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Abstract: Urban Built Environments (UBE) are increasingly prone to SLow-Onset Disasters (SLODs)
such as air pollution and heatwaves. The effectiveness of sustainable risk-mitigation solutions for
the exposed individuals’ health should be defined by considering the effective scenarios in which
emergency conditions can appear. Combining environmental (including climatic) conditions and
exposed users’ presence and behaviors is a paramount task to support decision-makers in risk
assessment. A clear definition of input scenarios and related critical conditions to be analyzed is
needed, especially while applying simulation-based approaches. This work provides a methodology
to fill this gap, based on hazard and exposure peaks identification. Quick and remote data-collection
is adopted to speed up the process and promote the method application by low-trained specialists.
Results firstly trace critical conditions by overlapping air pollution and heatwaves occurrence in
the UBE. Exposure peaks (identified by remote analyses on the intended use of UBEs) are then
merged to retrieve critical conditions due to the presence of the individuals over time and UBE
spaces. The application to a significant case study (UBE in Milan, Italy) demonstrates the approach
capabilities to identify key input scenarios for future human behavior simulation activities from a
user-centered approach.

Keywords: air pollution; increasing temperature; heatwaves; pedestrians’ health; human exposure;
urban built environment

1. Introduction

It is common to confuse a rapid-onset disaster with a SLow-Onset Disaster (SLOD) or
to misinterpret the evidence of SLODs with the actual disaster. For instance, mistakenly
identifying air pollution or increasing temperature SLODs as the presence of smog or the
surge of heatwaves. Thus, it is necessary to acknowledge the SLODs characteristics that
differentiate them from any other disaster type, as described by Siegele [1], based on their
temporal scale, intensity and frequency:

• these disasters vary in temporal scale; while rapid-onset disasters unfold “almost
instantly”, slow-onset disasters can be predicted much further in advance and unfold
over months or even years. Moreover, slow-onset disasters are strongly related to the
effects of the man-made climate change dynamics; also,

• SLODs vary in impact type. Rapid-onset disasters tend to create their disruption
through the immediate/short-term physical impacts, whereas slow-onset disasters do
not emerge from a single and distinct event but emerges gradually over time and can
typically create crises through the economic and social impacts of the disaster.

Given the burden that a SLOD can generate, the ease of prediction, and their in-
tertwined effect, suitable solutions shall be designed and planned. Additionally, on the
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basis of these tangled effects, Salvalai et al. [2] indicated increasing temperatures and air
pollution among the SLODs of greater importance to assess in the mid/long term. As a
result of the strong evidence on average air pollutants, concentration increase and larger
heatwave intensity and frequency within urban areas; and additionally, their considerable
correlation with the rest of SLODs (e.g., glacial retreat, ocean acidification). That is:

• The maximum air temperature surpasses by larger deltas the average maximum
temperatures registered for that context (intensity); or, the recurrence in which this air
temperature excess occurs is higher (frequency) [3,4].

• The amount of harmful particulate matter and/or gases found in the air of our sur-
roundings has increased above the established healthy standards [5].

Hence, sustainable solutions to SLODs are needed and these should be based on a
holistic approach focusing in parallel on the hazard-related issues, the Built Environment
features (related to physical vulnerability), and the population-related parameters (social
vulnerability and exposure). For hazard-related issues, climatologic, and remote sensing
studies are relevant input sources and references for understanding the hazard events’
probability of occurrence, their potential intensity, and their plausible trends [6]. Numerous
studies on the characteristics of the built environment that modifies the urban, meso, and
micro-climates have been performed to plan urban development strategies that attempt to
avoid augmenting the impact of increasing temperatures and air pollution on population
(mainly related to natural-based solutions) [7–9]. However, as SLODs unfold over a
lengthy timespan, citizens’ exposure is commonly considered fixed and few research works
have studied the SLODs risk related to the human behavior dynamics within the built
environment. More in specific, citizens’, and demographic groups, movement, or presence
within certain spaces to better associate the SLODs intensity/frequency peaks and citizen’s
social vulnerability and exposure [10].

Simulation-based approaches are highly relevant in this context to analyze and re-
veal the interactions between the environmental conditions, the Built Environment (BE),
and the users. Different approaches are applied to the simulation of human behavior
outdoors depending on the environmental conditions [11]. For instance, the studies of
Melnikov et al. [12] and Liang et al. [13] focus respectively on the urban heat and weather
conditions as urban stressors, considering climate change and urban heat island which
represent a high risk to human health and wellbeing. Melnikov et al. provide an agent-
based modeling approach to simulate the influence of increasing temperatures and adverse
climate conditions within BE on peoples’ choices in their motion. Pedestrians tend to adapt
their walking speed to minimize environmental stimulation, or to find refuge within indoor
public spaces. Other works are directly focused on the evaluation of human exposure to
environmental stressors through an agent-based model by simulating agents individually
and continuously using a novel approach based on an analysis of the daily routines of indi-
viduals [14]. For instance, studies such as the one performed by Briggs et al. [15] monitored
the individual exposure to air pollution especially to PM10 and PM2.5 during their daily
journey to go to work. The main aim of these previous works was to bring interesting data
as input to human behavior prediction models. However, the simulation is considered
as the new horizons which enable to jointly combine individual’s vulnerability and their
presence in the BE; an assessment approach towards which designers and city planners
should steer towards. In fact, strategies and design solutions (e.g., planting roadside trees)
to mitigate pedestrians’ exposure and vulnerability, and to improve human health and
comfort conditions, have been proposed and verified also through computational fluid
dynamics models by Amorim et al. and Borrego et al. [16,17].

Nevertheless, the simulation of the dynamics of such conditions (hazard, exposure,
and vulnerability) need a clear definition of the input scenarios. This work has focused on
structuring a framework for identifying and providing hazard and exposure-related input
scenarios for simulating urban contexts. The main challenges addressed were:
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• SLODs are in essence complex and are influenced by a large number of factors and
actors. Additionally, a primary source of their consequences can’t be determined, as
their development is interconnected.

• Modeling SLODs require an extensive computation/machine time [18]. Since they
unfold over time and in parallel, increasing temperatures and air pollution behavior
should be modeled/studied together for, at least, a mesoscale area, under a transient
regime, considering building operation performances, and built surface, pollutant
sources, wind pattern, and greening behavior.

• Increasing temperatures and air pollution intertwined unfolding process can be mea-
sured, data gathered can be processed and studied to understand and infer their past
and projected development. However, not many accessible and reliable data sources
are widely spread.

• For SLODs, it is complex, but necessary, to account for and discern between Vulnera-
bility and Exposure. It requires splitting Vulnerability into physical (regarding the BE)
and social vulnerability (regarding the population).

# Physical vulnerability might skew the climate data collected when in situ
measurements are not available. It is considered as the inherent morphological
and physical characteristics of the BE that modifies the hazard, generating a
specific micro-climate.

# More complex and time-dependent is the Social vulnerability. Which, according
to Villagràn [19], can include human-related factors such as physical features
of individuals (e.g., age, gender, disabilities, difficulties in motion [20], health
fragility [21,22]), their psychological and behavioral aspects (e.g., culture, so-
cioeconomic status of the household [23]), since these elements influence the
individuals’ and communities’ response towards the damaging effects of the
considered hazard (e.g., susceptibility, disaster preparedness, coping capacity).

Exposure is focused on the human presence (e.g., the total number of people, over-
crowding conditions). Which could be either considered as the crowding conditions indoor,
outdoor, or both; the latter would require a definition on how to weigh their actual degree
of exposure to the studied hazard.

• Constructing citizens’ time-dependent crowding levels is onerous, but these are
needed for determining accurately the SLODs risk. Influencing factors useful to
trace their crowding level profile have to be collected. However, very few studies
are aimed at individuating such aspects. Additionally, in line with the contribution
necessity, the inquiring strategies should be based on open data [24] and low time-
consumption. Thus, remote sensing strategies and online tools are desirable to directly
obtain mainly data on BE elements extension, inhabitants’ and users’ habits [25].

Therefore, to meet the aim of this work, these challenges are assessed by defining
a robust methodology able to collect and integrate SLOD hazard and exposure peaks
in urban BE towards the identification and definition of input scenarios for simulation
purposes against SLODs. In addition, to test its applicability, this framework was tested on
a relevant case study (Milan, Italy), and the results obtained on the useful and narrowed
input scenarios for simulation are presented.

From the challenges mentioned beforehand, the proposed methodology: (1) does
not model simultaneously the SLODs interconnected effect, neither its relation to the
physical vulnerability, but directly assesses experienced and surveyed real conditions;
(2) provides guidelines for data sources and data type to access and collect, to locate useful
and unrestricted databases; (3) integrates a procedure for rapidly identifying multi-hazard
arousal; (4) establishes a procedure to account for inhabitants evidence-based vulnerability
for SLODs risk assessment; (5) structures a method for retrieving and composing a daily
trend of crowding levels to account for exposure; and, (6) proposes a way of computing
the single and multiple SLODs risk level.
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2. Methods

The work is organized into three methodological phases: (1) distinguish the SLODs
arousal peaks (air pollution and heatwaves), as in Section 2.1; (2) identify the exposure
peaks from derived typical exposure conditions within the BE, as in Section 2.2; (3) distin-
guish critical combined SLODs hazard-exposure conditions as relevant input scenarios for
simulations, as in Section 2.3. Lastly, the methodology is then applied to a case study in a
representative area of the city of Milan, Italy (Section 2.4).

2.1. SLOD Peaks Identification

This procedure follows the methodology proposed by Blanco Cadena et al. [26], which,
in brief, comprises: (1) identification of possible, and/or accessible, weather and air quality
data sources from the site, or in its proximity; (2) hourly data processing to understand the
arousal of critical heat stress and poor air quality excess; (3) superposition of heat stress and
poor air quality levels to recognize the moments of coexisting peaks; and, (4) averaging the
number of hours of TRUE parallel arousal of SLODs peak intensity for the desired analysis
period, to delineate a daily profile.

Hazard peaks identification necessitates a well-equipped measuring station or a
capable sensors network to capture sufficient data and a reference standard/guideline
for comparing estimated heat stress and air quality level with established comfortable
and healthy ranges. Open-source databases and international, or regional, regulations are
preferred. The required steps are hereby described thoroughly and graphically resumed in
Figure 1:

1. Identify what type of data is available on the area of interest and what are the locations
of weather and air pollution concentration sensors. Multiple sensor locations shall be
avoided as environmental conditions might vary significantly from one measuring site
to the other. The type of data gathered should be sufficient for estimating hourly the
outdoor heat stress (e.g., Universal Thermal Comfort Index (UTCI) [27] or RiskT [26]
could be used), and outdoor degree of air quality (e.g., Air Quality Index (AQI) [28]).
When there is missing data, on-site measuring campaigns are preferred, or properly
adjusted weather files can be utilized (MeshkinKiya and Paolini [29] have proposed a
strategy for building energy modeling).

2. After identifying the databases to enquire, sufficient data for the analysis shall be
collected, at least one year/season value (comprising the period of interest) should be
stored and processed. Computing for each timestep (i.e., hour) the peak heat stress
and peak air quality decay (for each pollutant studied, and its combination); then,
these obtained values are compared with the desired level of safety (e.g., moder-
ate/strong heat stress for heat stress and unhealthy/unhealthy for sensitive groups
for air pollution) to determine if the peak exists (TRUE = 1) or not (FALSE = 0).

3. Depending on the type of analysis required (multi-hazard or single hazard) the
synergic effect is verified by comparing both Booleans for each hour (i) of the year (or
i hazard_1 × i hazard_2 × . . . × i hazard_n).

4. Having hourly Boolean data for n-years/n-seasons, these are grouped by time (e.g.,
08:00) regardless of the date. Then, an average is computed for each of the 24-h that
compose a day.

5. These average values are then plotted to delineate the daily profile of the mean
frequency risk arousal of each of the 24-h of the day.
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Figure 1. SLODs multiple-hazard risk daily profile definition workflow.

2.2. Exposure Peaks Identification

Exposure peaks identifications necessitate the estimation of the hosted population in
the studied area. The workflow proposed in this study (graphically resumed in Figure 2) is
mainly based on remote data collection from open access sources. Databases available on
the web are preferred to accelerate the data collection operations and boost the applicability
of the entire workflow at the BE scale.

Figure 2. General operational framework representation for peak exposure detection.

People exposed to SLODs were considered as those who were either inside or outside
buildings. Given the nature of the SLODs, unfolding over months or even years, they
act on people which are repeatedly exposed to unfavorable conditions; such as residents,
frequent visitors, and/or workers of the commercial establishments in the area, who are
constantly coming into and out of the studied area. Moreover, outdoor heat stress and
air quality are directly affecting indoor temperature and air pollution. To quantify these
number of people exposed, four main steps are identified and described as follows:
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1. Detect the buildings’ intended use in the studied area. Hence, where available, GIS
tools could support and facilitate the labeling process. Then, in locations where such
information is not present, tools like Google Maps application [30] offer maps where
indications related to public facilities are freely available (e.g., offices, schools, hospi-
tals, homeless centers, theatres). Additionally, this same tool offers for each public
facility and commercial activities, further information; for example, its denomination,
the address, and opening times. Furthermore, the Google Street view application [31]
can be employed to detect punctually buildings that host more than one activity or
different intended use; for example, economic activities placed at the ground level
of inspected buildings, while upper levels host private dwellings. Hence, it can
be assumed that the remaining built volume where no activities open to the public
are observed constitutes the residential part of the BE. Further verifications can be
performed by one-site surveying.

2. Estimate the maximum admissible occupancy (in terms of the number of people) of
indoor environments for all the previously detected buildings intended use. To reach
this goal, national/regional/local occupancy density guidelines can be employed
(e.g., housing, fire safety, energy modeling regulations) which prescribe for each
intended use a direct load capacity factor (e.g., load capacity factor from the Italian
fire safety regulations, see Table 1). Load capacity factors are commonly given in
terms of the assumed number of people per square meter (pp/m2). Later, the total
area of each intended use is calculated and multiplied for the corresponding factor to
obtain the maximum admissible occupancy for a specific place (or determined area),
which when reached can be assumed as a critical peak of exposure.

3. From a practical point of view, the extension area for each building can be determined
with a remote data collection approach. This is possible through the use of GIS tools,
or thanks to tools such as “Map Area Calculator” on CalcMaps [32]. The latter requires
delineating the planar covered area of the studied element (e.g., buildings covered
area) visualized on the map which returns an estimated area cover. Building floors are
then counted individually through Street View visualization. The planar covered area
is multiplied for the evinced number of floors related to a specific building function,
in such a way, each intended use extension is sized.

4. Estimation of the study area inhabitants. To do so, population census data can be
used to quantify the population by using municipal scale data as representative of
the number of exposed people within the case study. Census data provides sufficient
demographic information, including a diversification by different age ranges and
occupations. However, inhabitants cannot be considered inside their dwelling for all
day; that is, certain age ranges are expected to be working (i.e., working-age group)
and attending education facilities outside the studied area. Therefore, making use
of statistically constructed building occupancy profiles, such as the ones used for
building energy performance computation [33], it is possible to obtain the schedules
in which most likely workers and students are expected to be outside. Hence, the
present methodology supposes the subdivision of hosted inhabitants and occupied
schedules in the following way:

a. toddlers and elders, or retired, residents spend most of their time at home or in
their home surroundings (24 h presence);

b. young people, in specific students, spend school hours (between 08:00 and
13:00) at schools, away from the studied area (unless it hosts education facilities)
and the remaining time they are considered to stay at home; and,

c. adults are expected to spend their working time away from home (between
08:00 and 18:00).

Seasonal and weekday/non-working day variations are not considered, including
these would be out of the scope of this work. Each percentage of these three citizens’
typology is associated in proportion to the total number of the resident within the
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case study esteemed by multiply the residential surface for the related occupation
density factor.

5. Similar consideration can be also traced for estimating the occupancy of the remaining
functions of indoor spaces. However, a deeper focus based on the subdivision of
people presence variance during the day can be done from additional online available
data. For instance, Google Maps [30], provides additional information such as the
working days and opening times. Following such data for each hour of the day, it
is possible to include a more precise estimation of the actual number of occupants
present for each of the non-residential functions reducing the potential overestimation
of people considered within the analyzed BE.

6. Additionally, the occupation of outdoor pedestrian areas (computed from the remain-
ing area after subtracting, from the total area, the spaces occupied by buildings and
carriageways) that casually move through the case study portion is assumed constant
during the surveyed opening hours of the non-residential functions found within the
area of study.

Table 1. Simplified occupant load factors for different intended use are reported referred to Italian fire safety regulations.

Building Intended Use Quick Occupant Load Factor References to Italian Regulations

Residential buildings 0.05 pp/m2 Ministerial Decree 3 August 2015 [34]

Institutional buildings, used as
offices, museum, and art gallery

Office close to public: 0.1 pp/m2

Office open to public: 0.4 pp/m2

Areas gathering public: 0.7 pp/m2

Ministerial Decree 10 March 1998 [35], 3 August
2015 [34], 20 May 1992 [36], 30 June 1995 [37],

19 August 1996 [38], 6 March 2001 [39]

Religious buildings 0.7 pp/m2 Ministerial Decree 19 August 1996 [38], 6 March
2001 [39], 18 December 2012 [40];

Hospital and healthcare buildings Ambulatory and similar: 0.1 pp/m2

Spaces for visitors: 0.4 pp/m2 Ministerial Decree 10 March 1998 [35]

School buildings Refectory and gymnasium: 0.4 pp/m2 Ministerial Decree 26 August 1992 [41], 12 May
2016 [42], 3 August 2015 [34]

Cultural and entertainment
buildings (public exhibition and

sports facilities)

Ballroom—0.7 or 1.2 pp/m2; theaters
parterre—3 pp/m2, standing

places—3.5 pp/m2

Sports facilities: 2 pp/m2

Ministerial decree 18 March 1996 [43], 6 June
2005 [44], 19 August 1996 [38],

18 December 2012 [40]

Commercial buildings 0.4 pp/m2 Ministerial Decree 27 July 2010 [45], 3 August
2015 [34]

Accommodation facilities (hotels) 0.4 pp/m2 Ministerial 27 July 2010 [45], 3 August 2015 [34]

Public shops such as restaurants
bars and cafes 0.7 pp/m2

Ministerial Decree 19 August 1996 [39], 6 March
2001 [38], 18 December 2012 [40],

3 August 2015 [34]

Nevertheless, the basic estimation of the number of occupants inside the intended uses
according to the previous steps constitutes an unlikely condition as it is expressed as the
maximum probable occupancy. Thus, after obtaining the maximum probable occupancy
the daily exposure profile can be further adjusted with the adoption of an additional
weighting factor for a more precise daily variation of citizens’ presence (as the ones given
by ISO 17772 [33] for residential and popular times for commercial spaces).

2.3. Critera for Peaks Merging

After the multi-hazard risk arousal and exposure peaks have been constructed as
daily profiles (having one value per hour), their superimposition is possible sharing the
x-axis (i.e., Hour of the day [h]). This would permit a direct qualitative comparison of the
temporal domain in which the multi-hazard existence is more likely, and the exposure has
been proven high.
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Moreover, if the collected data is sufficient, it will be possible to differentiate the
degree of exposure by demographic groups, allowing to spot those at higher risk exposure
to support decision-making on intervention plans and strategies. On the other hand,
identifying the buildings of the studied zone which generate higher exposure (i.e., crowding
sources), provides additional information on crowding sources to deploy targeted and
efficient mitigation solutions.

On the other hand, for quantitative integration of hazard and exposure data, in order to
obtain a simplified but unified degree of risk (R), the online multi-criteria decision method
of Analytic Hierarchy Process (AHP) was utilized [46]. This allows to introduce of the
individual vulnerability (V) based on the demographic groups present in the analyzed area,
by splitting the exposure (E) into the present groups and providing each of them a weight
(w) to this presence based on their susceptibility to such hazard (increasing temperatures (h)
and air pollution (p)); see Equations (1) and (2). Then, these are multiplied by the weighted
peak frequency of the respective hazard to obtain the degree of risk (R) for such SLOD type
or its combination; see Equations (3)–(5).

V&Ep = wp_e × expe + wp_td × exptd + wp_ad × expad (1)

V&Eh = wh_e × expe + wh_td × exptd + wh_ad × expad (2)

Rp = freqp × V&Ep (3)

Rh = freqh × V&Eh (4)

Rmhz = wh × Rh + wp × Rp (5)

where expe is meant to have the normalized exposure of elders; exptd is the normalized
exposure of toddlers; expad: adults exposure; freqp is the hazard frequency probability for
severe air pollution; freqh is the hazard frequency probability for severe heat stress; V&Ep is
the Vulnerability and Exposure degree obtained for air pollution; V&Eh is the Vulnerability
and Exposure degree obtained for heat stress; wp_e is the weight-related to air pollution
vulnerability associated to elders; wp_td is the weight-related to air pollution vulnerability
associated to toddlers; wp_ad is the weight-related to heat stress vulnerability associated to
adults; wh_e is the weight-related to heat stress vulnerability associated to elders; wh_td is the
weight-related to heat stress vulnerability associated to toddlers; wh_ad is the weight-related
to heat stress vulnerability associated to adults; wp is the weight related to the criticality of
air pollution hazard; wh is the weight related to the criticality of heat stress hazard.

Finally, for the estimation of the multi-hazard risk (Rmhz), the values obtained for
increasing temperatures (Rh) and air pollution (Rp) are multiplied. These values are then
plotted to unveil and understand which timeframe is associated with the highest risk for
each demographic group in the analyzed area.

2.4. Case Study Presentation

Following the analysis done by Salvalai et al. [10], Milan (Italy) is a representative
case study to assess the contemporaneous phenomena of increasing temperatures and
air pollution hazards on a densely populated metropolis; and at a smaller scale, the
geographical Local Identity Unit (NIL) of Città Studi.

Italy, and in particular the northern part of the country, has been labeled on the
Emergency Events Database (EM-DAT) [47] as an “extreme temperature affected country” and
the European Environment Agency (EEA) [6] has reported a 0.3–0.35 ◦C average annual
temperature increase trend for the same area. In addition, for the matching region, the
World Health Organization (WHO) [48] reported annual mean concentrations of particulate
matter (i.e., PM2.5) that go beyond healthy limits, being worse for the city of Milan.

In this context, the SLODs risk in Milan is worsened by the population density it holds.
Milan is within the most populated region in Italy (i.e., Lombardy). The city of Milan itself
hosts approximately 3.5 million people [49].
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From available datasets on the Municipality of Milan’s website [50], it was deduced
by [10] that the Città Studi area is characterized by high population density with het-
erogeneous infrastructure and BE typologies. It was described as a rather distinct area,
in which:

• An average concentration of susceptible population can be found (adults over 65 and
toddlers below 5 years old represent 22.3%), in fact, two home cares are located near
the boundary limits and more than 20 educational institutes are hosted.

• one reliable data source for monitoring air quality is within the boundary limits
(Milano—Pascal Città Studi) and one more adjacent was found for supervising both
air quality and weather fluctuations (Milano—via Juvara).

• It can be assumed as a low heat and pollutant management area given its low greenery
area coverage (15.4%), fairly high built surface area (29.4%), and volume coverage.

A narrower area was delineated as a representative portion of the identified NIL (see
Figure 3), to simplify the analysis and enable data collection and processing. This narrowed
site hosts a significant number of residents; it contains different urban BE types with busy
roads (such as piazza, Piazzale, and urban canyon), holds potential crowding points (two
schools, one nearby university, a sports center, a theatre, and a religious building), has a
nearby waterbody and embedded greenery.

Figure 3. Delineated case study area (dotted red line) with the identification of public facilities to compute exposure. A
comparison is given between the results obtained through GIS tools (left side) and Google Maps (right side); Civic numbers
in the GIS visualization are also provided in correspondence of the green points for both public buildings and private
dwellings. The GIS map is available at Comune di Milano Geoportale [51] and was furtherly elaborated by the authors.

3. Results
3.1. SLOD Peaks Identification

These results are a more granular analysis of what has been already presented in
Blanco Cadena et al. [26], by utilizing larger time-series datasets to better estimate the
likelihood of synergic SLODs arousal during the day.

For the selected case study, data were extracted from the regional environmental mon-
itoring institution ARPA Lombardy Agency [52], which shares openly its environmental
monitoring measurement database, making it possible to retrieve air quality and weather
data from Milano Pascal Città Studi and Milano v. Juvara stations (stations that are 600 m
and 1.03 km, respectively, from the center of the narrowed site). These data were col-
lected and elaborated for the 2015–2019 time period, prioritizing yearly data completeness
and recentness.
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Unfortunately, there was not a single station equipped with both air quality and
weather sensors to gather data from. However, both enquired stations are relatively close
from one to another, they are located within similar urban contexts, with low green area
coverage and mid-high built density. Thus, data collected is expected to have similar trends
and show sufficient evidence that this portion of the city has reduced heat and pollution
management capacity.

3.1.1. Heat Stress Estimation

Data gathered from the weather station Milano v. Juvara was incomplete to compute
the UTCI; that is, not sufficient information was surveyed to estimate mean radiant tem-
perature. Therefore, the extent of the heat stress on citizens was computed for outdoors
and walking pedestrians using RiskT [26] (employing only air temperature, solar radiation,
wind speed, and relative humidity), assuming that they will be exposed to the effect of
direct solar radiation and diminished air velocity (warmer sensation). The weighting
factors were maintained as:

• tdb-air = 0.4 for temperatures above 26 ◦C;
• tdb-air = −0.4 for temperatures below 18 ◦C;
• Itot = 0.3 for irradiation over 300 W/m2;
• RH = 0.15 for values below 30% or above 70%; and
• Va = 0.15 for values below 2 m/s.

Using these settings, RiskT was computed summing the weights for every monitored
hour from 1 January 2015 00:00 to 31 December 2019 23:00 (44124 h screened) to determine
the existence of heat stress (heat risk = TRUE if RiskT > 0.5). From which, only 438 (<1%)
were found to have at least one missing datum; thus, it was reasonable not to perform any
data completion. A description of the weather dataset is presented in Table 2.

Table 2. Studied weather dataset description summary.

tdb-air [◦C] RH [%] Va [m/s] Itot [◦C] RiskT Heat Risk

Count 43,928 43,686 43,937 43,936 44,124 5364
Mean 15.81 62.62 1.86 154.28 0.04

Std 8.48 20.09 1.00 237.00 0.32
min −3.90 0.00 0.10 0.00 −0.40
max 38.50 100.00 14.44 952.10 1.00

Air temperature peaks were registered over a 5-year period at 38 ◦C, while global
horizontal radiation reached 952 W/m2 as a maximum registered value. On RiskT, variance
is high (std = 0.32) but there were times in which all the parameters were measured at
an uncomfortable range. Categorizing RiskT, more than 5000 h were reported having a
hazardous heat stress condition during the analysis period, which represents approximately
12% of the collected data.

Then, the discrete 0 (FALSE) and 1 (TRUE) values of heat risk were grouped and
averaged by each of the 24 h of a single day to establish the frequency in which heat risk
hazard arise (freqh). These showed peaks of frequency arousal between 10:00 and 18:00,
with the maximum frequency probability during the 15:00 and 16:00 h. These probability
values were summarized together with the ones obtained for air quality in Table 3.

Table 3. Frequency probability profile data of heat (freqh), pollution (freqp), and multi-hazard risk (freqmhz) for those hours of
the day considered with more human activity.

Hour 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Heat 0.03 0.05 0.10 0.14 0.19 0.22 0.25 0.26 0.27 0.27 0.25 0.17 0.10 0.11
Pollution 0.23 0.22 0.22 0.22 0.22 0.24 0.27 0.31 0.36 0.41 0.43 0.43 0.44 0.43

Multi-hazard 0.00 0.00 0.01 0.02 0.03 0.04 0.07 0.11 0.15 0.16 0.15 0.09 0.05 0.05
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3.1.2. Determining Air Quality Condition

Air quality sensors were found scarcely diffuse within the city of Milan, likewise,
their latency was limited. Sufficient data was only found for particulate matter (i.e., PM10,
PM2.5), ammonia (NH3), and ozone (O3). Air quality was expressed as AQI, based on
healthy exposure limit values for 8-h average and the 8 h moving average of air pollu-
tant concentration. Finally, the air pollution distress (pollution risk = TRUE) was set to
AQI > 100, which is the limited exposure of demographic groups that are sensitive to such
substances (toddlers and elders) [28].

The AQI was also screened for the same analysis period; but, more than 13,000 h
had at least one missing datum. Nevertheless, as done for heat stress no data completion
process was performed given that: AQI is determined as the maximum value from the air
pollutants concentration; for which O3 is the most representative, having the largest mean
value (in consequence, largest mean AQI) and it is the one with the least missing values
(approximately 2%). A detailed description of the weather dataset is presented in Table 4.

Table 4. Studied air quality dataset description summary.

PM10
[µg/m3]

PM2.5
[µg/m3]

NH3
[µg/m3]

O3
[µg/m3] AQI Pollution Risk

Count 41,053 40,597 30,745 43,139 44,124 14,576
Mean 36.42 26.98 10.03 44.66 87.08

Std 24.67 20.17 5.12 41.16 40.53
min 4.00 3.00 0.00 0.00 15.37
max 169.00 156.00 99.20 218.40 206.50

Similar to what was encountered on RiskT, the AQI variance is high (std = 40.53). Over
a 5-year period, for Milan an average value of AQI near a risky threshold limit is serious
(AQI = 87.08), and a maximum value that doubles the suggested minimum 8-h exposure
is severe. Moreover, the fact that more than 33% (14,576 h) of the time citizens, if present,
were exposed to poor air quality demands urgent mitigation measures.

Then, as reported in Table 3, the hourly frequency probability of pollution hazard
risk (freqp) in a typical day was computed, resulting in a high likelihood of arousal from
15:00 onwards and a maximum peak of such likelihood at 19:00 h. In fact, sufficient
evidence was collected to assume that in this area polluted air at night hours was common
for the selected analyzed period.

3.1.3. Synergic Heat and Air Pollution Distress

As the high likelihood of critical hazard arousal was found to coincide, it was relevant
to identify the frequency with which both hazards are present simultaneously, as this
timeframe would be crucial for whoever is both vulnerable and exposed.

Heating risk and pollution risk condition Boolean were multiplied to obtain only
those cases in which both risks were synergic. Hence, within the selected analysis period,
more than 2000 h (4.91%) were found to be under the synergic critical effect of heat and
air pollution. These hazardous events were found to coincide more frequently (freqmhz) at
16:00, but with a high likelihood (>0.09) of arousal between 14:00 and 18:00.

The above is clearly visible in Figure 4, where the frequency of poor air quality (AQ)
conditions is higher in the early and late hours of the day; while the heat stress conditions
are more marked slightly after midday. Nevertheless, their aggregated effect and risk (Agg.
risk) is significant in the afternoon.
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Figure 4. SLODs risk hazard frequency probability profile superposition. Differentiating between air pollution distress
(poor AQ risk), heat stress, and their aggregated hazard risk (Agg. risk) arousal frequency.

3.2. Exposure Peaks Identification

The methodological framework presented in Section 2.2 is applied to the specific case
study presented in Section 2.4. Firstly, the buildings intended uses are evaluated mainly
through Google Maps and the Street View tools. A further verification about the reliability
of collected data from online tools was also performed thanks to the availability of the
Milan Municipality of an open-source GIS portal. Figure 3 shows within the study area
the presence of four main public activities: a homecare center for young mothers, a school
with different grades of instruction, a theatre with 250 seats, and finally the church of Santa
Maria Assunta. Additionally, only through the employment of such tools was it possible
to determine the presence of additional small commercial activities at the ground level
of several buildings, not documented in the GIS database. Especially, commercial places
were detected such as local shops, restaurants, bars, and other specific activities which
could attract citizens such as a bank, a travel agency, and private professional studies (e.g.,
doctors and dentists). The remaining buildings (that in the GIS visualization from Figure 3
are grey) constitute the private dwellings each one identified by their own civic number;
while in Google Maps such private function is not punctually specified, it can be indirectly
deduced by screening the are throughout Street View.

Then, the required geometrical features of buildings were surveyed in order to deter-
mine the maximum crowd conditions (i.e., floor areas). Table 5 associates each building
with its number of floors, their planar area extension, the total usable area, their corre-
sponding load capacity factor, and the total estimation of people present in the number of
people (pp).



Sustainability 2021, 13, 4538 13 of 20

Table 5. Buildings geometrical and occupancy features: the total area covered by each building’s intended use; their
occupancy load capacity factor; and, the maximum occupancy capacity (maximum number of people [pp]), esteemed by
multiplying maximum load capacity factor (pp/m2) and the total area of each building.

GIS Map
ID/Civic
Number

Building Intended
Use

Planar Area
Extension [m2]

Number of
Floors per
Function

Total Area
[m2]

Load Capacity
Factor [pp/m2]

Total Number
of People [pp]

A Homecare centre 310 7 1860 0.1 186
B School 1120 6 6720 0.4 2688

School 700 2 1400 0.4 560
C Theatre 562 2 1124 3 3372
D Church 603 1 603 0.7 422
81 Residential 200 8 1400 0.05 70

30 (83) Residential 515 8 3605 0.05 180
28 Residential 195 7 1170 0.05 59
26 Residential 327 7 1962 0.05 98
5 Residential 305 5 1525 0.05 76
3 Residential 310 5 1550 0.05 78
1 Residential 284 5 1420 0.05 71
24 Residential 330 7 1980 0.05 99
22 Residential 232 8 1624 0.05 81
4 Residential 210 4 840 0.05 42
26 Residential 775 7 5425 0.05 271

Residential 480 4 1920 0.05 96
16 Residential 157 7 942 0.05 47
18 Residential 285 7 1710 0.05 86
1 Residential 610 4 2440 0.05 122
A Commercial 310 1 310 0.4 124
81 Commercial 200 1 200 0.7 140

30 (83) Commercial 515 1 515 0.4 206
28 Commercial 195 1 195 0.7 137
26 Commercial 327 1 327 0.4 131
24 Commercial 330 1 330 0.4 132
22 Commercial 232 1 232 0.4 93
16 Commercial 157 1 157 0.4 63
18 Commercial 285 1 285 0.7 200

Starting from the evaluation of the total number of people that can be simultaneously
present in the case study area, additional assumptions lead to estimate a reduced number
of people in a specific hour of the day in order to reach a more representative and realistic
scenario of the ordinary conditions; for instance, the analysis was carried out only for work-
ing days, so to consider people leaving for work and visitors coming into non-residential
functions. The total maximum number of people of the delineated area is easily obtained
by summing the partial estimates for each building of Table 5; only for residential intended
use, the maximum number of inhabitants is estimated at 1380. Further information about
the hosted inhabitants demographics in the case study area were retrieved from census
data according to Section 2.2. From such data, proportions for age-related group ranges for
the Milan Municipality (representative of the case study urban tissue) are utilized.

Italy considers 15 to 64-year-old citizens as falling into the working age group and,
in Milan during 2020, more than 60% of youngsters (15–24-year-old range) were still
studying [53]; thus, <5 years old were considered as toddlers, 5–24 years old inhabitants
were considered as students, 25 to 64 were considered workers and >65 were considered
as elders. Results show a population composed of 22.3% of toddlers and elders, 60.3%
of adult workers, and 17.4% by students. Hence, it would be reasonable to assume that
from 1380 inhabitants, 308 are toddlers and elders, 832 adult workers, and 240 students
who live in this delineated BE portion. Withal, an hourly profile in terms of the number of
residents was defined considering the previously established schedules per resident type;
see Table 6.
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Table 6. Results related to the individuals’ presence in the studied area (exposure peak) is offered hour by hour highlighting
only the “Residents” component, the “visitors” component, by summing each component with the number of people along
the streets in “Total”, and a “Ratio” computed by normalizing each value by the maximum obtained “Total” occupancy.

Hour 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Residents 1380 308 308 308 308 308 548 548 548 548 548 1380 1380 1380
Visitors 140 140 831 894 894 1224 657 750 758 758 552 233 470 470

Total 1558 486 1177 1240 1240 1570 1243 1336 1344 1344 1138 1651 1888 1880
Ratio 0.82 0.26 0.62 0.66 0.66 0.83 0.66 0.71 0.71 0.71 0.60 0.87 1.00 1.00

Successively, the same hourly profile was traced for non-residents (e.g., visitors)
that comprehend all the individuals that could potentially populate the studied area for
working, studying, and/or enjoying the facilities, private shops, and restaurants (see
Table 4). Thanks to the collected opening and popular times of all these commercial
establishments, the occupancy profile can be discretized and weighted by the hour.

The exposure peaks estimated so far concern only the total sum of residents and
non-residents indoors (“Total” in Table 6); thus, the number of pedestrians passing through
the open spaces of the studied area for each hour is missing. Then, pedestrians along the
streets are assumed constant at 38 ppl (given the pedestrian lanes’ area extension) during
the time that commercial establishments were found to be open during the day (from 7 a.m.
to 12 p.m.). All these results allow us to delineate the hourly profile of working days of
exposure for the Milan case study graphically visualized in Figure 5.

Figure 5. Exposure peak hourly profile including the occupation dynamics of the considered demographic groups (i.e.,
elders, adult workers, students, and toddlers).

The obtained profile in Figure 6 is characterized by a high number of people present
early in the morning and at night. This represents people at and returning to their own
dwellings and the visitors that would populate restaurants and bars still open in the area.
Such exposure peaks are clearly related to the hosted function of buildings in the studied
spaces. However, a high concentration of people in public buildings and social functions
is exhibited, frequenting near economic activities such as shops or bars, and restaurants.
Although the exposure peak is lower than the previously described situation, also in such
conditions, increasing values of people are registered during morning hours especially in
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the second part of the morning (e.g., 10 a.m. to 1 p.m.); or, when the students are back from
school and non-residential functions begin to open (i.e., from 15:00 to 17:00).

Figure 6. Qualitative superposition of exposure peaks and hazard frequency probability of arousal.

3.3. Input Scenarios for Simulation

The input scenarios for studying the human behavior analysis, in specific, their
interaction with the environment and the BE shall be selected based on the risk level found
for such input scenarios. From a rapid qualitative assessment on Figure 6, and considering
the assumptions of residents behavior dynamics (i.e., occupation profiles), one can note
how late on the evening and early in the morning residents of such delineated region are at
a high risk of air pollution SLOD; while late in the afternoon, students and regular visitors
would be more at risk of suffering from increasing temperatures SLOD, and from a conjoint
effect of both.

Moreover, the AHP methodology is applied to introduce vulnerability together with
exposure to enable an estimate of the risk an inhabitant of the delineated area would
be subjected to. To do so, the susceptibility of the studied demographic groups were
established based on their mortality risk increase when exposed to extreme heat events
and high air pollution conditions compare to a control group. However, as there is no
information on how diverse pedestrians and visitors are they were weighted equally to
the adults to avoid additional overestimation of the risk. Sufficient evidence has shown
that elders and toddlers are similarly susceptible when subjected to such conditions. In
fact, elders have been reportedly found to be 1.24 and 1.20 more susceptible than healthy
adults to heatstroke and respiratory disease respectively [54,55]. Hence, using the online
tool offered by Goepel [46] it was possible to obtain:

• wp_e = wp_td = 0.75
• wh_e = wh_td = 0.75
• wp_ad = 0.25
• wh_ad = 0.25

Then, comparing the Emergency Events Database (EM-DAT) [47] on heatwave de-
ceases for the previous years and the corresponding number for attributed or related
deceases to air pollution in Europe [56], it was found that they are on an approximate
1:10 ratio. Thus, the following weights were allocated to compute the overall multi-hazard
analysis employing Equations (3) and (4).
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• wp = 0.9
• wh = 0.1

Finally, it was possible to lay down a daily risk profile for each SLOD type and one
regarding their conjoint effect. These are compared in Figure 7.

Figure 7. Estimation of SLODs risk daily profiles. Comparison between heat-related (Rh), air pollution-related (Rp), and
multi-hazard risk (Rmhz).

Given the severe impact of air pollution, most of Rmhz trend is driven by the trend
of SLOD air pollution. Nevertheless, just after midday, the heat-related risk (Rh) is as
significant as the one reported for air pollution. It is noteworthy that the highest risk value
is reported for late hours during the day, in which most residents would be present in the
studied area.

Therefore, analyzing both Figures 6 and 7 for the analyzed area, relevant input sce-
narios for people behavior and BE interaction modeling considering environmental stres-
sors any of the environmental and exposure conditions of the period between 13:00 and
17:00 would be good for considering both heat and polluted air including diverse demo-
graphics. Another relevant input scenario could be the study of night hours, although most
of the residents are meant to be resting and the visitors are significantly reduced.

4. Discussion

A flexible and easily applicable procedure for assessing the daily fluctuation of each
SLOD and the combination of critical SLODs risk has been proposed; and, its applicability
has been tested for studying the SLODs risk condition of a specific, but relevant, case study
in the City of Milan, Italy.

The work allowed to adjust and refine the steps presented for the methodology,
identifying possible gaps or challenges that researchers and designers must face when
assessing the BE actual and future conditions (analyses can be done as well with future,
forecasted, climatic data).

For the specific case study, the procedure allows for unveiling how severe the risk is
at which residents of such neighborhood have been and would probably be subjected to
in the future. In particular, the overall risk and the air pollution risk are stronger at night
(Rp > Rmhz > 0.1). This can generate healthy affections and others. Meanwhile, visitors and
students are more prone to suffer the effects of both heat-related and air pollution SLOD
affections by midday.
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The fact that the impact of air pollution was established as dominant (i.e., 1 to 9 ratio),
undermines the significant burden caused by increasing temperatures, especially with the
previously mentioned air temperature trends, this is likely to change.

The methodology presents itself as relevant for any type of human behavior analysis,
and in particular its interactions with the BE. It does provide information on what type of
environmental stressors to include, as well as, sufficient data on the number of people the
simulation should consider (e.g., agents), the demographic groups to employ, and the time
in which these simulations should be performed.

Methodology Limitations and Further Work

The methodology has been laid down to enable a multi-hazard SLOD risk analysis
with limited information and utilizing open-source tools. However, in certain locations
available data could be even more restrained resulting in higher variance:

• no environmental data in the surrounding studied area;
• no specific data on the features of the BE without the possibility of on-site survey (or

impractical due to area extension); and,
• no demographic information of the site.

For the methodology used to estimate hazards, two locations were used for collecting
data (i.e., Milano v. Juvara and Milano Pascal Città Studi) which might differ from the
actual site micro-climatic conditions. RiskT, and not UTCI, heat stress indicator was used,
which accounts for the indirect effect of the BE features on the augmented heat perception
of the actual position a person can be located.

Meanwhile, in relation to the methodology proposed for estimating exposure, and
in particular for the presented case study, the use of load capacity factors overestimates
the potential real number of people present in the studied area. The presence of visitors
in non-residential functions can be further refined by collecting data on the relative value
of occupation given by the location’s popular times. Or, if sufficient data is available
from census data, more precise values can be used to compute the real number of people
exposed to the hazard; presenting the values as a relative/normalized proportion, reduces
this uncertainty.

For the holistic risk estimation, and the peaks merging, a more detailed study is
foreseen to properly identify the vulnerability weighting factors specifically for toddlers
and students with respect to the adults. This is planned to be refined by digging deeper in
the literature about the differences in the homeostatic capacity of the human body and its
differences in age, this was not considered as it exceeds the scope of the present work.

Nevertheless, the proposed methodology represents a useful tool to be used when
there is scarce information available of the studied area. It does not require complex
computation techniques or machines to rapidly estimate the risk hourly.

Being able to define critical hazard-exposure scenarios from input data, the proposed
methodology could analyze potential future risk conditions, or compare actual with previ-
ously experienced circumstances, by manipulating the information used for the analysis.
That is, modifying input climate data (surveyed climate or forecasted climate change
scenarios) and demographic data (past, actual, or future trends on occupancy and/or
demographics). In addition, the proposed framework would be also capable of defining
risk scenarios under extraordinary social conditions, or measures (e.g., lockdowns and
curfews), that affect the occupancy trends by adjusting accordingly the weights of the space
occupancy profiles.

5. Conclusions

Urban BEs are increasingly prone to SLODs, such as air pollution and heatwaves. The
effectiveness of risk-mitigation solutions should be defined and tested by considering criti-
cal scenarios. Combining environmental conditions, exposed users’ presence, and vulnera-
bility, and behaviors is a paramount task to support decision-makers in risk assessment.
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Evidence has shown how people living in the BE are highly at risk of SLODs, and
especially within highly urbanized areas that have reduced green area coverage and intense
pollutants emission/concentration. It is a fact that in the last decade hospital admissions
and deceases, related to reduced air quality and/or increased air temperatures, have
raised [54,55]. Hence, designers that influence the BE should analyze the current BE features
and the evolution of the environmental conditions to enact effective mitigation strategies.

The current methodology identifies hazard frequency probability, exposure levels, and
the extent of vulnerability based on available data of demographic groups and literature
findings. In addition, it provides suggestions on which type of data to access and which
tools to use to gather it (even in the case of absence).

For instance, for the case study in which the methodology has been applied, it was
possible to individuate single-hazard and multi-hazard risk for a representative portion
of the city. Exposure was computed from functional occupation density and the extent of
the function’s physical space. Vulnerability was introduced by means of weights based
on the fragility of certain demographic groups, and hazard was provided by estimating
the frequency of the existence of critical conditions. As an outcome, it was possible to
communicate that residents are constantly exposed at night to hazardous air pollution
concentrations even when indoor; meanwhile young adults, visitors, and elders are exposed
to both critical heat stress conditions during the day and unhealthy air quality at night.

The applicability and robustness of the framework have also been proven by being
flexible with the type of heat stress or air quality criteria; the ease of data collection for
exposure, vulnerability, and hazard; and also, the possibility of utilizing different input data
for comparing past, present and predicted conditions (e.g., climate change, demographic
change, social trends).
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