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Abstract: In 2012, the U.S. Department of Agriculture adopted a new planning rule that outlined
a process for developing, amending, and revising land management plans for the 155 National
Forests, 20 National Grasslands, and one Tallgrass Prairie managed by the U.S. Forest Service. The
rule outlines a framework with three phases: assessment, development/amendment/revision, and
monitoring. We are assisting National Forests in the western U.S. with the first phase by completing
a series of assessments of riparian and groundwater-dependent ecosystems. Here, we describe our
methods and the lessons learned over the course of conducting assessments for seven National
Forests. Per the requirements of the planning rule, we conduct a rapid assessment of ecological
integrity that uses existing data to evaluate drivers, stressors, structure, function, composition, and
connectivity. We have collaborated with National Forests, state agencies, and other research groups
to obtain datasets representing various wetland landscape features. Our work supports the plan
revision process, from assessment through plan approval, and informs future forest and project
planning for the restoration and maintenance of structure, function, composition, and connectivity.
We developed our assessment methods in collaboration with resource managers at the National
Forest and regional level to ensure useful end products such as published technical reports, literature
reviews, photo libraries, or collections of datasets related to riparian and groundwater-dependent
ecosystems. Our approach and lessons learned throughout the process are relevant to other resource
management planning applications, analyses of landscape condition, as well as assessments of other
ecosystems, such as forests or grasslands.

Keywords: 2012 planning rule; key ecosystem characteristic; natural range of variation; U.S. Forest
Service; decision making

1. Introduction

The U.S. Forest Service (USFS) stewards 193 million acres of forests, grasslands, and
prairies within the National Forest System. The National Forest Management Act (NFMA)
requires the USFS to develop, maintain, and regularly revise Land Management Plans
(Forest Plans) that guide actions on these lands. Currently, the development and revision
of USFS Land Management Plans are guided by the 2012 Planning Rule (36 CFR Part
219), which outlines procedures and identifies required components for new or updated
plans [1]. The forest planning process follows a cyclical, adaptive management approach
that includes three phases: assessment, plan development, and monitoring [1]. During the
assessment phase, managers evaluate socio-economic and ecological conditions or trends
present on the National Forest or Grassland and identify potential needs for change [1].
The next step is to develop or revise the Forest Plan [1]. Finally, managers use monitoring
to track plan implementation and measure indicators of desired conditions, the results of
which can inform the next assessment of conditions and trends [1].

The Planning Rule outlines a number of requirements resource managers must follow
throughout the plan revision [1]. One requirement is the use of the best available scientific
information. This means managers must seek existing high-quality data developed through
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appropriate methods, with cited references and peer-review. A second requirement is that
the assessment phase is rapid and evaluates existing conditions including the quality of air,
soil, and water resources, the presence and abundance of fish, wildlife, and native plants,
and the integrity of terrestrial and aquatic ecosystems. To complete the assessment, the
Planning Rule indicates that managers must select key ecosystem characteristics (KECs)
that are indicative of the structure, function, composition, and connectivity of terrestrial
and aquatic ecosystems. These KECs should then be used to evaluate ecological integrity,
which is defined by the Planning Rule as “the quality or condition of an ecosystem when
its dominant ecological characteristics occur within the natural range of variation and
can withstand and recover from most perturbations imposed by natural environmental
dynamics or human influence.”

To aid in meeting 2012 Planning Rule requirements for ecosystem assessment, we
established a partnership with the USFS Intermountain Region in 2015 to assess riparian
and groundwater-dependent ecosystems (GDEs) on National Forests in Idaho, Wyoming,
Utah, and Nevada. We initially considered established ecosystem assessment methods
that are applied internationally [2–12]; however, we found many failed to meet the specific
requirements of the Planning Rule. Many assessment methods focus on the evaluation of
ecosystem services [2,4–7], but lack a focus on ecological integrity. Additionally, many ap-
proaches are designed to be implemented through field visits that create new data [3,8–12]
and do not rely on existing information. We designed new methods to meet Planning Rule
requirements for the rapid evaluation of ecological integrity using only existing data. Our
assessments address drivers and stressors that influence the condition of riparian ecosys-
tems and GDEs. We integrate widespread, well-documented national or international
data with local field data that may have been collected irregularly through space or time
but remain valuable as the only available existing information capturing on-the-ground
conditions. We use this information to determine whether evidence exists that ecological
integrity has been compromised and have published a series of general technical reports
summarizing our findings for each National Forest [13–17]. National Forest staff have
identified these reports as effective and have used them to directly inform forest planning
and management actions on several National Forests.

At the request of our partners at the Intermountain Region, our assessments address
riparian ecosystems and GDEs. Riparian areas are unique landscape features that exist at
the interface of terrestrial and aquatic environments (Figure 1) [18]. They are influenced
by the presence of surface water and groundwater and consist of plant communities that
are distinct from adjacent uplands [18]. GDEs are “communities of plants, animals, and
other organisms whose extent and life processes are dependent on access to or discharge
of groundwater” [19,20]. For the purposes of forest planning, GDEs include fens and
other wetlands fed by groundwater, terrestrial vegetation and fauna sustained by shal-
low groundwater, ecosystems in streams, lakes fed by groundwater, caves, karst aquifers,
aquifer systems, hyporheic and hypolentic zones, and springs [21]. Although these ecosys-
tems occupy a small percentage of landscapes in the western U.S., riparian areas and GDEs
provide disproportionately large ecosystem services such as water filtration, essential
wildlife habitat, recreational opportunities, and flood control [22–24]. Recognizing these
valuable functions, National Forests have recently focused on the classification, inventory,
and assessment of riparian ecosystems and GDEs, with monitoring effects of forest manage-
ment activities and preserving high-quality habitat for threatened and endangered species
often identified as management priorities. Although our assessments focus on specific
ecosystems, the approach outlined here is an effective method for landscape analysis of
many ecosystem types. Additionally, we provide lessons learned from participating in
the Forest Plan Revision process and suggestions for how to adopt our framework for
other applications.
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Figure 1. Examples of assessed ecosystems: (a) willow-dominated riparian vegetation along Merchant Creek on the Fish-
lake National Forest, Utah. (b) a groundwater-dependent wetland in the Dixie National Forest, Utah, and (c) a spring 
runout channel on the Fishlake National Forest, Utah. 
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tems and GDEs that exist after approximately 30 years of management actions guided by 
the past Forest Plan. Our methods have evolved through collaboration with the Inter-
mountain Region. The approach is flexible, allowing us to incorporate datasets that differ 
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present in localized areas. To ensure we are aware of these unique management concerns, 
we begin each assessment with at least one in-person meeting with staff from the focal 
National Forest. Because riparian areas are complex ecosystems that connect to many dis-
ciplines and are impacted by multiple interacting stressors, we aim for these meetings to 
be multi-disciplinary. We often involve managers from different resource areas including 
hydrology, fish biology, wildlife biology, aquatic ecology, forest planning, and range con-
servation. During these meetings we discuss available datasets, goals for the updated 
plan, and topics of interest on the Forest. We also work with National Forest staff to es-
tablish geographic units within the Forest by which to complete our assessment. These 
units typically align with forest planning efforts and are often categorized by mountain 
ranges. Finally, we plan for a few days in the field to tour the Forest, visit unique sites, 
and get a general idea of potential drivers and stressors of riparian and GDE condition. 
These field visits are often more productive when accompanied by National Forest staff, 
who have in-depth local expertise related to ecosystems present on the National Forest. 

We begin our analysis by inventorying, mapping, and calculating percent cover or 
density of riparian and GDE features in defined geographic units of each Forest (Figure 
2). To describe the distribution of areas that can be considered riparian, we use existing 
spatial data representing geomorphology, surface flows, groundwater, and vegetation. 
These datasets have been used to map riparian ecosystems, but each has limitations 
[25,26]. Mapping geomorphic features associated with riparian ecosystems can demon-
strate their potential extent, but changes in hydrology, natural or anthropogenic, may 
limit the development or persistence of riparian ecosystems, thereby resulting in an over-
estimation of riparian extent. Conversely, vegetation-based mapping may underestimate 
riparian extent because riparian understory species may be obscured by overstory vege-
tation and facultative riparian species may be incorrectly classified as upland [26]. To fully 
display the potential range of riparian extent, we incorporate both the existing vegetation 
and geomorphology data. These datasets include a GIS layer of riparian ecosystem extent 
developed by Abood et al. [27] that incorporate 50-year flood heights from stream gage 
data, a 10-m digital elevation model, soil units (hydric, drainage class, flood frequency, 
and hydrological soil group), and National Wetland Inventory (NWI) data. We also map 
the current distribution of riparian vegetation using data generated by the Vegetation 

Figure 1. Examples of assessed ecosystems: (a) willow-dominated riparian vegetation along Merchant Creek on the Fishlake
National Forest, Utah. (b) a groundwater-dependent wetland in the Dixie National Forest, Utah, and (c) a spring runout
channel on the Fishlake National Forest, Utah.

2. Materials and Methods

We developed a new approach for assessing the current condition of riparian ecosys-
tems and GDEs that exist after approximately 30 years of management actions guided by
the past Forest Plan. Our methods have evolved through collaboration with the Intermoun-
tain Region. The approach is flexible, allowing us to incorporate datasets that differ across
National Forests and to address unique landscape features or concerns that are present in
localized areas. To ensure we are aware of these unique management concerns, we begin
each assessment with at least one in-person meeting with staff from the focal National
Forest. Because riparian areas are complex ecosystems that connect to many disciplines
and are impacted by multiple interacting stressors, we aim for these meetings to be multi-
disciplinary. We often involve managers from different resource areas including hydrology,
fish biology, wildlife biology, aquatic ecology, forest planning, and range conservation.
During these meetings we discuss available datasets, goals for the updated plan, and topics
of interest on the Forest. We also work with National Forest staff to establish geographic
units within the Forest by which to complete our assessment. These units typically align
with forest planning efforts and are often categorized by mountain ranges. Finally, we plan
for a few days in the field to tour the Forest, visit unique sites, and get a general idea of
potential drivers and stressors of riparian and GDE condition. These field visits are often
more productive when accompanied by National Forest staff, who have in-depth local
expertise related to ecosystems present on the National Forest.

We begin our analysis by inventorying, mapping, and calculating percent cover or
density of riparian and GDE features in defined geographic units of each Forest (Figure 2).
To describe the distribution of areas that can be considered riparian, we use existing spatial
data representing geomorphology, surface flows, groundwater, and vegetation. These
datasets have been used to map riparian ecosystems, but each has limitations [25,26].
Mapping geomorphic features associated with riparian ecosystems can demonstrate their
potential extent, but changes in hydrology, natural or anthropogenic, may limit the de-
velopment or persistence of riparian ecosystems, thereby resulting in an overestimation
of riparian extent. Conversely, vegetation-based mapping may underestimate riparian
extent because riparian understory species may be obscured by overstory vegetation and
facultative riparian species may be incorrectly classified as upland [26]. To fully display
the potential range of riparian extent, we incorporate both the existing vegetation and
geomorphology data. These datasets include a GIS layer of riparian ecosystem extent
developed by Abood et al. [27] that incorporate 50-year flood heights from stream gage
data, a 10-m digital elevation model, soil units (hydric, drainage class, flood frequency, and
hydrological soil group), and National Wetland Inventory (NWI) data. We also map the
current distribution of riparian vegetation using data generated by the Vegetation Classifi-
cation, Mapping, and Quantitative Inventory (VCMQ) program [28]. VCMQ products are
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customized to each National Forest and use different combinations of satellite imagery (e.g.,
MODIS, MISR, AATSR, ATSR), aerial photography (e.g., Forest Service digital orthorec-
tified imagery, Forest Service resource photography), and field-sampled data to produce
maps of existing vegetation types for each National Forest [28].
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Figure 2. Geographic scales of riparian and groundwater-dependent ecosystems (GDE) assessments: (a) location of the
Intermountain Region and its National Forests, (b) geographic units within the Dixie and Fishlake National Forests, and (c)
GDEs mapped within the Markagunt Plateau geographic unit of the Dixie National Forest.

Most National Forests have limited knowledge of the landscape-scale distribution of
GDEs. Because high quality existing data related to the location of GDEs is relatively rare
compared to riparian ecosystems, we search for information from multiple sources includ-
ing the U.S. Geological Survey (USGS), the Spring Stewardship Institute (SSI), the National
Hydrography Dataset (NHD), and local shapefiles maintained by each National Forest. We
compile relevant datasets and use this information to describe the known distribution of
GDEs so these ecosystems can be more readily acknowledged in forest planning activities.
The datasets we use for each assessment vary, depending on what is available for each
Forest. We have used shapefiles representing potential karst, major aquifers, faults, and
bedrock geology from the USGS [29–31]. We map the location of springs using shapefiles
generated by the SSI, the NHD, and those provided by the Forests. We have also received
shapefiles of potential fens in each Forest from the Colorado Natural Heritage Program
(CNHP). Using NWI data and aerial imagery from multiple sources (e.g., National Agri-
cultural Imagery Program, high resolution World Imagery from Environmental systems
Research Institute, etc.), CNHP staff locate wetlands that are potential fens, hand-draw
the best estimate of fen boundary, and rank them as likely fens, possible fens, and low
confidence fens based on the number of fen-like characteristics they observe [32–37].

Once riparian ecosystems and GDEs are inventoried and mapped across the Forest, we
evaluate the ecological integrity of several KECs, including surface water and groundwater
fluctuations, water quality, channel and floodplain dynamics, and the composition and
structure of riparian ecosystems and GDEs. To determine whether KECs are functioning
in a way that contributes to long-term ecological integrity, we review scientific literature,
published reports, and available datasets to identify drivers and stressors specific to each
KEC in the Forest. For riparian ecosystems and GDEs of the Intermountain West, drivers
tend to include climate, geology, topography, and beaver (Castor canadensis) activity. We
have found that level IV ecoregions [38] and reports completed by USGS tend to be excel-
lent sources of information to summarize local climate, geology, and topography, but data
related to beaver activity are often difficult to acquire. Common stressors considered in our
assessments include roads [39,40], grazing [40–45], water diversions [40,45], dams and large
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reservoirs [40,46–48], mining [40,45], invasive species [40,45], recreation [40,45,49], vegeta-
tion mortality, high severity wildfire [40,50], timber harvest [40,45], and drought [40,45].
Many public datasets provide excellent spatial data on stressors (Supplementary Table S1).
For stressor data, we frequently rely on the USFS National Dataset, state points of diversion
GIS layers, and national monitoring efforts related to drought or burn severity.

For each potential stressor, we compile datasets to quantify the level of stress (e.g.,
diversion density) within geographic units and 12-digit HUC subwatersheds. We then
evaluate whether the stressor has had a likely impact using datasets such as the USFS Wa-
tershed Condition Classification (WCC) [51] or the USFS Terrestrial Condition Assessment
(TCA) [52]. The WCC is an evaluation of watershed condition using multiple indicators
that is completed by National Forest staff and can be aggregated for assessment [51].
Similarly, the TCA calculates several indicators to evaluate the effects of uncharacteristic
stressors and disturbance agents on National Forests [52]. We may calculate road density
as road miles per acre within a watershed and then consult the WCC and TCA datasets that
provide information on the proximity of roads to streams and waterbodies, whether road
infrastructure has been maintained, and whether road density is sufficiently high to impact
hydrologic function or wildlife. Finally, using HUC12 subwatersheds as sampling units, we
test for associations between different stressors using the non-parametric Spearman’s rank
order correlation. For example, on some Forests it may be true that high grazing pressure
is correlated with stress imposed by water diversions or roads. In this case, watersheds
with a large percentage of land within a grazing allotment would also tend to have high
diversion density and high road density. We use this information to categorize stressors
that generally occur together and determine whether a watershed with one stressor present
is likely to have multiple stressors impacting riparian ecosystems and GDEs.

Once we have identified relevant drivers and stressors for each KEC, we estimate
ecological integrity using indicators of KEC function that can be measured with available
datasets (Supplementary Table S1). We tend to rely on multiple data sources that range
from plot level to national scale. Like stressor data, we quantify indicators for each unit
and subwatershed. We then test for associations between indicators (e.g., conversion of
riparian area to upland vegetation) and stressors (e.g., diversion density) using Spearman’s
rank order correlation. For geographies and KECs for which there is sufficient data, we
integrate several existing indicator datasets to determine the natural range of variation
(NRV) status in each geographic unit. In some cases, we use an index calculated from
the quantitative assessment of stressor and indicator variables. For example, in the case
of surface water and groundwater fluctuations, we typically consider stressor variables
such as deviations in winter precipitation and temperature and indicator variables like
the WCC Flow Characteristics attribute that describes whether natural flow regimes are
properly functioning [51]. For some KECs, such as the composition and structure of GDEs,
applicable data come from various sources and were not collected in a standardized manner.
In these situations, qualitative scoring is more appropriate.

Based on an index that integrates multiple existing datasets, we describe KEC status
as functioning within NRV, moderately altered from NRV, or functioning outside NRV. For
the purposes of our assessment, KECs that are moderately altered from NRV are not fully
contributing to ecological integrity, but with changes in management or plan direction,
could do so in the future. KECs that are functioning outside NRV are not expected to
contribute to ecological integrity because changes to address stressors are likely outside
the Forest’s management abilities. If we cannot locate multiple datasets that describe the
condition of a KEC, we state that there is insufficient information and do not determine
NRV status. This outcome of “insufficient information” remains valuable for National
Forests that must determine monitoring needs during plan revision.

As a final step, we examine spatial patterns in the condition of KECs by mapping NRV
status across the Forest. We incorporate any additional information about the condition
of these ecosystems from a literature review, meetings with Forest staff, and visits to
field sites. We conclude our assessments by describing the overall levels of ecological
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integrity, issues and locations where changes in management could be considered, and
remaining information gaps. When the draft assessment is completed, we submit it to
the Intermountain Region and the focal National Forest for review. We solicit both oral
and written feedback to improve the assessment and ensure we have included all relevant
datasets. Recognizing Forest-level managers are often busy, we have found breaking the
full assessment into shorter chapters tends to increase the amount of high-quality feedback
and reviews we receive. This step is critical for producing an accurate end product that
will be useful for forest planning and decision making.

3. Results

The results of our assessment include a summary of the presence and impact of
stressors across each National Forest. Our assessment work in the USFS Intermountain
Region is incomplete and ongoing; however, for the six National Forests for which we
have produced a report, we have found livestock grazing, water diversions, and roads to
be the most extensive, wide-spread stressors to riparian ecosystems in Idaho, Utah, and
Wyoming. These three stressors also tend to occur together within HUC12 watersheds,
with high diversion density often correlated with high road density and a large percent of
the landscape within a grazing allotment. Several other common stressors include mining,
dams and large reservoirs, invasive species, recreation, vegetation mortality, high severity
wildfire, timber harvest, and drought. These stressors and their effects tend to be more
localized and impact specific watersheds within the National Forests we have assessed.

Due to the use of different indicator datasets, estimations of current conditions are not
comparable across National Forests; however, our results suggest there is wide variation in
the condition of riparian areas and their KECs in the Intermountain West. For example, an
evaluation of KECs on the Bridger-Teton National Forest in Wyoming indicated generally
high ecological integrity of riparian areas and GDEs, with all units classifies as within NRV
for groundwater and surface water fluctuations, water quality, riparian composition, and
channel and floodplain dynamics. In contrast, only 10, 41, 33, and 35 percent of the Salmon-
Challis National Forest was considered within the NRV for groundwater and surface
water fluctuations, water quality, and channel and floodplain dynamics, and riparian
composition, respectively. Our assessment work is ongoing, but based on completed
analysis for six National Forests, groundwater and surface water fluctuations are generally
altered from the NRV with likely consequences to riparian ecological integrity. Similarly,
channel and floodplain dynamics tend to be at least moderately altered from NRV in many
areas, with intact channels present in Utah, Idaho, and Wyoming. The composition and
structure of riparian areas appears somewhat resilient to multiple interacting stressors,
with many units classified as within NRV on the Ashley, Manti-La Sal, Salmon-Challis, and
Bridger-Teton National Forests. Finally, water quality is often within NRV and contributing
to ecological integrity throughout many of the National Forests we have assessed.

For most areas within the National Forests we evaluated, data were inadequate to
evaluate current conditions at GDEs. Where data were available, we determined that
composition and structure were either moderately altered or outside the NRV. Additionally,
in the few places with sufficient data for assessment, spring runout channels appear
strongly impacted by multiple interacting stressors and are often altered from NRV. With
limited data we found localized impacts to water fluctuations at GDEs and generally high
water quality. We made these determinations based on reports detailing impacts of livestock
grazing, diversion of water from springs, and the presence of nonnative plant species.

4. Lessons Learned
4.1. Less Information Is Available on GDEs Than Riparian Ecosystems

In conducting our assessments, several issues have emerged that are common among
the Forests. Most notably, there is limited information and data on GDEs in comparison
with riparian ecosystems. Whereas numerous riparian sites have been measured in most
geographic areas of each Forest, GDE measurements are often limited in number and are
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more unevenly distributed. At each Forest, most GDE surveys have been conducted at
springs. Surveys at fens are fewer or nonexistent and are usually conducted by external
groups such as university researchers. As a result, fen survey methods are inconsistent
within and among Forests. Future application of the USFS GDE Level I and II survey
protocols [19,20], in coordination with the SSI’s Springs Online database, will improve the
consistency of GDE surveys and availability of their results.

4.2. High Resolution Spatial Data and Strategic on-the-Ground Monitoring Are Necessary

There are pros and cons to solely working with datasets of a certain scale. National data
are widely available, have well documented methods, and provide consistent information
that make it possible to compare results across geographies. Only considering national
level data, however, results in a loss of local expertise. Large-scale datasets are generally
too coarse for describing the conditions at a specific location within one of our study areas.
For example, we often use the Riparian Condition Assessment Tool (RCAT) [53,54], which
estimates changes in riparian ecosystems using 30 m LANDFIRE data [55,56]. In some
cases, this 30 m resolution is too coarse to accurately capture changes in narrow riparian
corridors that are common throughout the Intermountain West. In these situations, it
may be possible to use higher resolution imagery; however, these datasets tend not to be
available at large enough spatial scales to estimate departure across a full planning unit or
entire National Forest. For these ecosystems, RCAT tends to overestimate the conversion
of riparian cover to alternative cover types such as upland vegetation or invasive species.
However, if we combine RCAT output with local riparian plot data, we may be able to
confirm that conversion to other cover types has been observed.

Local data provides the benefit of incorporating local expertise. We have found many
resource managers at the National Forest level are able to offer extensive information
related to on-the-ground conditions. In addition to information that we receive from
local managers through discussion during in-person meetings and through reviews of
the draft assessment, many Forests have collected at least some local field data through
monitoring efforts. These monitoring data, however, are typically tied to a specific project
or management activity. As a result, local datasets generally lack random sampling or a
robust experimental design. Additionally, riparian monitoring methods tend to vary across,
or even within, Forests. Due to this inconsistency, we are frequently unable to compare
local datasets across landscapes. A final downside of many local datasets is lack of repeated
measures. We have found many local datasets were collected once several years in the past,
which inhibits its use to understand trends or the current condition.

For these reasons, we find using a combination of local, regional, and national data
allows us to evaluate ecological integrity and determine NRV status with greater confidence.
For example, when determining whether surface water and groundwater fluctuations
have been impacted by roads, we may consider the national-scale USFS TCA [52], the
USFS WCC [51] that was completed by each Forest, and local riparian plots that describe
disturbances present within a stream reach. If all three datasets provide evidence that roads
have altered hydrologic regimes, we can be confident an actual impact exists.

Overall, landscape analysis for planning purposes would benefit from consistent
higher resolution spatial data to better inventory ecosystems and capture condition, as well
as regular strategic on-the-ground monitoring that occurs within a robust experimental
design. As new methods and datasets become available, National Forests can build on our
initial results to fully inventory the aquatic and riparian resources they manage.

4.3. Quantitative and Qualitative Data Are Valuable for Ecosystem Assessments

Though the types of available data vary among the Forests we have assessed, we have
found value in both quantitative and qualitative datasets. We find the quantitative mea-
surements of variables such as water quality, and vegetation cover are complimented by
qualitative descriptions of community composition, streambank condition, and other fea-
tures at stream reaches and GDE sites. Protocols yielding useful quantitative data include
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Pacfish-Infish Biological Opinion Effectiveness Monitoring Program (PIBO) and Winward
greenline measurements [11,12,57]. Level II riparian surveys and PFC assessments have
provided us with useful qualitative descriptions of riparian areas and GDEs. Given the
varied and dynamic settings of these ecosystems, no single protocol or category of data can
provide the full picture of current conditions, making the availability of multiple datasets
important to conducting our assessments.

4.4. Climate Change Should Be Considered in Multiple Ways

Climate change has obvious implications for assessments of ecological integrity that
include the evaluation of NRV. We tend to incorporate climate into our assessments in
two ways. First, we often consider climate change as a stressor to the current condition of
KECs. For example, reduced snowpack, earlier snowmelt, increased drought, and altered
precipitation regimes that include shifts from snowfall to rain impose stress on KECs
such as surface water and groundwater fluctuations or water quality. In these situations,
we use data from the USFS TCA [52] that capture deviation in seasonal temperature
and precipitation or data from the U.S. Drought Monitor that describes the length and
severity of drought within an area over time. Secondly, we recognize that climate change
may contribute to substantial alterations from NRV that may not be addressed through
management. To address this concern, we attempt to include information about potential
future conditions. For example, we have included data from Western Flow Metrics [58]
that report several hydrologic parameters for streams for the historical period of 1915–2006,
and estimated parameters for the 2040s and 2080s under different climate projections. We
also summarize the temperature and precipitation deviation information described above
by subwatershed in the hopes of identifying watersheds with limited climatic changes.

4.5. Tools Are Available to Aid in the Consideration of Beaver-Based Restoration during
Planning Efforts

Historically, beaver activity throughout the western U.S. played a major role in the
development and maintenance of functional riparian ecosystems. Resource managers are
increasingly interested in beaver reintroduction or using structures like beaver dam analogs
that mimic beaver activity to achieve desired conditions. These types of management
actions are often considered during development and revision of Forest Plans; however, we
have found accurate data related to beaver populations and activity is difficult to acquire.
Two tools developed at Utah State University may aid in considering beavers during
plan revision: The Beaver Restoration Assessment Tool [59] and the Beaver Monitoring
App [60], with which users can report beaver activity. The Assessment Tool can provide
information on potential to use beavers as a conservation or restoration tool at watershed
or landscape scales.

4.6. Research Describing Natural Range of Variation Is Necessary

Consideration of NRV is only one component of evaluating ecological integrity; how-
ever, we have found that determining NRV can be one of the more difficult tasks to
accomplish in our assessments. Additionally, defining NRV is one of the most common
concerns expressed by National Forest staff and it is what we are most frequently asked
about when presenting these assessments in professional meetings or workshops. While
we have identified some data sources that effectively aid in estimating NRV, better descrip-
tions of NRV are a topic ripe for research. We suggest research focused on NRV should
consider both qualitative and quantitative data. Researchers interested in improving the
understanding of NRV may consider landscape descriptions from historical publications,
diaries, traditional knowledge, tree rings, packrat middens, soil or lake sediment cores, and
specimen collections held by natural history museums, among other historical datasets.

5. Discussion

Assessments of ecological integrity are a critical step for informing land managers
and decision-makers during planning efforts. Although ecosystem assessments are widely
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used to inform land management worldwide [7,61–63], many evaluate ecosystem services
rather than ecological integrity [7,64] (e.g., the European Union’s mapping and assessment
of ecosystems and their services (MAES) program [65], hydrological ecosystem services
mapping in Australia [4], quantification of ecosystem services in Asia [6], and the United
Nations Millennium Ecosystem Assessment [2,62]). These are large-scale examples, but the
number of assessments and the body of literature related to assessing ecosystem services
at variable spatial scales has grown substantially since the 1970s [7,66]. While the evalu-
ation of ecosystem services are effective for some applications, resource managers have
indicated they often do not find these types of assessments entirely relevant to planning
efforts [7,64,67,68], and it is rare for studies to indicate how ecosystem service assessment
was used in local decision making [64]. In contrast to the evaluation of ecosystem services,
our approach focuses on ecological integrity, which has been identified by managers as
more useful for decision-making [68]. The efficacy of our approach and the usefulness of
our end-products are evident, as National Forest planners and resource managers have
directly incorporated our results into revised Land Management Plans.

Like the evaluation of ecosystem services, protocols for assessing ecosystem condition,
specifically for riparian areas, are widely available [8–12,19,20,69–71]. These protocols
generate valuable data describing on-the-ground conditions; however, on their own, these
approaches typically do not meet the needs for a rapid assessment to inform land managers.
Many of these methods require substantial investment of time and resources, including
field visits by professionals trained in the methodology. Because the Planning Rule requires
use of existing data, we are not able to generate new data using these protocols to inform
our assessments. Additionally, while many of these methods are “rapid” because they
can be completed within a few hours, applying these protocols on spatial and temporal
scales sufficient for identifying patterns and trends relevant to planning requires years of
effort. For these reasons, we are unable to apply these approaches, but our assessments
frequently rely on datasets that have been collected using these methods. Throughout our
assessment work, we have found numerous datasets that have been collected through the
application of field protocols. In many cases these datasets have not been compiled or
analyzed in a way that supports resource management and our National Forest partners
are especially pleased when we integrate these datasets and make them available to inform
planning efforts.

Recognizing that although development of ecological integrity indices had advanced
and were successful at small scales, Reza and Abdullah [72] suggested no index of ecologi-
cal integrity exists at the regional scale for terrestrial and aquatic ecosystems. Additionally,
their study outlined six characteristics that should be considered in the development of
an effective regional-scale index: (1) multi-scaled, (2) grounded in history and succession,
(3) relevant and helpful, (4) flexible, and (5) comprehensive [72]. Our assessments are
multi-scaled, as we conduct analyses and summarize results at the HUC12 watershed,
mountain range, and National Forest scale. We ground our assessments in history and suc-
cession through consideration of geologic and topographic setting, climate, natural range of
variation, and anthropogenic history of the landscape. To ensure our work is relevant and
helpful, we include multidisciplinary National Forest staff who are local experts. We meet
with these managers as the first step in the assessment process and continue to involve
them through reviews of our assessment reports. As outlined in this paper, our methods
are intentionally flexible to accommodate unique features and datasets that differ across
National Forests. Our evaluation of ecological integrity uniquely integrates largescale and
local datasets in a measurable way that is interpretable by decision makers and could be
applied repeatedly to determine trends. Finally, our assessments are comprehensive as
they consider KECs that capture the composition, structure, function, and connectivity
of riparian areas and GDEs. We developed the approach described in this paper to meet
the requirements of the USDA’s 2012 Planning Rule; however, the methods and lessons
learned are relevant to resource managers or researchers interested in completing a rapid
assessment of ecological integrity using only existing data.
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In addition to differing from established methods that focus on ecosystem services,
require generation of new data, or occur at scales other than the regional level, our assess-
ments provide a meaningful product quickly. Like the time investment required to create
a meaningful dataset from field-based protocols, many existing ecosystem assessment
methods take years to complete. One of the goals of the Planning Rule is to reduce the
amount of time it takes to revise a forest plan so that management plans can be updated
more often. Because we rely only on existing data, we are typically able to acquire and
integrate data from various spatial scales, analyze the data, summarize results, complete a
literature review focused on drivers, stressors, NRV, and desired conditions, submit a draft
to the focal National Forest for review, address feedback and begin the publication process
for the report in less than a year. In general, we publish the assessment before the focal
National Forest even begins the plan revision process.

In addition to providing an alternative to approaches that either assess ecosystem
services or require field visits, our methods are useful for planning efforts that aim to
identify locations for the maintenance or restoration of ecological integrity. Innis et al. [68]
identified assessment of current ecological integrity as a key component of any manage-
ment issue, specifically preservation and restoration. Consequently, state and federal land
management agencies, countries, and international groups frequently engage in environ-
mental analysis and planning to inform this type of decision-making [2,5,7,65,68]. For
example, the Millennium Ecosystem Assessment aimed to provide science to support
sustainable ecosystem management and enhanced conservation [2] and MAES provided
an understanding of the location and status of threatened and degraded ecosystems to
guide restoration efforts [65]. As these examples suggest, projects intending to maintain
or enhance ecological integrity increasingly involve large landscape restoration projects
that expand beyond single watersheds or administrative boundaries. The steps outlined in
this paper for a rapid assessment of riparian and GDE condition can be used to prepare
for projects related to these ecosystems, as well as other ecosystems, such as forests or
grasslands, that managers focus on during planning efforts. For example, the methods
outlined in this paper could be used to identify watersheds with limited stressors or minor
alterations from NRV. This information can aid managers in selecting areas that are an
appropriate fit for restoration or maintenance projects.

Completing an analysis such as ours across relatively large landscapes can also be
used to highlight significant gaps in monitoring efforts. We have found it is common for
geographic units within National Forests to lack local field data collection. Additionally,
we find it is rare that monitoring plots are repeatedly measured over time. By conduct-
ing an assessment that incorporates these field datasets, we can identify geographies or
ecosystems that require monitoring, locations where monitoring occurred in the past, but
the information is out of date, or locations that could be revisited to establish trends in
condition. It is for this reason that we specifically identify geographic units with insuffi-
cient information to evaluate a KEC. National Forest staff can then ensure these areas or
ecosystems are targeted for sampling as they develop a monitoring program through Forest
Plan Revision. This type of output is obviously not limited to National Forests but can be
generated for any landscape that has been irregularly monitored across space or time.

Finally, our approach can also be used to specifically assess wildlife habitat and
inform the creation of wildlife management strategies. When completing an assessment,
researchers or managers may consider different, more wildlife-specific KECs, or assess the
same KECs through a wildlife-focused lens. For example, the USFS Intermountain Region,
recognizing this potential, has requested additional assessments for National Forests that
have no plan revision scheduled but do require updates to wildlife management strategies.
Furthermore, we are completing assessments for National Forests in Oregon and California
that provide habitat to many threatened and endangered species. We are addressing these
needs by adjusting our KECs to ensure they address the connectivity of riparian habitats
within and across watersheds and specifically address salmonid habitat quality as a KEC.
Additionally, for these assessments of Forests in the Pacific Northwest, we are increasing
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the focus on fish and wildlife by further breaking ecosystems out from solely riparian and
GDE to more specifically focused on habitats such as fish or non-fish bearing perennial and
intermittent streams.

Overall, the above examples suggest assessments such as ours, and the methods
we use provide a useful and flexible framework for general support of natural resource
management decision making. These approaches can be expanded for use to other National
Forests and other USFS Regions, as well as landscapes managed by other state, local, or
federal agencies within the U.S or abroad.
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