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Abstract: Modeling surface water quality using soft computing techniques is essential for the effective
management of scarce water resources and environmental protection. The development of accurate
predictive models with significant input parameters and inconsistent datasets is still a challenge.
Therefore, further research is needed to improve the performance of the predictive models. This study
presents a methodology for dataset pre-processing and input optimization for reducing the modeling
complexity. The objective of this study was achieved by employing a two-sided detection approach for
outlier removal and an exhaustive search method for selecting essential modeling inputs. Thereafter,
the adaptive neuro-fuzzy inference system (ANFIS) was applied for modeling electrical conductivity
(EC) and total dissolved solids (TDS) in the upper Indus River. A larger dataset of a 30-year historical
period, measured monthly, was utilized in the modeling process. The prediction capacity of the
developed models was estimated by statistical assessment indicators. Moreover, the 10-fold cross-
validation method was carried out to address the modeling overfitting issue. The results of the
input optimization indicate that Ca2+, Na+, and Cl− are the most relevant inputs to be used for EC.
Meanwhile, Mg2+, HCO3

−, and SO4
2− were selected to model TDS levels. The optimum ANFIS

models for the EC and TDS data showed R values of 0.91 and 0.92, and the root mean squared error
(RMSE) results of 30.6 µS/cm and 16.7 ppm, respectively. The optimum ANFIS structure comprises
a hybrid training algorithm with 27 fuzzy rules of triangular fuzzy membership functions for EC
and a Gaussian curve for TDS modeling, respectively. Evidently, the outcome of the present study
reveals that the ANFIS modeling, aided with data pre-processing and input optimization, is a suitable
technique for simulating the quality of surface water. It could be an effective approach in minimizing
modeling complexity and elaborating proper management and mitigation measures.

Keywords: data-driven; outlier detection; machine learning; surface water quality; input optimiza-
tion; neuro-fuzzy; water quality management; hydrology; artificial intelligence; big data

1. Introduction

Surface water bodies are naturally available resources and have always been consid-
ered essential for the persistence of the ecosystem. The quality of these water resources is
adversely affected due to anthropogenic activities, including industrialization and popula-
tion growth. The term “water quality” refers to the physical, chemical, and biochemical
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properties of water [1]. Rivers are most vulnerable to environmental pollution from various
sources due to their dynamic natures, acting as a carrier for waste loads [2]. In devel-
oping countries, a huge volume of liquid waste is discarded into surface water bodies,
which raises environmental issues and water quality concerns [3,4]. The major responsible
factors for water quality deterioration are atmospheric processes, climatic factors, pollu-
tion from agricultural areas, and anthropogenic factors [5–7]. The poor quality of water is a
serious problem threatening human health, agriculture, and ecosystems [8].

The salinity of surface water bodies has increased steadily over the years, nega-
tively affecting the quality of irrigation and drinking water [9,10]. The deposition of salts
due to salinity causes an unfavorable hydrologic environment that restricts the use of
water for domestic and agricultural purposes. Moreover, the management of water re-
sources and salinity has become imperative because the balance between water availability
and demand has reached the critical limit [11]. The considerable parameters for water
salinity are electrical conductivity (EC) and total dissolved solids (TDS). Both of these
parameters are accepted indicators for the assessment of irrigation and drinking water.
TDS comprises a variety of inorganic salts, that is, sodium (Na+), calcium (Ca2+), magne-
sium (Mg2+), nitrates (NO3), chloride (Cl−), sulfate (SO4

2−), and many kinds of dissolved
organic matter [12]. Increased salts and organic content in water indicate poor water
quality [13]. According to WHO guidelines, the permissible range of TDS in drinking water
is 300–600 mg/L, while the allowable limit for agricultural water is 450–2000 mg/L [14].

Laboratory analysis and experimental approaches have also been reported in the
literature for TDS and EC measurements [12,15]. The manual calculations and laboratory
testing are time-consuming and require specialized equipment. Consequently, the desired
outcome cannot be attained through such testing methods. Therefore, modeling techniques
can be used to estimate water quality, as models are capable of accurately predicting
the essential water quality parameters [16,17]. A number of research studies have been
devoted to evaluating a variety of water quality parameters, employing stochastic, de-
terministic, and numerical models. These conventional modeling techniques can only
deliver forecasts for stationary and linear sets of data, which makes them unsuitable for
reliable predictions [18]. On the contrary, the artificial intelligence (AI) models are reported
to have the ability to manage large, nonlinear datasets and the complex phenomena of
environmental and hydrological processes, and therefore, overcoming the drawbacks of
conventional models.

AI techniques, that is, an artificial neural network (ANN), an adaptive neuro-fuzzy
inference system (ANFIS), gene expression programming (GEP), and a support vector
machine (SVM) [17,19–24], have been employed in various research studies for modeling
the water quality parameters. These parameters comprise dissolved oxygen (DO), bio-
chemical oxygen demand (BOD), nitrate (NO3), electrical conductivity (EC), pH, and the
sodium absorption ratio (SAR) [15]. Ghavidel et al. (2014) [25] employed ANN, ANFIS,
and GEP for modeling TDS concentration in a catchment in Iran. They concluded a more re-
liable prediction rate with GEP as compared to the ANN and ANFIS. Asadollahfardi et al.
(2018) [26] employed time series and multilayer perception (MLP) for TDS prediction.
Various water quality parameters, including bicarbonates, chlorides, and calcium were
used as modeling inputs. The results of the study revealed the better performance of MLP
than the time series. Zounemat-Kermani et al. (2019) [27] used an ANN in predicting
the nitrogen content. The findings of the study indicated excellent performance of the
MLP model. Sattari et al. (2016) [13] considered support vector regression (SVR) and the
k-nearest neighbor (k-NN) method to predict the salinity in the Lighvan Chay River in
Iran, by using a different combination of input variables. The authors reported improved
performance of the SVR method over the k-NN method. Maroufpoor et al. (2019) [28]
used ANN and ANFIS models for modeling the spatial distribution of EC in groundwater.
The output of the study demonstrated reliable predictions of the models with the lowest
mean absolute error (MAE) and root mean squared error (RMSE) values. Aryafar et al.
(2019) [29] employed genetic programming, ANFIS, and ANN in predicting the EC and
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TDS concentrations. The authors reported excellent performance and accurate predictions
by the ANFIS and ANN. A study by Shah et al. (2020) [17] compared the performances of
ANN, GEP, and regression techniques, in terms of predicting the TDS and EC concentra-
tions. A sensitivity and parametric study was carried out for evaluating the connection
between the inputs and the output. The authors reported improved performance of the
GEP as compared with the ANN and regression techniques. Sensitive parameters were
identified, which had a direct impact on the modeling output.

AI and soft computing techniques have been successfully applied in the abovemen-
tioned studies for water quality prediction but with some shortcomings. Algorithms such
as ANN, SVM, and GEP have some unknown parameters [12,30]. These parameters have a
significant effect on the accuracy of the model output. A common and reoccurring issue in
the use of these algorithms is that these techniques may be trapped in a local optimum [30].
Moreover, the water quality data is highly chaotic, stochastic, and nonlinear, and the
development of a standalone AI-based model has limitations in water quality modeling.
Therefore, integrating the data pre-processing and optimization approaches with AI models
are likely to enhance their accuracy and predicting capabilities.

In this study, the data pre-processing, followed by the exhaustive search method for
input optimization and ANFIS modeling, are proposed to solve the complexity of modeling
surface water quality. A two-sided outlier detection approach was used for data pre-
processing, with the threshold outlier values set to ±3σ (sigma rule). Various water quality
parameters, recorded monthly over a period of 30 years (1975–2005), were used in the
modeling process. An optimization routine was developed to select the most correlated and
significant input variables. Afterward, an efficient ANFIS model structure was developed,
which was efficient in predicting the surface water quality indicated by the EC and TDS
concentrations in the upper Indus Basin (UIB). The best ANFIS structure, which yielded
the lowest modeling error with a minimum rules number, was selected for reducing the
modeling complexity. Furthermore, cross-validation was employed to evaluate the final
outcome from the ANFIS model. The methodology adopted in this study will help in
minimizing the data sampling and processing efforts in surface water quality assessments.

2. Materials and Methods
2.1. Case Study and Modeling Dataset

The Indus River is 2880 km long and is considered a major river in Asia, with a
drainage area of almost 912,000 km2 [31]. The portion of the Indus River upstream of the
Tarbela reservoir is the upper Indus basin (UIB). It has a total length of 1150 km and drains
a large area of 165,400 km2 [32,33]. The elevation varies from 455 m to 8611 m, and the
climate differs significantly inside the basin. The annual precipitation range is 100–200 mm
and occurs due to the turbulences in the western mid-latitude [34–37]. The study area is
shown in Figure 1.

The data employed in this study for ANFIS model development was collected from wa-
ter & power development authority (WAPDA), Pakistan. The dataset contained 321 monthly
data points collected over a period of 30 years (1975 to 2005), measured at the Bisham Qilla
outlet. The acquired data have the information of nine variables, which are calcium (Ca2+),
magnesium (Mg2+), sodium (Na+), chloride (Cl−), sulphate (SO4

2−), bicarbonates (HCO3
−),

pH, EC, and TDS. The descriptive statistics, that is, the mean, skewness, standard deviation,
and kurtosis of the data, are given in Table 1. The normal probability curves in Figure 2
show the distribution of the target EC and TDS concentrations. A symmetrical curve of
the mean of the dataset depicts a normal distribution [19,38]. Moreover, the literature
demonstrates that data preprocessing is an essential process in any data mining process,
aiming to eliminate the effect of missing or outlier measurements, which may occur during
the collecting of the data [19,39]. In this study, a two-sided outlier detection approach was
used for data preprocessing and outlier elimination, with the threshold outlier values set
to ±3σ (sigma rule).
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Table 1. Descriptive statistics of the model variables.

Ca2+ Mg2+ Na+ HCO3− Cl− SO42− PH EC TDS

Mean 1.50 0.58 0.50 1.72 0.27 0.56 7.88 244.32 143.75
Minimum 0.61 0.03 0.05 0.11 0 0.1 7.08 88 60
Maximum 3.15 1.5 2.1 3.5 0.78 1.6 8.4 510 308

SD 0.38 0.26 0.43 0.60 0.12 0.33 0.23 73.43 41.56
Kurtosis 3.01 0.51 3.92 0.89 3.16 0.55 0.23 0.91 1.19

Skewness 0.94 0.44 2.10 0.76 1.43 0.83 −0.47 0.71 0.86
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2.2. Input Optimization and Model Development

The Adaptive Neuro-Fuzzy Inference System (ANFIS) model is a kind of ANN,
which is based on implementing the Takagi–Sugeno (TS) fuzzy approach, as shown in
Figure 3. ANFIS implements fuzzy logic (FL) in the framework of an ANN [40]. The de-
velopment process of ANFIS modeling involves identifying the most relevant inputs that
correlate with a targeted output. The defining optimum rules, types, and the number of
the associated membership functions (MFs) need to be evaluated, aiming at selecting the
optimum ANFIS model structure with the lowest yielded errors. As an example, two TS
fuzzy sets of “if–then” rules in a typical ANFIS structure are the following:

• Rule 1: If x1 is A1 and x2 is B1, then f1 = p1x1 + q1x2 + r1
• Rule 2: If x1 is A2 and x2 is B2, then f2 = p2x1 + q2x2 + r2
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where p1, q1, p2, and q2 are ANFIS parameters, while Ai and Bj are the linguistic labels
or grades. According to Ying et al. (1995) [41], ANFIS architecture consists of five layers.
See Figure 3 for ANFIS architecture adapted from [42]. A brief description of the role of
these layers are described as follows.

• Layer 1, or fuzzification layer, receives the input values and identifies the MFs.
• Layer 2, or rule layer, generates the firing strengths for the rules.
• Layer 3, or normalization layer, normalizes the computed strengths.
• Layer 4 receives the normalized values and the consequence parameter sets.
• Layer 5, or defuzzification layer, returns the values to the final output.

In the present study, an ANFIS edit toolbox and coding in the MATLAB 2019b environ-
ment were used to train and develop the proposed ANFIS models. As mentioned earlier,
seven input variables and two outputs were involved in the modeling process. All se-
lected input parameters were related to the targeted surface water quality (EC and TDS).
Moreover, the model training phase was conducted using the odd records (data points),
while the even records (data points) were used in the model testing phase. The ANFIS
learning process was repeated for many epochs, with an aim at reducing the errors be-
tween the actual and the ANFIS modeling output. A flowchart of the data pre-processing,
input optimization, and the ANFIS structure development is presented in Figure 4.

2.3. Model Assessment Criteria

The obtained results from the model were evaluated using numerous statistical checks.
R-squared (R2) was used to evaluate the relationship between the observed values and the
predicted values. The equation for calculating R2 is denoted by Equation (1), as follows:

R2 = (
∑n

i=1 (ti − t)(yi − y)√
∑n

i=1(ti − t)2 ∑n
i=1(yi − y)2

)
2

(1)
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In Equation (1), n, t, and y are the numbers of the observed data, observed values,
and predicted values, respectively, whereas, t and y are the average observed and predicted
values. The range of R2 values 0–1, with 1 being the highest accurate relationship possible.
However, values of R2 greater than 0.7 are considered highly reliable in engineering models.
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Other proven statistical checks, like the mean absolute error (MAE) and root mean
squared error (RMSE), were also applied to evaluate the accuracy of the developed model.
One of the main advantages of using RMSE is to assign higher weightage (as it contains a
square) to larger errors. Equations (2) and (3) show the mathematical expressions for the
calculations of MAE and RMSE, respectively.

MAE =
n

∑
i=1

|ti − yi|
n

(2)

RMSE =

√√√√ n

∑
i=1

(ti − yi)
2

n
(3)

In addition to R, MAE, and RMSE, the percentage relative error (RE%) and the Nash–
Sutcliffe coefficient (NSC) were also used to assess the accuracy of the developed model.
The NSC is recommended by various researchers, including the American Society of
Civil Engineers (ASCE) Code. The range of values for the NSC is −∞ to 1, with values
greater than 0.8 showing an accurate model. Equations (4) and (5) show the mathematical
expressions for the calculations of RE% and NSC, respectively.

RE% =

(
(ti − yi)

ti

)
·100 (4)
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NSC = 1−
(

∑nL
i=1 (ti − yi)

2

∑nL
i=1 (ti − yi)

2

)
(5)

2.4. 10-Fold Cross-Validation

The performance assessment of a developed machine learning model can be a difficult
task, as the model cannot provide the required output based on the data that has not been
used for training. A dataset is usually divided into training and testing phases, and then
the outcome is evaluated based on statistical criteria, but this method is not applicable in
all scenarios [43]. Therefore, to verify the generalized capability and reduce the overfitting
problem of a learning model, the 10-fold cross-validation method has been recommended
in the literature [17,44,45]. This method divides the whole dataset into 10 subclasses.
Among all 10 subclasses, the first 9 are used for model training and the remaining subclass
is used for validation. The same process is carried out for all the subsets and the output
was expressed, employing the mean accuracy obtained in the 10 rounds. In our study,
the same cross-validation method has been applied to validate the ANFIS model.

3. Results and Discussion
3.1. Data Pre-Processing

The collected data were statistically analyzed in order to check the consistency and
reliability. The final dataset included the information of nine variables, that is, Ca2+, Mg2+,
Na+, Cl−, SO4

2−, HCO3
−, pH, EC, and TDS. The data-refining process was performed

using MATLAB 2019b. Figure 5 shows the data pre-processing and outlier elimination
from the targeted EC and TDS data. A two-sided outlier detection approach was adopted
and the threshold outlier values were set to ±3σ (sigma rule). Any values outside this
threshold were identified as outliers and removed, as illustrated in Figure 5, for EC and
TDS. Similarly, the data cleaning and outlier removal procedure was applied to the other
parameters as well.
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3.2. Input Optimization

The selection of the best input combination serves as a base for the accurate prediction
of the desired output. If the number of variables is high, the computational time will
be high, as will the number of combinations [46]. For the input optimization process,
firstly the dataset was separated into two subsets, that is, the odd values were selected
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for the model training phase, while the even values were selected for the testing phase.
Secondly, the stepwise ANFIS exhaustive search function for input optimization was
applied to identify the most relevant inputs for modeling the EC and TDS levels. The input
optimization methods have been successfully employed in many research studies for robust
model development [47–49].

The following Figure 6a,b shows the exhaustive error results, represented by the RMSE
values for the training and testing datasets. The first three input variables (Ca2+, Na+,
and Cl−) are the most correlated and relevant variables to the targeted output. This com-
bination was selected because it showed the lowest RMSE values in the training data.
It can be noticed that some of the other combinations have lower errors in the testing
data; however, they showed high training errors. Therefore, based on the results of the
input optimization using the ANFIS exhaustive search method, the three more relevant
inputs were Ca2+, Na+, and Cl− in modeling the EC concentrations, while Mg2+, HCO3

−,
and SO4

2− were selected to model the TDS levels. These selected input parameters are
the most correlated with the variation in the target output concentrations in each case.
Various research studies reported that Ca2+ and Cl− are important parameters for EC,
while Mg2+, total hardness, and SO4

2−, along with other parameters, are the effective
inputs to model TDS [17,20,50].
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3.3. ANFIS Model Development

Upon defining the best input combination, the development of the best ANFIS struc-
ture was conducted by applying various types and numbers of membership functions
(MFs), and different rules and epoch numbers. This was performed to test all the pos-
sibilities of the ANFIS parameters and compare their abilities in modeling the surface
water quality (EC and TDS). In the ANFIS modeling, 70% of the data points were used for
training, while the remaining data were used for testing. Table 2 presents the performances
of various ANFIS models using 2–5 MFs. The optimum MF number was 3 for both EC
and TDS modeling, which gave the lowest modeling errors and the highest R values.
Each optimum MF was assigned to handle each input parameter.

There were 8 different types of MFs used to select the optimum MF type, as shown in
Table 3. These types were: triangular MF (Trimf), trapezoidal MF (Trapmf), generalized bell
curve MF (Gbellmf), Gaussian curve MF (Gaussmf), two-sided Gaussian MF (Gauss2mf),
pi-shaped curve MF (Pimf), the composed difference between two sigmoidal MFs (Dsigmf),
and the product of two sigmoid MFs (Psigmf). Table 3 compares the resulted errors
(RMSE and MAE) and R value of applying the previously mentioned MF types for training,
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testing, and overall datasets. In modeling the EC concentrations, the triangular MF gave
the lowest errors in all the datasets and the best performance, and outperformed the other
MF types. Meanwhile, for TDS concentrations, the Gaussian curve MF showed the lowest
modeling errors for training, testing, and overall datasets.

Table 2. Performance of various models with different membership functions (MFs) for EC and
TDS, respectively.

MF No.
Training Data Testing Data Overall Data

RMSE MAE R RMSE MAE R RMSE MAE R

2 30.6 21.88 0.899 37.31 26.76 0.884 32.77 23.35 0.895
3 * 24.59 17.41 0.936 41.34 28.71 0.861 30.61 20.81 0.909
4 22.26 14.66 0.948 357.3 70.02 0.179 196.9 31.33 0.301
5 19.74 12.2 0.959 789.8 185.4 0.105 433.7 64.36 0.170

2 19.91 13.08 0.877 14.11 10.83 0.940 18.9 12.63 0.890
3 ** 16.88 11.6 0.913 16.08 12.31 0.924 16.72 11.74 0.915

4 13.57 8.436 0.945 48.95 22.98 0.723 24.98 11.33 0.848
5 11.18 6.271 0.963 184.1 56.03 0.149 82.7 16.17 0.395

* The best function numbers for EC. ** The best function numbers for TDS.

Table 3. Performance results for various MF types for EC and TDS, respectively.

MF Type
Training Data Testing Data Overall Data

RMSE MAE R RMSE MAE R RMSE MAE R

* Trimf 24.59 17.41 0.936 41.34 28.71 0.861 30.61 20.81 0.909
Trapmf 29.08 21.17 0.91 179.4 52.11 0.52 101.4 30.49 0.595
Gbellmf 25.75 18.81 0.93 183.8 50.67 0.312 103.1 28.4 0.503
Gaussmf 24.93 18.01 0.934 142.7 44.29 0.406 81 25.92 0.606

Gauss2mf 28.03 20.24 0.916 65.33 38.25 0.729 42.83 25.66 0.833
Pimf 31.39 23.07 0.894 879.8 125.5 0.306 483.5 53.92 0.265

Dsigmf 28.75 20.9 0.912 92.56 44.36 0.644 56.19 27.96 0.761
Psigmf 28.75 20.9 0.912 92.56 44.36 0.644 56.19 27.96 0.761

Trimf 16.64 11.42 0.916 22.24 14.4 0.868 17.9 12.01 0.904
Trapmf 19.74 14.71 0.879 22.67 16.56 0.858 20.36 15.08 0.873
Gbellmf 17.51 12.33 0.906 18.03 13.25 0.909 17.62 12.52 0.906

** Gaussmf 16.60 11.6 0.913 16.08 12.31 0.924 16.72 11.74 0.915
Gauss2mf 18.86 13.9 0.891 24.15 16.22 0.856 20.02 14.36 0.878

Pimf 20.51 15.22 0.869 36.37 21.11 0.725 24.5 16.39 0.819
Dsigmf 19.31 14.34 0.885 26.03 16.98 0.839 20.82 14.86 0.868
Psigmf 19.31 14.34 0.885 26.03 16.98 0.839 20.82 14.86 0.868

* The best MF type performance for EC.; ** The best MF type performance for TDS.

The selection of the optimum epoch number is a very significant factor in ANFIS
modeling. Increasing the epoch number does not always mean enhancing the performance
of ANFIS modeling. Usually, the modeling errors decrease by increasing the epoch number
to a point, and then the errors increase afterward. Identifying this point is a necessity in
ANFIS modeling. The previously selected ANFIS parameters and varying epoch numbers
are displayed in Figure 7. From the plots, RMSE values vary for both the training and testing
datasets with increases in the epoch number (until 50 epochs). The optimum epoch number
for EC modeling was 3, while for TDS it was 3 or 10 epochs. Using these epoch numbers,
they give the lowest modeling errors and also avoid the model’s overfitting problem.

The full descriptions of the final ANFIS models in modeling the EC and TDS con-
centrations are listed in Table 4. In EC modeling, the optimum ANFIS structure consists
of three triangular MFs (each MF presents one input), and 27 rules, and being trained
for 3 epochs. While, for TDS modeling, the optimum ANFIS structure consists of three
Gaussmf MFs (each MF presents one input), and 27 rules, and being trained for 3 or
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10 epochs to prevent overfitting. The RMSE results were 30.61 and 16.72 for the EC and
TDS modeling, respectively. However, the fitting results for R and R2 were 0.909 and 0.827
for EC modeling and 0.915 and 0.838 for TDS modeling, respectively. The NSC results
were very close to R2, which demonstrates the accurate performance of the resulted models
in simulating the desired parameters. Figure 8 demonstrates the assigned rules in the
optimum ANFIS model structure for modeling (a) EC and (b) TDS level, respectively.
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Table 4. Full description of the optimum ANFIS models for EC and TDS modeling.

Description EC TDS

MF No. 3 3
MF Type Trimf Gaussmf
Rule No. 27 27

Optimum Epoch No. 3 3 or 10
R 0.909 0.915
R2 0.827 0.838

RMSE 30.61 16.72
MAE 20.81 11.74
NSC 0.825 0.837

3.4. Model Statistical and Error Assessment

As discussed earlier, the efficiency of the developed ANFIS models was assessed in
terms of statistical analysis and error assessment tests. Figure 9 illustrates the comparative
evaluation of the observed and modeled simulated data. Moreover, Figure 10 shows the
regression analysis between the observed and model-predicted results of EC and TDS
concentrations by the selected structure of the ANFIS model. The modeling output shows
an excellent correlation between the two datasets. An R2 value above 0.9 was observed for
both EC and TDS concentrations. Similarly, RMSE values below 20 µS/cm and 17 ppm
were achieved by EC and TDS models, respectively. The modeling results show that the
developed models are very efficient in modeling the surface water quality parameters,
given the set of initial input parameters.

Besides statistical evaluation, the percent relative error (RE%) test was also conducted
to check and demonstrate the accuracy of the proposed models. RE% plots are shown in
Figures 11 and 12 for the optimum ANFIS model developed for EC and TDS, respectively.
The results for both EC and TDS models show that the residual error of the data lies between
+20% and −20%, describing the capacity of the developed ANFIS models for predicting
the target output. Moreover, in both the modeling outputs, the max RE% results are under
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60%, which indicates that, up to a limited extent, the ANFIS model underestimated the
observed EC and TDS concentrations. However, the min RE% values are above −100% and
−60% in the EC and TDS concentrations, respectively. The negative RE% results mean that
the models overestimated the targeted salinity levels to a certain extent. Overall, the results
exposed excellent accuracy of the models in predicting the EC and TDS.
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3.5. Variation of Model Output with Selected Inputs

As discussed previously (Section 3.2), the input optimization was applied to select the
best and optimum combination of input parameters. The optimization process revealed
that Combination 1 (Ca2+, Na+, and Cl−) is the most optimum to model EC concentrations,
while Combination 2 (Mg2+, HCO3

−, and SO4
2−) are the most correlated to model the

TDS concentrations. Figures 13 and 14, respectively, demonstrate the 3D surface plots of
the selected input combinations and the target outputs. An increasing and fluctuating
trend in Figure 13 can be observed for the EC concentrations, with the variation in input
variables, that is, Ca2+, Na+, and Cl−. Furthermore, a similar result can also be seen in
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the TDS modeling (Figure 14), where the result shows a linearly increasing trend of TDS
with all the input variables. The increasing tendency of the EC and TDS with all the input
combinations of parameters may be attributed to the fact that both outputs, that is, EC and
TDS, are directly related to the salt concentration of the water. Therefore, any change in
the salts or ion concentrations in the water can directly affect levels of both the EC and
TDS. The same trend of output was reported in many studies where the concentration of
dissolved solids and conductivity were closely associated with ions and salt concentrations
in water [17,20,50].
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3.6. Cross-Validation Output

The cross-validation method was used in accessing the ANFIS models for EC and
TDS. The output is graphically illustrated in Figure 15 using RMSE and R as assessment
criteria. A deviation in the validation output can be observed for the single-fold subclass.
Nevertheless, the results demonstrate a good mean accuracy in the 10-folds. The aver-
age RMSE values obtained by the EC and TDS models were 3.8 µS/cm and 4.2 ppm,
respectively. The mean R values accomplished by the EC and TDS models were 0.81 and
0.77, respectively. In the 10-folds, the minimum and maximum R values of 0.48 and 0.83
were respectively obtained during the model validation for TDS. The lowest RMSE value,
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2.56 ppm, was accomplished for TDS in the second-fold subclass. Evidently, the output of
the cross-validation method demonstrated efficient performance and generalized results of
the ANFIS models, indicating that the model can accomplish good results on unseen data
as well.
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4. Discussion

The focus of the present study, that is, data pre-processing, input optimization, and op-
timum ANFIS model development, has been presented in the previous sections. The ma-
jority of published work in modeling surface water quality parameters have used the
standalone ANN, GEP, SVM, DT, RF, and regression-based models. Modeling and pre-
dicting water quality parameters with classical AI techniques cannot provide the desired
outcomes. Therefore, it is essential to employ the modeling methods with optimization
algorithms for effective and precise modeling outputs.
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Based on comparative analysis among the current and previous studies that applied
the ANFIS modeling and optimization technique, Al-Mukhtar et al. (2019) [20] reported
that ANFIS performed better than ANN and regression model in predicting TDS and
EC. Moreover, better results of the ANFIS model with the particle swarm optimization
algorithm (PSO) were reported by Azad et al. (2019) [5] in predicting various water quality
parameters. Khadr et al. (2017) [51] and Tiwari et al. (2018) [52] concluded that the ANFIS
model is efficient to forecast phosphorus and nitrogen and other water quality parameters.
Furthermore, Azad et al. (2018) [21] reported that the proficiency of the ANFIS model
in modeling water quality parameters could be improved with optimization algorithms.
Sun et al. (2019) [53] used the variable mode decomposition (VDM) and least square sup-
port vector machine (LSSVR) methods for outlier detection and correction in water quality
data. The authors reported the accurate performance of the aforementioned methods and
improved water quality data. Alameddine et al. (2010) [54] compared the performance
of three outlier detection approaches, namely minimum covariance determinant (MCD),
minimum volume ellipsoid (MVE), and M-estimators, in detecting and removing the out-
liers from lake water quality data. The results of the study revealed the M-estimators as a
robust and flexible method in dealing with inconsistent water quality data.

The available literature shows that a limited number of studies utilized the data
pre-processing and the ANFIS modeling, coupled with an exhaustive search for inputs,
which was successfully integrated into this study. Consistent water quality datasets, opti-
mized modeling inputs, and a computational efficient ANFIS structure could be achieved
by adopting the methods used in this study. Moreover, the integrated optimization algo-
rithms are more effective in providing robustness models with enhanced outputs than
standalone ANN, SVM, GEP, RF, and other regression models.

5. Conclusions

In developing countries, the financial constraint and lack of facilities and infrastructure
encourage further research to develop accurate and computationally efficient models that
require a minimum number of parameters for surface water quality prediction. The current
study reported the development and applications of the ANFIS modeling technique for
surface water quality prediction, that is, EC and TDS, in one of the major rivers in Asia, the
upper Indus River Basin. The data inputs were Ca2+, Mg2+, Na+, Cl−, SO4

2−, HCO3
−, pH,

EC, and TDS, collected monthly over a period of 30 years (1975–2005). The specific outputs
of this study are as follows;

• The two-sided outlier detection approach was found to be efficient in data pre-
processing and outlier removal to get homogenous and consistent data records
for modeling.

• The input optimization process reduced the modeling complexity by evaluating the
optimum number of inputs, which is helpful in reducing data processing and collection
efforts, and therefore highlighting the strong ability of the exhaustive search method
to reduce noise in the data.

• The developed ANFIS model showed strong agreement with the actual data for
training as well as testing data. The ANFIS model was able to model the quality of
surface water efficiently using the selected inputs. This could be attributed to the
structure of the ANFIS model, which incorporates the advantages of fuzzy reasoning
and the self-learning capability of neural networks.

• Conclusively, the ANFIS model could be efficiently utilized in water quality assess-
ments and mitigation studies.
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