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Abstract: Anaerobic digestion (AD) has been widely adapted for blackwater treatment, however,
the effect of water-conserving toilet generated blackwater on the AD process is still unknown. In this
study, the anaerobic digestion process of dry toilet generated blackwater was investigated by means
of a biomethane potential test. It was demonstrated that anaerobic digestion was inhibited and
then adapted because of a high total ammonium nitrogen (TAN) level (3673.3 mg/L). The start-up
period was 14.04 days and the biomethane potential of dry toilet blackwater was 402.36 mLCH4/gVS
(55 days, 38 ◦C). Inhabitation and adaptation could be described as the increase of free ammonia
nitrogen content and acetic acid concentration, followed by an enhancement of the relative abundance
of acetic acid-type methanogens (from 33.53–61.52%). The main pathogen in dry toilet blackwater
fermentation broth, Pseudomonas aeruginosa, kept multiplying in the first 8 days and then stabilized
at a higher level than that of the beginning. This work showed the self-adjustment process and
pathogen dynamics of dry toilet blackwater anaerobic digestion and highlights the significance of
dry toilet blackwater characteristics when designing and maintaining anaerobic digestion sanitary
treatment and reuse systems.

Keywords: blackwater; dry toilet; sanitation; sustainable treatment

1. Introduction

Ecological sanitation emphasizes closing the loop of water and nutrients during
wastewater management [1]. Source separation collection of blackwater (feces, urine and
flushing water) and greywater (other household wastewater) is necessary for resource
recovery treatment [2]. In well-designed and developed systems, blackwater can be
further separately collected and treated as urine and feces, which leads to higher recovery
efficiencies and better fertilizer products [3–7]. Blackwater contains high organic and
nutrient levels (>50% of the organic content and 80–95% of the nutrients in domestic
wastewater) [8], and the separate treatment of blackwater can maximize the possibility of
resource recovery. In places with poor sanitation arrangements and facilities, dry toilets
have been widely used, which can lead to a pollution of the soil and drinking water without
proper treatment.

Anaerobic digestion is an energy-efficient method for blackwater treatment to recover
energy and nutrients [9]. However, the stability of anaerobic digestion is susceptible
to fluctuations in substrate composition (such as total solids, chemical oxygen demand,
C/N ratio, and total organic carbon), accumulation of toxic substances, sludge aging and
other factors [10]. The organic loading rate (OLR) of organic waste anaerobic digestion
systems is normally controlled to be less than 4 g Volatile Solid/d·L [11]. Ammonia
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suppression is the most typical phenomenon in the anaerobic process because of nitrogen-
rich materials. Ionized ammonium can directly inhibit the synthesis of methane-producing
enzymes [12] and ammonia molecules can passively diffuse into cells, causing proton
imbalance and potassium deficiency [13]. The biogas production process is normally
inhibited when the total ammonia nitrogen (TAN) concentration exceeds 1500 mg/L and
becomes toxic when TAN is ≥3000 mg/L. Pretreatment is usually employed to reduce
ammonium concentration [14], or a support material is added to control ammonia inhibition
in fermentation broths [15]. The anaerobic digestion of chicken manure was performed
with high ammonia nitrogen content (TAN above 6 g/L). When average free ammonia
nitrogen (FAN) concentration increased from 0.77 g/L to 0.86 g/L, the biogas yield dropped
from 0.39 to 0.27 L/gVS [16]. BMP (biomethane potential) tests are generally considered to
be an assessing method for an anaerobic digestion substrate. The BMP procedure involves
adding small amounts of selected inoculum and substrate into serum bottles, creating
anaerobic conditions and measuring biogas production over time. A cumulative biogas
production curve is then obtained and the BMP value is typically expressed as a function of
added volatile solids (VS) (mL·CH4/g·VS) [17]. However, the results of BMP tests can be
influenced by inoculum characteristics (origin, concentration and activity), experimental
conditions (gas measurement system, operational parameters, chemical parameters and
inoculum to substrate ratio) [18], particle size and the nutrient media of the substrate [19].

To the best of our knowledge, a large amount of the domestic wastewater anaerobic
digestion studies has focused on treatment performance and removal efficiency and mainly
employed simulated blackwater or diluted blackwater from flush toilets. These types of
blackwater normally have low chemical oxygen demand (COD) and TAN concentrations.
Adhikari used a septic tank-upflow anaerobic sludge blanket (UASB) reactor to treat high
concentration domestic sewage. The COD reached 1200 mg/L and the average removal
efficiency of the COD was 88% [20]. Cunha added calcium for the recovery of phosphate
granules (CaP granules) and methane from vacuum collected blackwater (BW) using an
upflow anaerobic sludge blanket (UASB) reactor. The overall removal of COD was stable
at above 80% [21]. In another study, a sludge blanket anaerobic baffled reactor was applied
to treat blackwater. The temperature in the buffer tank ranged from 10–15 ◦C in wintertime
and from 18–21 ◦C in summertime. On average, more than 78% of the influent load of the
COD at a hydraulic retention time (HRT) of 3 days was removed [22].

When proposing and developing sustainable wastewater treatment systems, recovery
of energy and nutrients has become the direction for future research [23]. However, mini-
mal attention has been given to the effects of blackwater characteristics on methanogenic
process stability and efficiency. The blackwater generated from dry toilets poses a challenge
to decentralized treatment systems due to its high organic and ammonia load. Recently, re-
searchers have begun to focus on the effect of blackwater generated from water-conserving
toilets in anaerobic digestion. Studies of different blackwaters have suggested that differ-
ing toilet types would affect energy recovery potential due to ammonia inhibition in the
methanogenesis phase [24]. Granulated activated carbon was added into the anaerobic
digestion of blackwater to decrease the inhibition of TAN (2800 ± 200 mg/L) and adjust
the process; biochemical methane potential and COD removal increased from 34% to 53%
and 37% to 56.7%, respectively [25]. The authors investigated blackwater produced by
different types of toilets, including dry, vacuum and water saving flushing toilets, and re-
vealed remarkable differences in their properties. TAN in various blackwaters ranged
from 107–3673 mg/L, and the highest TAN in concentrated blackwater was at a toxic
level. The inhibition behavior during high concentration blackwater anaerobic processes
remains unknown.

Considering the reuse of blackwater, pathogens can be another problem. Human feces
contain a large number of pathogenic bacteria, such as Aeromonas spp., Escherichia coli, etc.
(from WHO guidelines). Aerobic composting has been proved to be useful for eliminat-
ing pathogens and parasites, and reducing phytotoxicity (cress seed germination index
≥80%) [26,27]. The biomethane potential (BMP) test of dry toilet generated blackwater
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was investigated in this study, and biogas production and methane content were measured
and calculated. Volatile fatty acid (VFA), ammonia nitrogen, total nitrogen and microbial
diversity during the start-up period were analyzed to obtain insights into the process.
The results can serve as a theoretical basis for dry toilet blackwater anaerobic digestion
process design and operation.

2. Material and Methods
2.1. Blackwater

Blackwater was sampled from one household dry toilet in a rural village of Shunyi
District, Beijing, used by 5 healthy adults for 1 weekday. A total of 5 L of blackwater were
collected in a plastic sealed sample drum, transported to the laboratory and placed in a
refrigerator at 4 ◦C for storage. For subsequent experiments, samples were stirred evenly
and passed through a sieve with a pore size of 5 mm for the removal of impurities, such as
paper, seeds and insects.

The inoculum was anaerobic granular sludge, which was obtained from an alcohol
biogas digestion plant in a UASB reactor (total solids (TS) = 101.04 g/L, volatile solids
(VS):TS = 67.42%, pH = 7.31).

The characteristics of the blackwater matrix are presented in Table 1.

Table 1. The characteristics of blackwater samples.

COD (mg/L) TAN (mg/L) TN (mg/L) TS (g/L) VS (g/L)

Dry Toilet Blackwater 21,900 3673.3 5050 47.94 35.48

2.2. Biomethane Potential Test Set-Up

In the BMP tests, the inoculating container was a 500 mL jar and the biogas was
collected using a double valve air bag. The fermentation jars were immersed in a water
bath, the temperature was controlled at 38 ◦C ± 1 ◦C, the total substrate volume was
300 mL and the inoculum to substrate ratio was 1:1. All the BMP tests were conducted
in triplicate.

The schematic of the BMP test device is shown in Figure 1. The inoculum-to-substrate
ratio was selected based on preliminary tests where 3 different ratios (1:1, 2:1 and 4:1)
were used. The biomethane potential of dry toilet wastewater with I/S ratio = 1:1 showed
great advantages compared with other groups. The sludge was inoculated and the BMP
experimental device was sealed. The biogas produced was collected using a gas bag and
gas production was measured every 2–4 days. A fermentation broth sample was obtained
once a day during the start-up period. Then, 5 mL of the fermentation broth was obtained
from the sampling hose with a syringe, placed in a sealed cryotube and stored at 4 ◦C.
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The fermentation broth samples were taken every day in the first 14 days for further
chemical and microbial parameter tests to explore the concentrated blackwater start-up period.
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2.3. Physical and Chemical Analyses

COD, NH3-N, TN and TP were measured through the reactor digestion method
(HACH method 8000). A HACH DR 2000 colorimeter and HACH DRVT00 reactor were
used. pH was measured with a HACH 2100q portable water analyzer. Free ammonia
concentrations were calculated from the total ammonia nitrogen (TAN) concentration,
pH and temperature were calculated using Equation (1) [28]:

FAN = TAN ×
[

1 +
10−pH

10−(0.09018+ 2729.92
T(K) )

]−1

(1)

TS and total volatile solids (TVS) were determined by the EPA method [29]. The biogas
produced in the blackwater BMP test was analyzed using a portable gas analyzer (Geotech-
Biogas check). The concentration of short-chain volatile fatty acids was determined by gas
chromatography, and sample processing and chromatographic conditions were performed
in accordance with the methods of Liu [30].

2.4. Microbial Diversity Analysis

Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China) was commissioned to
conduct microbial diversity tests. The primers used were 338F-806R and mLfF-MLrR.
PCR reactions were conducted using the following program: 3 min of denaturation at
95 ◦C, 27 cycles for 30 s at 95 ◦C, annealing for 30 s at 55 ◦C, elongation for 45 s at 72 ◦C,
and a final extension for 10 min at 72 ◦C. The purified amplicons were pooled in equimolar
and paired-end sequenced on an Illumina MiSeq platform (Illumina, San Diego, CA, USA)
in accordance with the standard protocols by Majorbio Bio-Pharm Technology Co. Ltd.
(Shanghai, China).

2.5. Data Analysis

The versatile model of methane cumulative yield over time in anaerobic digestion was
a modified Gompertz Equation [31]. The Cone Equation is commonly used for methano-
genesis [32,33]. The modified Gompertz Equation and the Cone Equation were used in the
analysis of the kinetics of anaerobic digestion methanogenesis.

(1) Modified Gompertz Equation

Y(t) = Ym × exp
{
−exp

[
Rm·e
Ym

(λ − t) + 1
]}

(2)

Y(t)—methane production rate at time, mL·CH4/g·VS; Ym—theoretical maximum
methanogenic rate, mL·CH4/g·VS; Rm—maximum daily methane production rate,
mL·CH4/g·VS·d; e—constant, 2.71828; λ—lag-phase duration, d; t—time, d.

(2) Cone Equation

Y(t) =
Ym

1 + (k × t)−n (3)

Y(t)—methane production rate at time—mL·CH4/g·VS; Ym—theoretical maximum meth-
anogenic rate, mL·CH4/g·VS; k-rate constant, d−1; t—time, d; n—shape factor, dimensionless.

The kinetic model fitting analysis and calculation of the cumulative production of
methane over time were performed using ORIGIN software. Data from microbial diversity
tests were analyzed using the Majorbio Cloud Platform.

3. Results and Discussion
3.1. BMP Test Results

Methane production in the blackwater BMP tests is shown in Figure 2. The methane
production of the dry toilet blackwater was slow in the first 25 days. Cumulative methane
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production was only 30.90 mL·CH4/g·VS on the 25th day. However, after this period,
the methane production showed a dramatic increase from 68.90 mL·CH4/g·VS on the
28th day to 402.36 mL·CH4/g·VS on the 55th day. The proportion of methane in the
biogas gradually grew and reached a peak of 79.75% on the 33rd day and then eventually
stabilized at around 77%. The results show that there was a start-up period in dry toilet
blackwater anaerobic digestion.

1 
 

 
Figure 2. Cumulative biogas and methane production for BMP tests of dry toilet blackwater.

The average methane production potential of dry toilet generated blackwater was
402.36 mL·CH4/g·VS. The biochemical oxygen demand (BOD) over chemical oxygen
demand (COD) ratio of blackwater was reported to be 48–71% in the studies treating
relatively low-strength blackwater [34]. Vacuum toilet blackwater with a biodegradability
of 46–60% was also reported in the literature, [35] and showed that blackwater was a
suitable substrate for anaerobic digestion. Compared with similar biomasses, the dry
toilet blackwater showed excellent performance on biodegradability and biomethane
potential. When it comes to excreta produced by other mammals, the biomethane potential
of blackwater is higher than that of chicken manure, sheep manure, cow dung and pig
manure under similar operating conditions, indicating that the content of long-chain
organic molecules such as cellulose in human feces is relatively low (Table 2). The total
ammonia in dry toilet blackwater is less than that of chicken manure (8000–12,000 mg/L),
so the inhibition was not as strong as in the chicken manure anaerobic fermentation
process. Moreover, the maximum methane content in biogas produced by dry toilet
blackwater anaerobic fermentation was higher than that of similar biomass, indicating
that the anaerobic fermentation process has a higher degradation efficiency of organic
matter in blackwater. Therefore, although the concentrated blackwater did not inhibit the
methanogenesis potential during anaerobic digestion, it did need a long time to start up.
Because this will lead to an increase in residence time and reactor volume when applied
in plants, improvement measures for the dry toilet blackwater AD process still need to
be considered.
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Table 2. Biomethane production potential of different biomass.

Fermentation
Substrate Operating Condition

Methanogenic
Potential

(mL·CH4/g·VS)

Maximum Methane
Concentration (%)

Maximum Methane
Production Rate

(mL·CH4/g·VS·d)

pig manure [36] 35 ◦C 65 d 161 68 22
dairy manure [37] 35 ◦C, 30 d 302 64 22

food waste [37] 35 ◦C, 30 d 353 54 57
chicken manure [38] 35 ◦C, 40 d 231 60 25

pig manure [37] 55 ◦C, 40 d 337 65 72
municipal sewage

sludge [39] 35 ◦C, 30 d 384 68 59

sheep manure [40] 35 ◦C, 60 d 273 62 −
duck manure [33] 35 ◦C, 60 d 441 65 −

rabbit manure e [33] 35 ◦C, 60 d 210 − −
paper sludge [41] 30 ◦C, 30 d 269 − 39

dry toilet blackwater 38 ◦C, 50 d 416 78 24

The fitting results of the modified Gompertz Equation and the Cone Equation are
presented in Figure 3 and Table 3. The theoretical biomethane potentials of blackwater
from dry toilets was 464.46 mL·CH4/g·VS according to the modified Gompertz Equation.
The result fitted by Cone Equation was 459.14 CH4/gVS. Neither equation could perfectly
match the actual biomethane potential of the dry toilet blackwater and had differences of
10.37% and 11.64%, respectively, with the fitting results.
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Table 3. Kinetic analysis of two models of blackwater anaerobic digestion.

Substrate Ym
mL·CH4/g·VS

Rm
mL·CH4/g·VS·d

λ
d R2

Modified Gompertz Equation Dry Toilet 464.46 16.46 24.04 0.9960

Substrate Ym
mL·CH4/g·VS

k
d−1 n R2

Cone Equation Dry Toilet 459.14 0.0262 5.36 0.9956

Figure 3 shows the maximum methane production rates of the dry toilet blackwater
anaerobic digestion process were 16.46 mL·CH4/g·VS·d (the modified Gompertz Equation)
and 16.69 mL·CH4/g·VS·d (the Cone Equation). Both occurred on the 35th day. The lag
period λ (the duration of the start-up period) for dry toilet blackwater by the modified
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Gompertz Equation was 24.04 days. In the Cone Equation, the magnitude of the k value
can reflect the speed of the hydrolysis step. A high k value generally indicates that the
substrate is easy to hydrolyze. It was seen that untreated dry toilet blackwater had a k of
0.0262 per day. Therefore, large particles of organic matter could be difficult to hydrolyze
rapidly in concentrated blackwater. El-Mashad [32] used the Cone Equation to fit the
methanogenic conditions of spirulina, switchgrass and a mixture of the two, and the k
values obtained were between 0.09–0.10 per day. Li et al. [42] simulated the methanogenesis
of corn stover during medium-temperature dry fermentation with the Cone Equation and
obtained that untreated corn stover has a k value of 0.03 per day. The k value of the corn
stover pretreated with NaOH was 0.28/d. Zhang et al. obtained the k values of pig, cow,
chicken and rabbit manure at medium-temperature anaerobic digestion, which ranged
from 0.03–0.18 per day. The k value gradually decreased as the organic load increased [43].
In this study, the k values of the dry toilet blackwater were lower than those in other
research whereas the organic loads were at the same level. Thus, the hydrolysis speed of
anaerobic digestion was affected when dry toilet blackwater was used as a substrate.

3.2. Ammonia Inhibition Results
3.2.1. TAN, TN, FAN, VFAs Variation

TAN, total nitrogen and free ammonia variations during the dry toilet blackwater
anaerobic digestion start-up period are presented in Figure 4. On the 5th day, TAN dropped
significantly from an initial 3673 mg/L to 2240 mg/L, a decrease of 35.33%. At the same
time, total nitrogen (TN) also decreased 26.09%. Nevertheless, the concentration of free
ammonia in the first five days was nearly unchanged, indicating that the reduced part
of TAN was ammonia. Thereafter, the concentration of TAN gradually increased from
the 6th day and the concentration of free ammonia in the dry toilet blackwater increased
from an initial 82.3 mg/L to 189.4 mg/L on day 14. On the basis of the above-mentioned
phenomenon, the passive diffusion of hydrophobic ammonia molecules into cells might
lead to a decline in ammonia nitrogen and total nitrogen during dry toilet blackwater
anaerobic digestion. Therefore, proton imbalance and potassium ion loss would occur,
finally resulting in ammonia inhibition [28].
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blackwater anaerobic digestion.

VFA content in the start-up period is shown in Figure 5. The concentration of various
VFAs in the dry toilet blackwater increased slowly in the early stage, then the peak of
total VFA reached 454.2 mmol on the 7th day. The concentration of acetic acid accounted
for 54.3% of the VFAs. The concentration of various acids began to decrease on the
8th day. In the beginning, the substrate hydrolyzed rapidly because there was sufficient
organic matter. Meanwhile, the acetic acid-type methanogen was susceptible to ammonia
inhibition [44] and organic acids (especially acetic acid) gradually accumulated, thereby



Sustainability 2021, 13, 4090 8 of 13

further suppressing the methanogenesis step. The highest concentration of VFA was
454.2 mmol. Abbassi-Guendouz et al. also found a similar phenomenon in their study on
chicken manure anaerobic digestion. The VFA of the fermentation broth accumulated to
29–36 g/L in the case of the high solid content of anaerobic digestion [45].
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3.2.2. Microbial Diversity Change

The relative abundance of the sample methanogens was analyzed (Figure 6). The most re-
cent studies of blackwater anaerobic digestion have suggested that the predominant methano-
gens in the anaerobic digestion of blackwater without flushing water are Methanosarcina
(74.9%) and Methanoculleus (24.3%) [46]. The results of the present study showed that
Methanosaeta of the acetic acid-type methanogens was relatively high (30.48–63.83%) in the
three scenarios. It could produce methane via the acetoclastic and the hydrogenotrophic
methanogenesis pathways and was sensitive to specific inhibitors via acetoclastic methano-
genesis. Methanosaeta was the dominant bacteria in each sample. The relative abundance
of Methanosaeta could reach 60.22–63.83% in the initial phase of the start-up period and
decreased with time in this study. This finding is consistent with the change of VFA in
anaerobic digestion. During the first 8 days, the abundance of Methanosaeta increased
due to the accumulation of acetic acid during the start-up period. After a large amount
of Methanosaeta converted acetic acid to methane, the acetic acid concentration gradually
decreased and the relative abundance of Methanosaeta returned to 30.48–37.45%, which was
similar to the initial relative abundance of 33.53%.

Above all, the pathway for concentrated blackwater anaerobic digestion ammonia
inhibition process can be summarized in Figure 7. The hydrophobic ammonia molecules
derived from protein and urea can enter the cell by passive diffusion and become ammo-
nium ions. Conversely, a proton imbalance might occur, thereby inhibiting the synthesis
of methane-production enzymes and the activity of Methanosaeta (the acetic acid-type
methanogens). However, concentrated blackwater contained plenty of organic matter.
Consequently, the substrate of the hydrolysis step was sufficient, VFAs were continuously
formed and this led to the accumulation of VFAs (especially acetic acid) in the early stage
of fermentation. Therefore, the methanogenesis step was inhibited, while pH decreased
and H2 partial pressure increased. After the proliferation of Methanosaeta, the anaerobic
flora gradually adapted to the dry toilet blackwater, and the ammonia nitrogen in the cells
was gradually released. The consumption of organic matter led to the deceleration of the
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hydrolysis step. Meanwhile, methanogenesis increased, thereby relieving the inhibition
caused by the accumulation of VFAs. After the above process, the start-up period of the
dry toilet blackwater anaerobic digestion ended.
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3.3. Elimination of Pathogens during AD Process

Blackwater usually contains high concentrations of microbial contamination, includ-
ing fecal bacteria (e.g., E. coli, enterococci), enteric pathogens (e.g., Salmonella typhimurium,
Cryptosporidium spp., Giardia spp.) and opportunistic pathogens (e.g., Pseudomonas aerugi-
nosa) [47–49]. Enteric infections can be transmitted by those pathogens, leading to diseases
such as enteritis, typhoid/paratyphoid fever, salmonellosis and cholera. Exposure to such
pathogens during blackwater reuse, for example, when irrigating plants with a fermen-
tation broth, may contribute to disease transmission [26]. Chlorine disinfection and UV
irradiation has been widely applied for reducing pathogens. The anaerobic digestion
process has also proven to be effective for abating the concentration of pathogenic bacteria,
having the capability to reduce pathogenic bacteria in blackwater from an initial 1024 CFU
per 100 mL to 103 CFU per 100 mL after anaerobic and chemical treatments [25].

To further explore the impacts of the anaerobic digestion process in terms of sanitation,
a microbial analysis for pathogens was performed (Table 4). The PCR results of total
bacterial DNA concentration showed a significant increase from 28,398 copies/20 µL on the
1st day to 73,613 copies/20 µL. Proportionally, the top four pathogenic bacteria in dry toilet
blackwater were Pseudomonas, Bacteroides, Tissierella and Anaerosalibacter. Among them,
Pseudomonas aeruginosa was the main pathogen in dry toilet blackwater, accounting for
9.64–72.91% of total pathogens. The concentrations of Pseudomonas on the 1st, 8th and
14th days were 2738, 17,968, 16,180 copies/20 µL, respectively. Therefore, untreated dry
toilet blackwater has a high risk of infection, including malignant external otitis, endoph-
thalmitis, endocarditis, meningitis, pneumonia and septicemia [50]. The proportion and
concentration of pathogenic bacteria kept growing during the start-up period of anaerobic
digestion and then the content of pathogens decreased due to anaerobic acidogenic bacterial
propagation, while the concentration of pathogens gradually stabilized. The pathogenic
bacterial result changes indicated that in the early period of anaerobic digestion Pseu-
domonas-based pathogens would continue to multiply and pose a safety challenge for the
reuse of digested blackwater. Therefore, subsequent disinfection of the fermentation broth
may be still required for dry toilet blackwater treatment. Composting could be an effective
disinfection method that may be feasible in remote locations. The survival fraction of
Pseudomonas aeruginosa, the main pathogen in dry toilet blackwater, was less than 10−6

after a 30 min heat-treatment at 50 ◦C [51].

Table 4. Relative abundance and concentration of Pseudomonas.

Time (Day) 1st 8th 14th

Relative abundance 5.47 72.02 13.88
Concentration (copies/20 µL) 2738 17,968 16,180

4. Conclusions

It was revealed that dry toilet generated blackwater was more biodegradable than
similar biomass and had a biomethane potential of 402.36 mLCH4/gVS and a methane
content of 78%. High initial TAN (3464.33 mg/L) in dry toilet blackwater fermentation
broth needed a lag period (7–8 days) for start-up, and the abundance of Methanosaeta
increased with free ammonia release and VFA accumulation for adaptation. Nevertheless,
the concentration of Pseudomonas kept growing in the lag period, then gradually stabilized,
while the proportion of pathogenic bacteria showed a trend of significantly falling after
rising. The existence of a lag period will lead to an increase in reactor volume and construc-
tion costs. According to the above self-adjusting mechanism of microorganisms, adding
acetic acid-type methanogens or reducing the ammonia content in the dry toilet blackwater
through a pretreatment process will contribute to solve this problem. Meanwhile, this work
has proved that ammonia inhibition during the dry toilet blackwater AD process will not
affect the efficiency of methane production, which allows household anaerobic treatment
systems to be applied in remote and decentralized areas. When considering anaerobic
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digestion for dry toilet generated blackwater, wastewater properties, such as ammonia
concentration, that may affect the stability of treatment systems should be carefully con-
sidered and a further disinfection process after anaerobic digestion is indispensable for
blackwater reuse.
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