈ Rm, y ∈ R} is a linear function in the form of
Equation (1), which can estimate output values based on inputs [33]

ŷ = 〈w.x〉+ b (1)

In this equation, ŷ is the estimated value, x is the input vector, w is the weight vector,
and b is the bias.

As shown in Equation (2), the cost function introduced by Vapnik ignores the errors
within a certain distance of the true value (epsilon). In other words, it considers some devi-
ations to be acceptable [33]. The control parameters of the response function, i.e., weight
and bias vectors, are obtained by solving the optimization problem of Equation (3) [35]

L(y, ŷ) =
{

0 i f |y− ŷ| < ε

|y− ŷ| − ε otherwise
(2)

In this equation, ε is the acceptable error in the cost function, ŷ is the estimated value,
and y is the true value.

Minimize : L(w, ξ) =
1
2
‖w‖2 + C

N

∑
i=1

(ξ∗i + ξi)

subject to :


wxi + b− yi ≤ ε + ξ∗i i = 1, 2, . . . , N
y− (wxi + b) ≤ ε− ξi i = 1, 2, . . . , N
ξ+i ≥ 0, ξi ≥ 0 i = 1, 2, . . . , N

(3)

In this equation, ‖w‖2 is the weight vector, ξ∗i and ξi are the slack variables, C is the
penalty or tuning parameter.

Using Lagrange coefficients, the optimization problem of Equation (3) can be con-
verted to the Lagrangian function of Equation (4). The Lagrangian coefficients α and α* are
obtained by maximizing this function under the defined constraints.

L(α∗, α) = −ε
l

∑
i=1

(α∗i , αi) +
l

∑
i=1

yi(α
∗
i , αi)−

1
2

l

∑
i=1

l

∑
j=1

(α∗i , αi)
(

α∗j , αj

)(
xi.xj

)

subject to :

 ∑ α∗i = ∑ αi
0 ≤ α∗i ≤ C i = 1, 2, . . . , l
0 ≤ αi ≤ C i = 1, 2, . . . , l

(4)

The above optimization problem can be solved with the help of quadratic program-
ming methods, in which case the global extremum will be certainly reached and there will
be no risk of being trapped in local extremums [35]. Thus, after computing α and α* in
Equation (4), the optimal weight vector w0, the optimal bias b0, and the prediction function
of Equation (1) can be written as Equations (5)–(7) [36]

w0 = ∑
support vectors

(α∗i , αi)xi (5)

b0 = −1
2

w0.[xr + xs] (6)

f (x) = ∑
support vectors

(α∗i , αi)(xi.x) + b0 (7)
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In these equations xi is the input vector with which the model is trained, χ is the new
input vector, xr and xs are support vectors, w0 is the optimal weight vector, and b0 is the
optimal bias value.

Data points with non-zero Lagrangian coefficients are called support vectors. Geo-
metrically, these data points have a larger prediction error than epsilon. The parameters
C and ε should be specified by the user. C is a tuning parameter and can be set to values
ranging from zero to infinity. If C is set to large values, SVR will not allow errors in the
training data, which results in lower generalizability. If C is set to values closer to zero, SVR
will allow larger errors, because then the value of slack variables in Equation (3) becomes
less important [36,37] and the model becomes less sensitive to the occurrence of errors
in the training dataset. The parameter ε can also take values from zero to infinity. The
value of this parameter greatly affects the condition of support vectors and consequently
the performance of the model. Although setting ε to very large values will decrease the
number of support vectors, which in itself is desirable, it is wrong to pursue this goal by
widening the ε-band. On the other hand, setting ε to very small values will result in having
a large number of support vectors, which increases the risk of over-training [37].

4.2.2. Random Forest

This method operates based on a structure consisting of numerous regression trees
(CARTs) and its output is computed by integrating (or averaging) the output of these
CARTs. The principles of ensemble training techniques are based on the assumption
that some training methods perform better in certain situations and therefore using a
group of these methods can result in good performance in a wide range of situations.
In other words, a combination of several models (in our case, prediction models) tends
to be more accurate than a single model. A decision tree is a non-parametric statistical
model (in the sense that no value is pre-set for its variables) first introduced by Breiman
et al. [38,39], which can be described as a structure consisting of many nodes and leaves
that grow in the training process. To train a tree, one needs a set of training data like
Ln = {(x1, y1), (x2, y2), . . . , (xn, yn)} where n is the number of observations, x is the input
vector with m features X = {x1, x2, . . . , xm}, and y is the output scalar. During training,
the input data are split at each node, beginning with the root node. Each node uses its
own splitting operator for this purpose. This process continues until the largest possible
number of leaves are obtained. At the end of this training process, the prediction function
t = (X, Ln) is built on the training data. In the random forest (RF) method, each tree
creates a random sample of data (hence the term random in the name). All of the generated
decision trees are then combined by a bootstrap-aggregation (bagging) algorithm [40]. A

bootstrap dataset is a set of instances like
(

Lθ1
n , Lθ2

n , . . . L
θq
n

)
that are obtained by random

sampling with replacement from the training data. In RF, each decision tree is trained
with a set of these values. Using the q trees created for the new input, the method obtains

q predictions in the form of ŷ1 = t
(

x, Lθ1
n

)
, ŷ2 = t

(
x, Lθ2

n

)
, . . . , ŷq = t

(
x, L

θq
n

)
, and then

integrates the predictions of individually trained trees by Equation (8) for regression
problems [41,42].

ŷ =
1
q

q

∑
i=1

ŷi =
1
q

q

∑
i=1

t
(

x, Lθi
n

)
(8)

In this equation, ŷi is the prediction of the i-th tree.
The main advantage of using a bagging algorithm is that it helps avoid correlation

between different trees, which results in the higher diversity of trees created from different
samples. Another advantage of this algorithm is its noise resistance, because it produces
independent trees based on different training samples, and while a decision tree alone
could be noise-sensitive, the combination of several independent decision trees tends to be
less noise-sensitive [43].
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4.2.3. K-Nearest Neighbors

First introduced by Cover & Hart [44], KNN is a machine learning method used
for regression. In this application, KNN considers each data record as a vector in an
m-dimensional space (where m is the number of features), and predicts the value of each
new sample based on the values of K records that are closest to that point in that space [45].
In this method, the closeness of the new point x and the training point xi is measured by a
Euclidean distance function in the form of Equation (9) as following [45]

d(x, xi) =

√√√√ m

∑
j=1

(
xj

i − xj
)2

, i = 1, 2, . . . , n and j = 1, 2, . . . , m (9)

In this equation, n is the number of training samples and m is the number of input
samples.

The steps of KNN can be summarized as follows.
Step 1: Specifying the parameter K (the number of nearest neighbors).
Step 2: Computing the distance of the new input from all training samples.
Step 3: Sorting the computed distances in ascending order and selecting the K samples

with the shortest distance.
Step 4: Forming the set of values of the selected K samples.
Step 5: Computing the predicted value of the new sample by weighted averaging of

the values in the set of Step 4.
The first step in this method is to choose the value of K (the number of neighbors).

After selecting K, the Euclidean distance between the new sample and the existing samples,
i.e., d(x, xi) for i = 1, 2, . . . , n must be computed. The values of the K samples with the
lowest d (shortest distance from the new sample) must then be put in Equation (10) to
compute the predicted value of the new input [46]

ŷ =
k

∑
i=1

wiyi (10)

Here, wi is the weight of each training sample, which depends on its distance from
the new sample and is given by Equation (11)

wi =

1
d(x,xi)

∑k
i=1

1
d(x,xi)

(11)

As this equation shows, samples that are closer to the new sample will have a greater
impact on the prediction. In KNN, the new values are produced based on the previous
data regardless of how much noise they have, which makes KNN sensitive to noise and
irrelevant features [46].

4.3. Cross Validation

Overfitting is a modeling error that happens when a function is too closely fit to a
limited data set. In such a case, the model tries to cover the data from the sample and even
the noise values with a lot of changes. While such a model should reflect the behavior of
society. In such cases, if obtained regression model is used to predict another sample, the
predicted values will not seem appropriate at all. We used cross validation to overcome
the problem of overfitting of ML methods. Cross-validation is model validation technique
for assessing how the results of a mathematical analysis will generalize to unseen data set.
Cross-validation randomly split the training dataset into k equal subsets. Then train Ml
method on k−1 of them and measure the prediction error on the kth subset, and do this in
such a way which all k subsets be used for training and for calculating the prediction error.
Then get average of the prediction errors from all k subset. Leave-one-out cross-validation
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(LOOCV) is a kind of cross-validation which number of folds will be equal to number of
instances in data set. Thus, the learning algorithm is applied once for each instance, using
all other instances as a training set and using the selected instance as a single-item test set.
Good machine learning models such as SVR, RF, and KNN are the ones which have good
prediction accuracy, in other words, small prediction error shows that the method is capable
of accurately predicting when faced with unfamiliar data. Validation measures quantify
the deviation between the predicted data and the true data [17]. In this study, the accuracy
of the machine learning methods for predicting the yield of products was evaluated using
the LOOCV technique with MAE, MBE, RMSE, MAPE, and CC as measures. The equations
of these measures are given below [15,17,26].

Mean absolute error (MAE) is a measure of errors between paired observations, which
refers to the real yield of chickpeas obtained from the Statistical Center of Iran and the
value predicted by forecasting methods. MAE is calculated as Equation (12) [15,17,26]

MAE =
∑n

i=1|ŷi − yi|
n

(12)

It is thus an arithmetic average of the absolute errors. In these equations, yi denotes the
true values, ŷi denotes the predicted values. The mean absolute error uses the same scale as
the data being measured. Mean bias error (MBE) is mainly used to estimate the average bias
in the model and to determine if any steps need to be taken to correct the model bias. MBE
captures the average bias in the forecasting. MBE is calculated as Equation (13) [15,17,26]

MBE =
∑n

i=1(ŷi − yi)

n
(13)

In these equations, yi denotes the true values, ŷi denotes the predicted values and n is
the number of samples. RMSE is a measure of the differences between predicted values
and real values or the quadratic mean of these differences. The RMSE serves to aggregate
the errors in predictions for various data points into a single measure. In other word, is a
measure of accuracy, to compare forecasting errors of different models for a particular data
set. RMSE is calculated as Equation (14) [15,17,26]

RMSE =

√
∑n

i=1(ŷi − yi)
2

n
(14)

where, yi denotes the true values, ŷi denotes the predicted values and n is the number
of samples. Mean absolute percentage error (MAPE) is also a measure of prediction
accuracy of a forecasting method and is commonly used as a loss function for regression
problems and in model evaluation, because of its very intuitive interpretation. This method
expresses the prediction error as a percentage and is easier to express. MAPE is calculated
as Equation (15) [15,17,26]

MAPE =
∑n

i=1

∣∣∣ (ŷi−yi)
yi

∣∣∣
n

× 100 (15)

Here, yi denotes the true values, ŷi denotes the predicted values, and n is the number
of samples. Correlation coefficient (CC) is a statistical relationship between two variables
including real and predicted values of chickpea yield. CC assumes values in the range
from −1 to +1, where 0 the strongest possible disagreement and ±1 indicates the strongest
possible agreement. A number closer to 1 indicates a direct relationship between the two
input arguments. Conversely, a number closer to −1 indicates an inverse relationship
between them. Correlation coefficient is calculated as Equation (16) [15,17,26]
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CC =
∑n

i=1
(
ŷi − ŷi

)
(yi − yi)√

∑n
i=1
(
ŷi − ŷi

)2
∑n

i=1(yi − yi)
2

(16)

In these equations, yi denotes the true values, ŷi denotes the predicted values, and ŷi
and yi are their respective averages and n is the number of samples.

Clearly, there are similar and other methods of prediction which could be implemented
for any research works [47–50].

5. Results and Discussion

Since goal of this research was to estimate the yield of rainfed chickpea farms in Ker-
manshah, information about other types of land and other areas were irrelevant. Therefore,
we combined the raster map of rainfed farms of the province with the raster maps of slope
and altitude (Figure 3a,b) in order to filter the obtained satellite data and reduce irrelevant
and outlier data. Since the crop yield data provided in the reports of the Statistical Center
of Iran and the Ministry of Agriculture of Iran are at the county level, other data were also
transformed into county level by the use of zonal operators. For this purpose, all pixels
except those related to rainfed farms, slopes of less than 10 degrees, and non-mountainous
heights were filtered out. In this way, we created an integrated database of remote sensing
data, weather data, and rainfed chickpea farms in Kermanshah. Rainfed spring chickpea,
which accounts for the largest portion of chickpea production in Kermanshah, is typically
planted in late winter and harvested in late spring. Since the selected factors had different
degrees of sensitivity to the time of data, we defined two scenarios for using the data of each
month and also the combination of consecutive months (e.g., MA for March and April): (1)
scenario (A), in which we used the average values obtained for the entire cultivation period
from planting to harvest; (2) scenario (OC), in which we used an optimal combination
of months depending on to the correlation coefficient for the relationship between the
crop yield and each predictor variable. Table 4 shows the correlation coefficient for the
relationship between the average value of each factor (predictor) in each month between
March and June (planting, germination, growth, and harvest months for rainfed chickpea
farming in the area) and the crop yield in 2010–2017. The highlighted cells in this table
show the periods selected for the OC scenario on account of having the highest correlation
coefficient. Table 5 illustrate the average of real and predicted values by the methods for
the whole province in different years from 2010 to 2017 according to these two scenarios.

Table 4. Correlation coefficient of the relationship between the yield of spring chickpea and the
values of its predictors during the growing months (from planting to harvest).

Criteria March April May June MA AM MJ
Temperature min 0.059 0.009 0.028 0.081 0.033 0.019 0.056
Temperature max 0.079 0.093 0.094 0.087 0.086 0.094 0.091

Average Temperature 0.009 −0.018 −0.019 −0.018 −0.005 −0.018 −0.018
Precipitation 0.072 0.01 −0.366 −0.459 0.05 −0.124 −0.377

Humidity max 0.162 0.176 0.139 0.039 0.175 0.155 0.091
Humidity min −0.317 −0.152 −0.013 0.044 −0.227 −0.080 0.008

Humidity 0.207 0.205 0.163 0.087 0.213 0.183 0.132
Dry temperature 0.103 0.211 0.294 0.238 0.151 0.261 0.269

Normalized difference vegetation index 0.458 0.503 0.142 0.068 0.616 0.291 0.113
Enhanced vegetation index 0.361 0.549 0.141 0.082 0.624 0.312 0.120

Fraction of photosynthetically active radiation 0.415 0.457 0.132 0.044 0.547 0.281 0.104
Leaf area index 0.462 0.456 0.148 0.044 0.559 0.291 0.118

Gross primary production 0.373 0.407 0.132 −0.005 0.566 0.260 0.084
Evapotranspiration −0.021 0.235 0.134 0.041 0.161 0.180 0.110

Surface soil moisture 0.105 0.090 0.097 0.075 0.099 0.093 0.095
Subsurface soil moisture 0.203 0.202 0.203 0.221 0.204 0.204 0.210

Highlighted cells are the maximum in each row.
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Table 5. Average of real and predicted values by the methods for Kermanshah in different years.

Year
Real Value

of Production
Kg/ha

Prediction by
RF(OC)
Kg/ha

Prediction by
SVR(OC)

Kg/ha

Prediction by
KNN(OC)

Kg/ha

Prediction by
RF(A)
Kg/ha

Prediction by
SVR(A)
Kg/ha

Prediction by
KNN(A)

Kg/ha

2017 542.76 535.27 509.31 524.56 514.13 495.45 484.85
2016 539.82 534.15 519.13 521.92 528.545 516.89 522.44
2015 281.85 320.31 368.36 395.32 341.79 392.87 413.74
2014 568.83 525.92 486.75 462.44 524.11 453.12 447.45
2013 475.52 454.20 446.63 424.78 457.32 428.88 446.95
2012 470.49 442.52 449.05 432.69 449.09 445.45 437.84
2011 379.82 412.23 429.82 438.33 416.40 433.05 437.43
2010 408.51 434.36 430.45 442.61 432.1 438.66 472.62

After implementing SVR, RF, and KNN using the Scikit-Learn library in Python, their
predictions of chickpea yield were evaluated by computing RMSE, MBE, MAE, MAPE, and
CC in the two defined scenarios (using an optimal combination of months and using the
average of the growing period) with respect to the values reported by the Statistical Center
and the Ministry of Agriculture of Iran. Tables 6 and 7 show the values of these validation
measures in the (A) and (OC) scenarios. To compute these measures with the LOOCV
technique, we generated eight sets of results for each year between 2010 and 2017. For each
year, we first took the data of that year out of the dataset and trained the methods with
the rest of the data. We then used the method to predict the removed data and compared
the predictions with the actual data. This process was carried out for both (A) and (OC)
scenarios. The results showed that among the implemented machine learning methods,
RF with a CC of 0.86, RMSE of 40.71 and 43.39 (Kg/ha), and MAPE of 7–8% for the (A)
and (OC) scenarios had the best accuracy in estimating the yield of rainfed chickpea farms.
The least accurate method was KNN, which had a CC of 0.20 and 0.32, RMSE of 90.16 and
93.66 (Kg/ha), and MAPE of 17–19% in the two scenarios. SVR was found to have a CC of
0.46 and 0.52, RMSE of 73.57 and 80.94 (Kg/ha), and MAPE of 11–15% in the (A) and (OC)
scenarios. Similar results were obtained in terms of MAE and MBE, showing RF to be the
most accurate, SVR to be the second most accurate, and KNN to be the least accurate of the
implemented methods. All methods performed better in all evaluation measures in the OC
scenario, which indicates that this method (the optimal combination of months) is more
appropriate for predicting the yield of rainfed chickpeas.

Table 6. Validity assessment of the implemented machine learning methods in the OC scenario.

Methods MBE (Kg/ha) RMSE (Kg/ha) MAE (Kg/ha) MAPE (%) CC

SVR 48.92 73.57 49.71 11.94 0.46
RF 32.31 40.71 33.00 7.96 0.86

KNN 72.85 90.16 73.72 17.18 0.20

Table 7. Validity assessment of the implemented machine learning methods in the A scenario.

Methods MBE (Kg/ha) RMSE (Kg/ha) MAE (Kg/ha) MAPE (%) CC

SVR 63.77 80.94 63.77 15.92 0.52
RF 34.88 43.39 34.89 8.32 0.86

KNN 80.44 93.66 80.44 19.56 0.32

Figure 6a–f show the difference between the actual values and the prediction made
by the methods in the A and OC scenarios. For both scenarios, the line drawn for RF
(Figure 6c,d) is closest to the 1:1 line, reflecting the better performance of this method in
predicting the yield of rainfed chickpea farms. Given that the lowest chickpea yield has
occurred in 2015 due to drought and the highest yield has occurred in 2014 because of
heavy Mediterranean rainfall, KNN has performed poorly in predicting the yield of both
of these years in both scenarios. This is evident in the lines plotted for KNN in Figure 6e,f.
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In Figure 6a,b, it can be seen that SVR has not performed as poorly as KNN, but has failed
to produce acceptable predictions for the yield in 2014 (the year with the highest yield in
the data). Overall, RF has had the most reliable performance in predicting chickpea yield
even in the presence of yield fluctuations due to rainy years and droughts.
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The use of machine learning techniques for predicting crop yields can present new
opportunities for decision makers to increase food security. Especially in areas where crop
yields are affected by uncertain conditions, like rainfed agriculture. In rainfed agriculture,
due to the fact that the plant is not irrigated by the farmer and the plant receives its required
moisture from the environment, and these environmental conditions are variable. Use
of these influential factors and machine learning techniques for predicting crop yields
provides useful information to government decision makers, warehousing and farmers.
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Remote sensing data are comprehensive, accurate and varied. However, they are only
available in developed countries. The needs of these countries determine the priority of
the time and place of collection of this data. Also due to the fact that the collection of
this information is done from different satellites and different sensors. There are different
scales, units and time periods, which prolongs the process of refining and collecting data.
Meteorological data obtained from synoptic stations have less lost information and are
easier to access for less developed countries because they are collected locally. This data
also needs to be refined. Access to them in the studied area was difficult. Also, some
sensors were not present in all stations. Considering two different time scenarios for data
collection as well as combining data for months shows the impact of some indicators is
greater in certain seasons. For example, in the RF method for the OC time scenario, the
most important criteria were surface moisture, minimum air humidity, and subsurface
humidity in March, January, and January, respectively. For SVR and KNN methods, the
most important indicators were ET and GPP, which were MA (average March and April)
and April, respectively. The application of machine learning methods using the collected
data showed that the random forest method had the least errors for the OC scenario. In
summary, defining different time scenarios for data collection enables the researcher to
make more accurate estimates of future rainfed agricultural yield by collecting specific data
at specific times.

6. Conclusions

The rising world population and the consequent increase in demand for reliable
food supplies and also the impact of climate change on food production have rekindled
concerns about food security in many parts of the world. In many areas that lack sufficient
water resources, rainfed farms are the main source of food and income, but these farms
are being increasingly affected by climate change. Predicting the yields of these farms
based on climate and remote sensing data can greatly guide government policies and
help farmers and agriculture-related businesses make better decisions regarding resource
procurement and allocation. In this study, the yield of rainfed chickpea farms in 11 top
chickpea producing counties in Kermanshah province of Iran was predicted using SVR, RF,
and KNN. The predictions were then evaluated in terms of multiple measures. Given the
sensitivity of rainfed chickpea yield to the time of data, the predictions were made in two
scenarios: (1) using the averages of the data of all growing months; and (2) using the data
of a combination of months with the highest correlation with the yield. A total of 16 factors
that tend to affect plant growth were collected from weather and remote sensing data, and
an integrated database of these factors was formed. To improve prediction accuracy, the
raster maps of rainfed farms were merged with slope and altitude maps of the province.
Overall, RF showed the highest prediction accuracy in terms of all computed validation
measures. The obtained predictions were only 7–8% different from the statistics reported
by the Statistical Center and the Ministry of Agriculture of Iran, indicating that machine
learning methods can indeed be a reliable choice for crop yield modeling. In future studies,
it could be worthwhile to examine the effect of genotype and seed type of spring and
autumn chickpea cultivated in local farms and also the soil type of these farms on the yield
prediction at farm and regional level and also to explore the economic dimension of this
discussion. Uncertainties of this study are related to amount of rainfall in the future which
has been affected by global warming and environmental issues in the past two decades all
over the world specially in Iran. We tried to predict production of chickpea in Kermanshah
Province as one of the main producers of this product in Iran. Results of this research could
help government policy makers to have an accurate statistic of chickpea. It is essential for
import and export too.
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Nomenclature

BPNN Back-Propagation Neural Networks
CART Classification and Regression Trees
CCI Climate Change Initiative
CHIRPS Climate Hazards Group InfraRed Precipitation
CC Correlation Coefficient
CHPclim Climate Hazard group Precipitation climatology
DL Deep Learning
DEM Digital Elevation Model
EVI Enhanced Vegetation Index
ESA European Space Agency
ET Evapotranspiration
ERT Extremely Randomized Trees
FPAR Fraction of Photosynthetically Active Radiation
GPR Gaussian Process Regression
GFSAD Global Food-Support Analysis Data
GPP Gross Primary Production
LAI Leaf Area Index
LOOCV Leave One Out Cross Validation
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MBE Mean Bias Error
MODIS Moderate Resolution Imaging Spectroradiometer
MLR Multiple Linear Regression
NASA National Aeronautics and Space Administration
KNN K-Nearest Neighbors
RF Random Forest
RMSE Root Mean Square Error
SM Soil Moisture
SMAP Soil Moisture Active Passive
SOM Soli Organic Matter
SVM Support Vector Machine
SVR Support Vector Regression
NDVI Normalized difference vegetation index
TIR Thermal infrared
USDA United States Department of Agriculture
USGS United States Geological Survey

Appendix A

Tables A1–A8 are data for real and prediction values of dryland chickpea yield for
average scenario from 2010 to 2017.



Sustainability 2021, 13, 4607 22 of 28

Table A1. Criteria values of each city and real and prediction values of dryland chickpea yield for average scenario 2017.

Criteria Eslamabad-e-
Gharb Gilanegharb Harsin Javanrud Kangavar Qasreshirin Ravansar Salas Kermanshah Sarpol-e-

Zahab Sonqor

Temperature min (◦C) 6.3 14.3 10.0 11.0 6.2 16.9 9.1 11.5 8.0 13.3 6.1
Temperature max (◦C) 24.0 30.2 23.5 24.6 23.6 31.5 23.9 24.6 24.4 30.3 22.8

Average temperature (◦C) 15.4 21.4 17.2 17.6 15.2 24.5 16.6 18.1 18.6 21.9 14.8
Precipitation (mm) 2.1 1.8 2.1 2.2 1.8 0.7 2.3 1.7 2.3 1.2 1.7

Humidity max (g/Kg) 76.8 59.9 59.8 61.7 81.1 57.1 68.1 58.4 69.7 68.7 71.9
Humidity min (g/Kg) 29.4 29.1 27.9 27.4 30.9 22.6 26.8 30.0 28.2 25.8 29.7

Average humidity (g/Kg) 52.6 44.2 42.5 44.3 54.1 38.7 45.9 44.1 44.2 47.0 49.8
Dry temperature (◦C) 3.5 6.0 1.7 2.3 4.0 4.8 2.3 3.0 2.9 7.1 2.0

Normalized difference vegetation
index 0.3 0.3 0.3 0.3 0.3 0.2 0.3 0.2 0.3 0.2 0.2

Enhanced vegetation index 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2
Fraction of photosynthetically

active radiation 27.2 28.3 27.9 30.1 28.6 22.4 31.3 25.9 27.7 28.3 21.7

Leaf area index 5.9 5.9 6.1 6.5 6.6 4.3 7.2 5.4 6.2 5.8 4.6
Gross primary production

(kg*C/m2)
157.7 148.6 173.8 181.2 180.8 88.8 199.8 149.2 172.1 149.7 137.5

Evapotranspiration (kg/m2) 88.2 75.9 92.5 99.9 94.0 36.9 106.3 94.1 94.3 73.4 87.2
Surface soil moisture (mm) 11.7 10.3 12.9 12.9 11.4 7.5 13.0 11.2 12.3 8.1 12.6

Subsurface soil moisture (mm) 57.0 46.0 57.3 56.9 50.2 28.4 62.8 49.7 64.9 33.6 55.7
Real value of production (Kg/ha) 622 519 534 411 550 525 696 508 617 590 400

Predicted production by RF
(Kg/ha) 565 512 486 445 525 488 613 485 552 561 424

Predicted production by SVR
(Kg/ha) 509 511 480 487 520 525 516 478 500 478 448

Predicted production by KNN
(Kg/ha) 461 426 493 517 493 463 550 468 491 500 472

Table A2. Criteria values of each city and real and prediction values of dryland chickpea yield for average scenario 2016.

Criteria Eslamabad-e-
Gharb Gilanegharb Harsin Javanrud Kangavar Qasreshirin Ravansar Salas Kermanshah Sarpol-e-

Zahab Sonqor

Temperature min (◦C) 6.9 13.8 9.5 10.8 5.9 17.2 9.1 11.9 7.7 14.1 5.8
Temperature max (◦C) 23.4 28.9 22.9 23.8 23.2 31.1 23.2 24.2 24.0 30.0 22.2

Average temperature (◦C) 15.5 22.0 18.2 17.2 14.8 24.4 16.1 18.0 18.2 21.9 14.4
Precipitation (mm) 1.7 2.0 2.2 2.3 2.2 1.7 2.5 2.0 2.2 1.3 1.8

Humidity max (g/Kg) 78.7 57.7 62.0 64.7 83.6 59.5 72.3 60.5 72.1 70.7 74.9
Humidity min (g/Kg) 30.1 30.0 29.4 30.1 31.4 23.2 29.2 31.2 28.6 26.9 30.8

Average humidity (g/Kg) 54.0 43.1 41.9 46.9 55.5 40.1 50.0 45.8 44.7 48.7 51.5
Dry temperature (◦C) 4.2 6.7 2.8 3.6 4.1 6.2 3.6 4.1 3.3 8.1 2.7

Normalized difference vegetation
index 0.3 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.3 0.3 0.3

Enhanced vegetation index 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2
Fraction of photosynthetically

active radiation 34.2 33.3 34.3 39.0 35.4 25.9 39.7 30.7 35.7 33.4 28.7

Leaf area index 7.6 7.2 7.6 8.9 8.3 5.1 9.5 6.4 8.2 7.2 6.3
Gross primary production

(kg*C/m2)
230.8 222.6 239.1 266.9 245.1 168.1 284.4 206.2 248.9 223.4 191.1

Evapotranspiration (kg/m2) 85.6 75.2 87.8 108.7 89.5 43.3 106.7 73.0 90.9 73.9 83.6
Surface soil moisture (mm) 12.7 10.1 13.9 12.7 10.6 7.6 13.7 9.7 13.4 8.3 12.4

Subsurface soil moisture (mm) 62.9 45.2 62.5 56.3 46.7 29.1 67.2 39.8 71.2 34.4 55.0
Real value of production (Kg/ha) 511 495 525 538 507 560 684 550 523 546 500

Predicted production by RF
(Kg/ha) 523 503 525 557 517 469 631 528 542 533 487

Predicted production by SVR
(Kg/ha) 511 512 509 538 507 487 566 514 523 518 500

Predicted production by KNN
(Kg/ha) 505 543 515 531 468 558 546 563 531 543 445

Table A3. Criteria values of each city and real and prediction values of dryland chickpea yield for average scenario 2015.

Criteria Eslamabad-e-
Gharb Gilanegharb Harsin Javanrud Kangavar Qasreshirin Ravansar Salas Kermanshah Sarpol-e-

Zahab Sonqor

Temperature min (◦C) 6.8 15.2 10.6 10.7 5.9 17.2 9.2 11.2 7.2 13.7 5.9
Temperature max (◦C) 25.2 29.2 24.4 25.3 25.2 31.8 24.9 25.0 26.4 30.5 23.6

Average temperature (◦C) 16.5 22.5 19.7 18.4 16.0 25.0 17.1 18.3 17.5 22.5 15.4
Precipitation (mm) 0.7 0.7 0.8 0.9 0.9 0.3 0.8 0.9 0.6 0.4 0.7

Humidity max (g/Kg) 69.5 48.4 48.5 53.7 73.3 48.0 60.2 53.0 55.9 60.2 62.3
Humidity min (g/Kg) 28.0 22.0 21.1 21.8 23.7 17.1 20.7 26.0 18.0 18.9 23.9

Average humidity (g/Kg) 47.1 34.1 31.4 36.1 45.5 30.1 38.7 38.8 35.1 38.3 40.6
Dry temperature (◦C) 3.4 3.4 −0.8 0.0 2.0 2.3 −0.3 1.2 −1.4 4.3 −0.6

Normalized difference vegetation
index 0.3 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.3 0.3 0.3

Enhanced vegetation index 0.2 0.2 0.2 0.2 0.2 0.1 0.3 0.2 0.2 0.2 0.2
Fraction of photosynthetically

active radiation 26.6 28.4 30.7 37.6 33.1 19.4 37.7 28.9 28.8 28.6 24.8

Leaf area index 5.3 5.8 6.6 8.6 7.5 3.5 9.0 6.0 6.2 5.9 5.1
Gross primary production

(kg*C/m2)
134.7 134.5 161.1 198.9 176.8 62.4 204.8 136.6 152.0 137.4 129.0

Evapotranspiration (kg/m2) 46.8 50.3 59.7 83.3 63.9 19.4 79.5 55.6 54.7 52.1 50.1
Surface soil moisture (mm) 4.4 4.0 4.1 5.1 4.0 3.3 4.5 4.1 4.8 3.3 5.1

Subsurface soil moisture (mm) 21.7 18.1 18.4 23.7 17.6 13.0 22.4 17.0 26.5 14.0 23.7
Real value of production (Kg/ha) 300 270 306 250 290 230 394 235 305 225 295

Predicted production by RF
(Kg/ha) 332 291 389 345 401 291 395 287 389 289 350

Predicted production by SVR
(Kg/ha) 367 341 477 402 460 371 406 343 447 357 349

Predicted production by KNN
(Kg/ha) 386 344 481 463 479 382 463 337 455 387 374
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Table A4. Criteria values of each city and real and prediction values of dryland chickpea yield for average scenario 2014.

Criteria Eslamabad-e-
Gharb Gilanegharb Harsin Javanrud Kangavar Qasreshirin Ravansar Salas Kermanshah Sarpol-e-

Zahab Sonqor

Temperature min (◦C) 6.9 15.7 10.3 11.4 6.5 17.5 10.0 12.4 8.1 13.9 6.6
Temperature max (◦C) 24.2 28.7 23.5 24.9 24.5 31.7 24.4 24.9 24.7 30.6 23.2

Average temperature (◦C) 15.9 24.4 18.8 19.9 15.7 26.9 17.3 20.6 19.0 22.4 17.1
Precipitation (mm) 1.4 1.0 1.1 0.9 0.7 0.9 0.9 1.3 1.0 1.0 1.0

Humidity max (g/Kg) 72.4 47.8 57.3 54.5 78.9 49.9 62.6 51.3 67.4 65.9 68.1
Humidity min (g/Kg) 25.2 25.2 24.5 22.8 26.0 19.7 23.3 26.9 23.4 23.7 25.9

Average humidity (g/Kg) 48.1 33.9 37.3 35.4 50.5 30.5 41.7 36.5 39.9 44.4 41.6
Dry temperature (◦C) 2.4 5.1 1.4 1.3 3.5 3.8 1.6 2.8 2.1 6.7 1.6

Normalized difference vegetation
index 0.3 0.3 0.3 0.3 0.3 0.2 0.3 0.2 0.3 0.2 0.2

Enhanced vegetation index 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Fraction of photosynthetically

active radiation 31.4 30.0 29.4 32.8 30.1 25.0 35.6 27.0 31.8 29.2 23.7

Leaf area index 6.8 6.3 6.2 6.9 6.8 5.0 8.1 5.3 7.0 6.0 4.9
Gross primary production

(kg*C/m2)
179.6 148.0 178.1 186.9 181.5 89.3 214.3 131.2 190.6 144.3 141.7

Evapotranspiration (kg/m2) 78.1 63.6 75.9 82.9 76.4 37.7 88.4 58.2 80.3 60.2 70.4
Surface soil moisture (mm) 6.7 5.8 8.6 7.1 6.8 4.5 7.4 5.4 7.3 4.9 7.5

Subsurface soil moisture (mm) 32.2 28.4 38.4 34.3 31.3 17.8 39.0 22.4 39.0 20.8 35.7
Real value of production (Kg/ha) 608 554 661 477 522 500 685 530 552 762 405

Predicted production by RF
(Kg/ha) 415 516 592 501 489 447 636 451 569 658 490

Predicted production by SVR
(Kg/ha) 454 469 483 461 462 500 470 358 475 418 435

Predicted production by KNN
(Kg/ha) 427 431 463 475 427 431 544 362 513 419 431

Table A5. Criteria values of each city and real and prediction values of dryland chickpea yield for average scenario 2013.

Criteria Eslamabad-e-
Gharb Gilanegharb Harsin Javanrud Kangavar Qasreshirin Ravansar Salas Kermanshah Sarpol-e-

Zahab Sonqor

Temperature min (◦C) 6.5 13.5 9.8 10.6 6.0 17.1 9.4 11.6 8.0 13.8 6.0
Temperature max (◦C) 23.7 27.8 22.8 23.8 23.9 30.9 23.6 23.8 24.5 29.7 22.8

Average temperature (◦C) 15.6 23.4 18.3 18.8 15.1 26.1 16.4 19.3 18.6 21.9 16.3
Precipitation (mm) 0.5 0.5 0.8 1.4 0.6 0.3 0.8 0.9 0.7 0.6 0.8

Humidity max (g/Kg) 71.3 49.5 53.3 57.6 76.4 47.8 63.5 55.3 62.9 65.6 68.7
Humidity min (g/Kg) 23.7 24.8 23.7 25.6 25.8 17.1 24.8 26.8 21.9 21.5 26.3

Average humidity (g/Kg) 45.8 33.9 34.7 38.0 48.8 28.1 42.8 37.9 36.9 41.9 42.1
Dry temperature (◦C) 1.5 4.4 0.2 1.8 2.5 2.9 1.6 2.2 1.0 5.7 0.9

Normalized difference vegetation
index 0.3 0.2 0.3 0.3 0.3 0.2 0.3 0.2 0.3 0.2 0.2

Enhanced vegetation index 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Fraction of photosynthetically

active radiation 27.2 26.0 29.3 36.3 32.1 20.3 36.5 25.7 30.1 26.3 25.0

Leaf area index 5.5 5.1 6.1 7.9 7.1 3.7 8.2 5.0 6.4 5.1 5.1
Gross primary production

(kg*C/m2)
156.6 135.0 170.4 212.5 183.3 75.8 221.2 133.5 175.4 137.5 142.2

Evapotranspiration (kg/m2) 56.3 48.7 62.0 86.9 67.1 25.2 82.6 53.8 62.6 50.2 59.8
Surface soil moisture (mm) 5.4 5.1 7.1 7.4 5.6 5.1 7.9 5.1 6.1 4.9 6.9

Subsurface soil moisture (mm) 25.1 22.0 30.8 31.5 24.1 19.5 37.8 20.5 30.8 20.2 29.5
Real value of production (Kg/ha) 492 489 527 381 461 433 599 433 491 524 401

Predicted production by RF
(Kg/ha) 486 429 502 404 451 399 587 416 483 454 419

Predicted production by SVR
(Kg/ha) 449 346 509 437 461 417 489 341 491 375 403

Predicted production by KNN
(Kg/ha) 478 362 499 484 455 398 543 366 472 402 459

Table A6. Criteria values of each city and real and prediction values of dryland chickpea yield for average scenario 2012.

Criteria Eslamabad-e-
Gharb Gilanegharb Harsin Javanrud Kangavar Qasreshirin Ravansar Salas Kermanshah Sarpol-e-

Zahab Sonqor

Temperature min (◦C) 6.5 14.7 9.4 10.5 5.8 17.8 9.2 11.8 8.4 14.1 5.4
Temperature max (◦C) 23.7 28.2 22.3 23.8 23.4 31.6 23.0 23.5 24.4 30.4 22.0

Average temperature (◦C) 15.4 23.8 17.7 18.7 14.9 26.6 16.3 19.2 18.3 22.2 15.8
Precipitation (mm) 0.9 0.9 0.7 1.3 0.7 0.6 0.9 1.3 0.7 0.7 0.8

Humidity max (g/Kg) 69.1 44.8 50.3 53.8 74.4 42.5 58.5 46.1 65.0 65.0 68.6
Humidity min (g/Kg) 24.2 21.6 23.6 24.5 24.5 15.9 25.5 23.0 22.5 20.0 27.9

Average humidity (g/Kg) 45.3 29.9 34.2 35.9 47.0 25.2 36.0 32.6 34.0 33.0 43.1
Dry temperature (◦C) 1.3 2.7 −0.5 0.7 1.7 1.3 0.6 -0.5 0.5 5.0 0.9

Normalized difference vegetation
index 0.2 0.2 0.2 0.3 0.3 0.2 0.3 0.2 0.2 0.2 0.2

Enhanced vegetation index 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2
Fraction of photosynthetically

active radiation 21.6 22.5 25.8 29.0 28.2 15.2 31.5 21.6 25.2 23.1 21.1

Leaf area index 4.2 4.4 5.3 6.2 6.2 2.6 7.2 4.1 5.3 4.5 4.4
Gross primary production

(kg*C/m2)
118.0 108.9 150.0 175.8 171.7 47.9 199.0 107.3 150.2 113.2 137.0

Evapotranspiration (kg/m2) 48.7 43.1 61.9 79.5 70.4 14.6 83.6 47.8 61.9 46.6 64.3
Surface soil moisture (mm) 5.5 4.9 6.5 8.3 5.2 3.2 7.9 3.8 6.0 3.5 6.4

Subsurface soil moisture (mm) 24.3 20.3 27.6 35.9 21.7 12.2 36.7 15.2 29.8 14.1 26.7
Real value of production (Kg/ha) 487 484 521 377 456 428 593 428 485 518 397

Predicted production by RF
(Kg/ha) 454 414 502 427 451 395 547 418 472 459 402

Predicted production by SVR
(Kg/ha) 426 437 460 478 456 428 475 428 448 466 397

Predicted production by KNN
(Kg/ha) 388 446 457 471 479 382 451 446 491 380 426
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Table A7. Criteria values of each city and real and prediction values of dryland chickpea yield for average scenario 2011.

Criteria Eslamabad-e-
Gharb Gilanegharb Harsin Javanrud Kangavar Qasreshirin Ravansar Salas Kermanshah Sarpol-e-

Zahab Sonqor

Temperature min (◦C) 6.3 14.4 9.2 10.6 5.6 17.0 9.1 11.7 7.5 13.7 5.7
Temperature max (◦C) 23.1 27.2 22.1 23.8 23.2 30.8 22.9 23.3 23.7 29.6 22.0

Average temperature (◦C) 15.0 23.1 17.3 18.7 14.5 26.1 16.1 18.9 18.0 21.7 15.9
Precipitation (mm) 1.3 1.4 1.5 1.9 1.2 0.6 1.7 1.5 1.4 0.9 1.7

Humidity max (g/Kg) 79.0 50.3 61.3 57.8 81.0 47.3 66.0 51.9 67.8 66.0 74.4
Humidity min (g/Kg) 30.0 25.2 26.2 26.4 26.9 17.2 27.7 25.0 24.9 21.5 29.2

Average humidity (g/Kg) 52.6 34.7 40.6 38.8 52.9 27.8 45.6 36.0 40.9 43.0 46.0
Dry temperature (◦C) 3.5 4.6 1.7 1.9 3.0 2.5 2.3 1.0 1.4 5.8 2.0

Normalized difference vegetation
index 0.3 0.2 0.3 0.3 0.3 0.2 0.3 0.2 0.3 0.2 0.2

Enhanced vegetation index 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2
Fraction of photosynthetically

active radiation 26.4 25.3 29.6 30.1 31.5 17.8 32.5 24.1 28.7 25.7 24.7

Leaf area index 5.5 5.1 6.4 6.5 7.1 3.2 7.5 4.7 6.3 5.0 5.4
Gross primary production

(kg*C/m2)
148.9 130.9 177.4 178.6 190.3 68.7 201.9 125.4 171.1 134.0 153.1

Evapotranspiration (kg/m2) 68.7 54.9 76.0 83.6 81.5 21.9 88.7 54.7 75.4 52.7 75.9
Surface soil moisture (mm) 7.8 6.7 10.3 10.0 8.0 4.3 10.1 6.7 8.6 7.1 7.7

Subsurface soil moisture (mm) 35.2 27.9 42.9 41.2 31.9 15.0 46.6 25.6 42.0 28.3 31.4
Real value of production (Kg/ha) 374 372 401 490 351 329 456 329 373 398 305

Predicted production by RF
(Kg/ha) 480 392 424 477 409 353 477 368 439 432 331

Predicted production by SVR
(Kg/ha) 445 372 479 472 461 381 493 354 473 398 436

Predicted production by KNN
(Kg/ha) 439 362 463 463 473 382 527 366 465 432 439

Table A8. Criteria values of each city and real and prediction values of dryland chickpea yield for average scenario 2010.

Criteria Eslamabad-e-
Gharb Gilanegharb Harsin Javanrud Kangavar Qasreshirin Ravansar Salas Kermanshah Sarpol-e-

Zahab Sonqor

Temperature min (◦C) 7.0 15.1 10.6 11.5 7.1 18.5 10.0 12.7 8.3 14.7 7.2
Temperature max (◦C) 24.7 28.1 23.4 24.6 24.3 32.5 24.1 24.3 24.9 30.2 22.9

Average temperature (◦C) 16.1 23.9 18.8 19.6 15.7 27.7 16.9 20.0 18.9 22.4 17.1
Precipitation (mm) 1.4 2.3 1.8 2.0 1.7 1.4 2.0 2.0 1.5 2.1 1.4

Humidity max (g/Kg) 78.9 55.2 60.5 61.8 80.7 53.2 69.1 56.0 71.2 70.5 72.1
Humidity min (g/Kg) 26.4 29.6 27.3 30.3 29.9 20.8 28.3 30.4 26.7 28.0 29.2

Average humidity (g/Kg) 51.6 39.3 40.3 42.6 54.7 32.8 48.0 41.1 44.1 49.3 45.0
Dry temperature (◦C) 4.1 7.2 2.7 4.1 4.8 5.6 3.6 3.8 3.3 8.5 2.6

Normalized difference vegetation
index 0.3 0.3 0.3 0.3 0.3 0.2 0.3 0.2 0.3 0.3 0.3

Enhanced vegetation index 0.2 0.2 0.3 0.2 0.3 0.1 0.3 0.2 0.3 0.2 0.2
Fraction of photosynthetically

active radiation 35.9 32.7 39.2 38.5 39.5 21.3 42.7 30.0 39.1 31.3 33.3

Leaf area index 8.1 7.1 9.2 9.0 9.7 3.9 11.0 6.2 9.5 6.5 7.6
Gross primary production

(kg*C/m2)
208.2 170.1 236.5 225.2 236.0 71.6 261.8 154.8 235.4 163.0 197.0

Evapotranspiration (kg/m2) 87.0 73.9 97.4 105.5 95.2 29.8 113.8 71.7 98.0 70.9 95.8
Surface soil moisture (mm) 7.6 6.7 7.8 7.9 7.5 5.5 9.0 6.9 7.1 6.8 7.1

Subsurface soil moisture (mm) 34.1 27.4 31.8 31.8 30.9 19.3 40.9 25.6 33.7 26.6 29.1
Real value of production (Kg/ha) 423 420 453 327 396 372 515 372 421 450 345

Predicted production by RF
(Kg/ha) 454 460 436 379 406 398 519 397 432 471 403

Predicted production by SVR
(Kg/ha) 450 447 437 394 422 411 515 449 426 450 424

Predicted production by KNN
(Kg/ha) 531 468 480 478 451 398 520 485 480 432 476

Appendix B

Tables A9–A16 are data for real and prediction values of dryland chickpea yield for
optimum combination scenario from 2010 to 2017.

Table A9. Criteria values of each city and real and prediction values of dryland chickpea yield for optimum combination
scenario 2017.

Criteria Eslamabad-e-
Gharb Gilanegharb Harsin Javanrud Kangavar Qasreshirin Ravansar Salas Kermanshah Sarpol-e-

Zahab Sonqor

Temperature min (◦C) 11.1 21.5 15.9 17.9 10.1 24.0 15.1 17.8 12.9 19.4 10.6
Temperature max (◦C) 27.5 32.5 27.1 28.3 26.9 35.8 27.6 28.2 27.7 34.7 26.1

Average temperature (◦C) 6.7 12.6 8.7 8.1 6.9 14.7 7.8 9.0 9.1 13.2 6.2
Precipitation (mm) 5.5 4.4 4.7 5.5 4.0 1.6 6.0 4.3 4.8 3.2 3.2

Humidity max (g/Kg) 82.9 76.9 70.9 76.5 84.6 76.3 77.0 71.6 77.8 86.3 80.9
Humidity min (g/Kg) 14.8 13.4 11.9 10.7 16.6 7.6 11.1 11.9 10.9 12.0 12.4

Average humidity (g/Kg) 65.2 60.5 56.5 60.8 64.4 58.8 58.7 61.0 58.5 63.2 62.4
Dry temperature (◦C) 4.6 5.9 2.5 2.8 5.0 2.7 3.4 3.0 4.1 6.8 3.6

Normalized difference vegetation
index 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.1

Enhanced vegetation index 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1
Fraction of photosynthetically active

radiation 4.0 6.2 4.7 5.2 4.9 6.3 5.3 3.5 4.3 6.7 2.5

Leaf area index 21.1 30.1 23.3 25.7 23.4 31.3 25.6 19.0 21.9 32.3 13.6
Gross primary production

(kg*C/m2)
125.0 170.3 134.2 147.3 132.3 150.1 150.5 109.8 129.7 182.6 68.4

Evapotranspiration (kg/m2) 97.6 105.6 108.4 127.4 104.4 60.6 124.1 111.7 106.7 112.3 100.3
Surface soil moisture (mm) 18.9 17.2 21.6 22.6 21.1 13.5 21.9 19.1 19.8 13.7 21.8

Subsurface soil moisture (mm) 9.4 8.9 8.9 8.7 8.6 8.2 10.2 8.6 11.4 8.5 9.4
Real value of production (Kg/ha) 622 519 534 411 550 525 696 400 508 617 590

Predicted production by RF (Kg/ha) 575 522 553 464 542 498 636 443 559 509 586
Predicted production by SVR

(Kg/ha) 573 518 506 457 550 453 467 484 535 526 534

Predicted production by KNN
(Kg/ha) 520 561 522 500 530 418 500 539 581 550 548
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Table A10. Criteria values of each city and real and prediction values of dryland chickpea yield for optimum combination
scenario 2016.

Criteria Eslamabad-e-
Gharb Gilanegharb Harsin Javanrud Kangavar Qasreshirin Ravansar Salas Kermanshah Sarpol-e-

Zahab Sonqor

Temperature min (◦C) 12.0 22.6 16.3 17.9 11.4 24.9 15.9 18.9 14.0 21.3 11.7
Temperature max (◦C) 25.8 34.7 25.9 26.2 25.9 34.2 25.6 27.1 26.5 32.9 24.8

Average temperature (◦C) 8.4 14.1 10.3 9.5 8.2 15.6 8.7 10.2 10.3 14.0 7.4
Precipitation (mm) 3.3 5.7 3.2 4.7 2.4 2.3 5.6 3.6 3.0 2.3 3.2

Humidity max (g/Kg) 85.9 68.9 73.7 74.7 90.5 74.3 80.6 67.6 82.7 83.6 85.3
Humidity min (g/Kg) 15.1 15.7 13.9 14.2 17.0 9.5 14.1 14.8 14.3 13.1 15.6

Average humidity (g/Kg) 63.9 56.2 52.4 58.5 63.2 57.5 60.0 58.3 55.0 62.5 60.2
Dry temperature (◦C) 6.9 7.6 5.4 6.1 7.2 5.9 6.4 6.1 5.6 9.6 5.7

Normalized difference vegetation
index 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2

Enhanced vegetation index 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2
Fraction of photosynthetically

active radiation 7.5 9.0 7.8 8.8 8.3 7.8 9.7 8.2 8.5 9.4 5.1

Leaf area index 35.0 41.0 36.0 40.1 36.9 37.8 42.0 38.6 38.3 42.8 25.3
Gross primary production

(kg*C/m2)
353.2 382.1 354.4 393.7 362.4 322.4 421.3 353.1 379.4 385.9 244.4

Evapotranspiration (kg/m2) 117.0 117.5 123.9 139.8 125.6 65.5 137.3 118.1 127.1 123.8 103.4
Surface soil moisture (mm) 20.2 16.0 21.8 20.5 16.1 12.2 21.9 16.0 20.6 12.9 19.7

Subsurface soil moisture (mm) 11.3 9.1 11.6 9.9 9.3 8.2 12.7 8.5 14.7 8.5 10.5
Real value of production (Kg/ha) 511 495 525 538 507 560 684 500 550 523 546

Predicted production by RF
(Kg/ha) 525 513 575 537 511 460 635 503 557 521 540

Predicted production by SVR
(Kg/ha) 510 495 511 538 507 465 570 500 545 523 546

Predicted production by KNN
(Kg/ha) 514 519 514 549 514 514 549 514 521 521 511

Table A11. Criteria values of each city and real and prediction values of dryland chickpea yield for optimum combination
scenario 2015.

Criteria Eslamabad-e-
Gharb Gilanegharb Harsin Javanrud Kangavar Qasreshirin Ravansar Salas Kermanshah Sarpol-e-

Zahab Sonqor

Temperature Min (◦C) 13.9 21.8 18.1 18.4 11.6 24.4 17.4 18.2 13.3 20.6 11.2
Temperature max (◦C) 29.0 33.2 27.9 28.8 28.5 36.0 28.4 29.2 29.7 34.7 27.0

Average temperature (◦C) 7.8 13.7 9.9 9.1 7.6 15.8 8.2 9.4 8.6 13.8 6.6
Precipitation (mm) 2.0 2.5 2.4 2.9 2.3 1.2 2.4 2.9 1.6 1.6 1.9

Humidity max (g/Kg) 78.9 53.5 59.2 59.6 78.6 54.9 71.1 61.1 66.2 71.4 70.2
Humidity min (g/Kg) 20.2 12.9 9.7 9.1 13.7 8.1 9.6 11.6 7.3 10.2 10.1

Average humidity (g/Kg) 58.2 45.6 42.8 48.6 53.8 43.6 51.6 53.5 46.9 51.3 51.9
Dry temperature (◦C) 3.9 3.4 0.2 0.8 3.6 1.2 0.7 1.6 −0.5 4.5 0.9

Normalized difference vegetation
index 0.3 0.3 0.3 0.4 0.3 0.2 0.4 0.3 0.3 0.3 0.3

Enhanced vegetation index 0.2 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.3 0.3 0.2
Fraction of photosynthetically

active radiation 6.6 8.0 8.2 11.0 9.3 4.8 12.2 8.3 8.0 8.2 5.9

Leaf area index 32.7 37.8 37.8 46.5 40.9 26.4 49.2 39.1 36.7 38.6 29.0
Gross primary production

(kg*C/m2)
177.8 199.9 198.5 243.9 212.8 112.5 255.9 203.4 194.3 205.0 133.8

Evapotranspiration (kg/m2) 69.5 79.3 83.6 127.3 93.9 20.4 129.4 88.9 81.4 80.7 63.2
Surface soil moisture (mm) 6.4 5.5 5.9 7.7 5.8 4.1 6.7 5.7 6.9 4.1 7.7

Subsurface soil moisture (mm) 9.3 8.9 8.6 8.6 8.4 8.2 9.4 8.3 10.8 8.5 9.0
Real value of production (Kg/ha) 300 270 306 250 290 230 394 295 235 305 225

Predicted production by RF
(Kg/ha) 336 310 282 301 370 285 375 332 299 345 289

Predicted production by SVR
(Kg/ha) 437 331 333 378 414 346 394 329 362 351 377

Predicted production by KNN
(Kg/ha) 445 386 386 412 448 350 418 398 375 375 358

Table A12. Criteria values of each city and real and prediction values of dryland chickpea yield for optimum combination
scenario 2014.

Criteria Eslamabad-e-
Gharb Gilanegharb Harsin Javanrud Kangavar Qasreshirin Ravansar Salas Kermanshah Sarpol-e-

Zahab Sonqor

Temperature min (◦C) 12.6 21.9 16.1 18.7 11.9 24.0 17.4 18.5 13.1 20.1 12.6
Temperature max (◦C) 27.2 32.4 26.6 28.0 27.0 35.6 27.7 28.3 27.9 34.8 26.1

Average temperature (◦C) 8.3 15.3 10.6 11.2 8.6 17.4 9.3 11.7 10.8 14.0 9.0
Precipitation (mm) 4.5 3.2 2.5 2.3 1.4 3.0 3.0 4.2 2.5 3.7 2.8

Humidity max (g/Kg) 84.7 57.5 70.7 69.1 85.3 62.7 75.8 64.6 79.6 79.6 76.8
Humidity min (g/Kg) 12.7 13.3 11.3 10.9 16.5 7.9 12.0 13.1 10.9 10.9 14.3

Average humidity (g/Kg) 61.1 46.6 48.8 47.5 56.6 45.5 53.7 49.7 51.6 59.9 51.3
Dry temperature (◦C) 3.8 4.9 3.0 2.5 6.2 2.3 3.3 3.7 3.3 7.2 3.0

Normalized difference vegetation
index 0.3 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2

Enhanced vegetation index 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Fraction of photosynthetically

active radiation 7.0 8.0 6.3 7.4 6.7 7.6 9.1 6.9 7.5 8.1 4.3

Leaf area index 33.6 37.6 30.8 35.9 31.0 36.4 40.5 34.2 35.0 38.2 22.2
Gross primary production

(kg*C/m2)
192.0 194.7 174.6 196.7 170.6 154.7 228.3 175.4 200.8 198.3 116.0

Evapotranspiration (kg/m2) 106.8 94.0 99.2 118.7 95.0 47.4 128.6 90.9 114.0 93.9 88.7
Surface soil moisture (mm) 10.8 10.4 12.8 11.8 10.5 7.1 12.9 8.7 11.5 7.8 11.4

Subsurface soil moisture (mm) 11.4 9.5 17.9 12.7 14.1 8.2 13.3 8.8 15.2 8.5 17.9
Real value of production (Kg/ha) 608 554 661 477 522 500 685 405 530 552 762

Predicted production by RF
(Kg/ha) 514 520 621 489 503 438 635 399 550 430 688

Predicted production by SVR
(Kg/ha) 529 384 511 477 522 500 456 452 522 432 569

Predicted production by KNN
(Kg/ha) 517 361 517 485 501 399 416 444 500 416 529
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Table A13. Criteria values of each city and real and prediction values of dryland chickpea yield for optimum combination
scenario 2013.

Criteria Eslamabad-e-
Gharb Gilanegharb Harsin Javanrud Kangavar Qasreshirin Ravansar Salas Kermanshah Sarpol-e-

Zahab Sonqor

Temperature min (◦C) 12.7 20.4 16.2 17.8 11.4 24.1 16.5 18.2 13.6 20.6 10.4
Temperature max (◦C) 23.7 28.2 23.2 23.9 24.2 31.8 23.9 25.1 24.8 30.4 23.5

Average temperature (◦C) 9.0 16.3 11.5 12.0 9.1 18.5 9.8 12.2 11.6 14.8 10.0
Precipitation (mm) 0.0 0.1 0.4 0.3 0.3 0.0 0.2 0.5 0.3 0.1 1.0

Humidity max (g/Kg) 78.0 50.3 58.5 63.8 84.4 50.4 70.0 60.9 69.1 74.0 75.3
Humidity min (g/Kg) 12.9 12.8 10.6 11.2 14.3 7.6 10.7 12.5 10.6 10.4 13.5

Average humidity (g/Kg) 49.2 37.8 39.4 42.3 52.0 32.9 47.1 43.9 40.7 48.6 47.6
Dry temperature (◦C) 6.1 8.5 4.4 6.8 6.2 6.9 6.5 6.4 5.3 9.8 4.3

Normalized difference vegetation
index 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2

Enhanced vegetation index 0.2 0.2 0.2 0.2 0.3 0.2 0.3 0.2 0.2 0.2 0.2
Fraction of photosynthetically

active radiation 6.2 6.8 6.9 8.4 8.5 5.3 8.9 6.4 7.5 6.7 4.9

Leaf area index 30.9 33.9 33.5 39.5 38.5 28.4 40.6 32.7 35.4 34.2 25.1
Gross primary production

(kg*C/m2)
172.6 178.4 175.9 213.2 191.8 122.1 216.3 172.9 189.4 181.2 115.2

Evapotranspiration (kg/m2) 72.0 66.8 72.5 106.7 83.9 25.7 98.4 72.7 79.9 66.3 60.8
Surface soil moisture (mm) 6.3 6.5 9.3 10.2 7.3 6.2 10.0 6.9 7.8 6.8 9.3

Subsurface soil moisture (mm) 13.5 11.9 16.9 14.8 16.2 9.1 18.7 10.4 16.9 9.7 14.5
Real value of production (Kg/ha) 492 489 527 381 461 433 599 401 433 491 524

Predicted production by RF
(Kg/ha) 481 443 486 424 450 410 545 401 439 451 466

Predicted production by SVR
(Kg/ha) 470 458 469 416 461 405 432 456 433 477 436

Predicted production by KNN
(Kg/ha) 441 393 430 450 407 350 463 441 425 441 433

Table A14. Criteria values of each city and real and prediction values of dryland chickpea yield for optimum combination
scenario 2012.

Criteria Eslamabad-e-
Gharb Gilanegharb Harsin Javanrud Kangavar Qasreshirin Ravansar Salas Kermanshah Sarpol-e-

Zahab Sonqor

Temperature min (◦C) 14.0 22.8 17.3 19.1 12.9 26.1 19.3 19.9 16.6 22.2 12.0
Temperature max (◦C) 28.3 32.6 26.4 27.8 27.3 35.8 27.1 27.7 28.7 34.5 26.1

Average temperature (◦C) 4.4 11.9 6.5 6.8 4.9 14.5 4.7 7.3 6.9 10.9 4.7
Precipitation (mm) 2.2 2.8 1.3 3.1 1.1 1.6 1.5 3.5 0.9 2.3 1.7

Humidity max (g/Kg) 79.9 56.4 65.4 66.7 87.7 50.9 77.9 55.7 79.3 77.8 83.6
Humidity min (g/Kg) 11.7 10.9 12.4 10.3 14.8 6.7 12.2 9.5 8.6 9.6 13.2

Average Humidity (g/Kg) 57.6 40.7 45.9 48.1 55.7 36.2 53.4 44.8 49.8 53.6 55.2
Dry temperature (◦C) 3.6 4.1 0.3 3.0 3.6 1.4 2.7 1.2 2.3 6.8 2.8

Normalized difference vegetation
index 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.1

Enhanced vegetation index 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1
Fraction of photosynthetically

active radiation 3.5 4.9 4.8 5.8 5.3 3.4 7.0 4.7 5.0 5.3 3.1

Leaf area index 19.0 25.1 24.2 28.0 25.3 19.5 31.7 24.8 24.5 27.3 15.9
Gross primary production

(kg*C/m2)
115.6 139.5 142.1 170.7 146.6 81.6 194.2 134.3 147.9 148.6 94.5

Evapotranspiration (kg/m2) 61.3 67.0 77.5 107.7 87.2 20.5 115.0 71.1 82.1 73.1 75.9
Surface soil moisture (mm) 7.8 8.4 9.4 15.2 5.3 4.5 14.4 5.5 9.4 4.6 7.6

Subsurface soil moisture (mm) 10.3 10.0 11.6 10.9 11.5 8.9 13.7 9.1 13.1 8.9 13.4
Real value of production (Kg/ha) 487 484 521 377 456 428 593 397 428 485 518

Predicted production by RF
(Kg/ha) 457 408 482 420 456 386 566 379 436 379 499

Predicted production by SVR
(Kg/ha) 484 393 412 480 456 428 532 397 428 411 518

Predicted production by KNN
(Kg/ha) 392 366 422 525 403 365 526 385 435 442 497

Table A15. Criteria values of each city and real and prediction values of dryland chickpea yield for optimum combination
scenario 2011.

Criteria Eslamabad-e-
Gharb Gilanegharb Harsin Javanrud Kangavar Qasreshirin Ravansar Salas Kermanshah Sarpol-e-

Zahab Sonqor

Temperature min (◦C) 12.3 22.9 16.6 18.6 11.3 25.0 16.8 19.2 14.0 21.1 10.8
Temperature max (◦C) 24.6 29.7 24.2 25.7 25.0 33.6 24.5 25.0 25.7 32.2 23.5

Average temperature (◦C) 6.9 14.0 8.5 10.3 6.4 17.0 8.2 10.3 9.2 13.0 7.3
Precipitation (mm) 1.6 1.0 1.9 1.5 1.9 0.7 1.3 0.7 1.9 0.9 1.5

Humidity max (g/Kg) 85.0 58.4 67.6 67.0 83.3 56.8 74.9 60.8 77.3 77.8 74.7
Humidity min (g/Kg) 16.4 11.9 16.0 11.2 14.0 7.2 12.2 10.6 8.6 9.6 13.2

Average humidity (g/Kg) 59.0 42.9 48.2 46.4 58.6 37.1 53.4 43.2 49.8 53.6 52.3
Dry temperature (◦C) 7.4 7.7 4.3 6.1 6.6 4.1 6.3 5.2 5.5 8.9 6.0

Normalized difference vegetation
index 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1

Enhanced vegetation index 0.1 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.1 0.2 0.1
Fraction of photosynthetically

active radiation 3.9 4.9 5.5 4.5 6.0 4.2 5.4 4.5 4.8 5.4 2.9

Leaf area index 21.1 25.5 27.3 23.8 28.8 23.3 26.5 24.3 24.3 28.1 15.9
Gross primary production

(kg*C/m2)
116.2 133.0 145.7 121.2 153.3 106.6 138.6 125.6 129.2 145.1 72.1

Evapotranspiration (kg/m2) 74.2 65.7 84.2 81.6 84.3 27.7 82.4 64.6 77.4 65.5 72.2
Surface soil moisture (mm) 10.4 9.0 15.9 15.4 10.2 5.8 15.1 8.8 12.0 10.2 9.1

Subsurface soil moisture (mm) 11.1 9.8 13.9 11.0 11.1 8.2 12.9 8.8 13.2 8.8 12.0
Real value of production (Kg/ha) 374 372 401 490 351 329 456 305 329 373 398

Predicted production by RF
(Kg/ha) 445 394 446 471 398 356 475 331 417 390 412

Predicted production by SVR
(Kg/ha) 541 372 438 489 445 342 451 372 457 400 420

Predicted production by KNN
(Kg/ha) 535 385 414 477 436 350 414 385 464 421 541
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Table A16. Criteria values of each city and real and prediction values of dryland chickpea yield for optimum combination
scenario 2010.

Criteria Eslamabad-e-
Gharb Gilanegharb Harsin Javanrud Kangavar Qasreshirin Ravansar Salas Kermanshah Sarpol-e-

Zahab Sonqor

Temperature min (◦C) 12.2 22.6 17.0 18.5 11.6 26.5 16.7 19.7 13.4 21.8 11.9
Temperature max (◦C) 26.2 29.9 24.5 25.9 25.5 35.0 25.3 25.7 26.1 32.5 23.9

Average temperature (◦C) 10.0 16.8 12.5 12.9 10.4 19.7 11.0 13.3 12.7 15.2 11.4
Precipitation (mm) 2.3 2.8 2.1 2.8 1.2 2.1 2.3 3.1 2.0 2.4 1.5

Humidity max (g/Kg) 86.4 68.4 75.2 80.8 88.1 75.7 86.3 72.8 88.0 87.6 83.7
Humidity min (g/Kg) 14.2 15.4 12.6 11.4 15.6 7.1 11.0 11.4 9.5 11.7 12.7

Average humidity (g/Kg) 59.4 50.4 49.1 54.7 61.8 47.1 59.9 53.8 54.7 65.1 54.6
Dry temperature (◦C) 6.4 8.2 4.3 5.9 6.4 5.2 5.4 5.1 5.7 8.9 3.7

Normalized difference vegetation
index 0.3 0.3 0.3 0.3 0.3 0.2 0.4 0.3 0.4 0.3 0.3

Enhanced vegetation index 0.3 0.3 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.2
Fraction of photosynthetically

active radiation 9.4 9.0 11.3 10.0 11.3 5.5 13.5 7.8 11.9 8.3 7.5

Leaf area index 41.2 40.5 47.0 43.2 46.1 28.9 51.1 37.3 47.7 39.3 34.6
Gross primary production

(kg*C/m2)
245.9 224.7 269.5 241.9 253.1 118.6 294.4 200.3 279.0 217.0 171.4

Evapotranspiration (kg/m2) 133.2 114.1 150.9 155.6 138.5 35.0 173.5 113.7 156.3 107.4 132.0
Surface soil moisture (mm) 10.4 8.8 9.4 10.5 8.4 6.7 12.4 9.3 9.0 8.8 7.7

Subsurface soil moisture (mm) 12.5 9.4 19.6 11.2 20.3 8.2 17.7 8.6 16.9 8.6 17.0
Real value of production (Kg/ha) 423 420 453 327 396 372 515 345 372 421 450

Predicted production by RF
(Kg/ha) 472 412 472 407 422 374 530 422 393 416 459

Predicted production by SVR
(Kg/ha) 416 420 443 369 396 372 515 472 441 441 450

Predicted production by KNN
(Kg/ha) 418 459 409 418 438 359 409 500 409 541 507
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