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Abstract: Snow cover is an important water resource in arid and semi-arid regions of Central Asia,
and is related to agricultural and livestock production, ecosystems, and socio-economic develop-
ment. The snowline altitude (SLA) is a significant indicator for monitoring the changes in snow
cover in mountainous regions under the changing climate. Here, we investigate the spatiotemporal
variation of SLA in the Tienshan Mountains (TS) during 2001-2019 using Moderate Resolution Im-
aging Spectroradiometer (MODIS) snow cover products on a grid-by-grid basis. The potential in-
fluence of topographic factors (slope gradient and aspect) on SLA and the correlation between SLA,
temperature, precipitation, and solar radiation are also investigated. The results are as follows: (1)
The annual cycle of SLA shows strong seasonal fluctuations (from about 2000 m in late December
to 4100 m in early August). The SLA over the TS exhibits a large spatiotemporal heterogeneity. (2)
SLA increases with a steeper slope gradient. The SLA of the northerly aspect is generally less than
the southerly. (3) The SLA over the TS generally shows an increasing trend in the recent years (2001—
2019). The change trend of SLA varies in different months. Except for a slight decrease in June, the
SLA increased in almost all months, especially at the start of the melt season (March and April) and
the end of melting season (July and August). (4) The SLA increases with increased temperature/ra-
diation in the TS, and decreases with increased precipitation. Solar radiation is the dominant cli-
matic factor affecting the changes of SLA in the TS. Compared with precipitation, temperature is
more correlated to SLA dynamics.
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1. Introduction

Snow cover is an important component of the cryosphere, as well as an indispensable
variable in the study of earth system science and climate change. Snow is highly dynamic
and has a great influence on land surface energy budgets and atmospheric circulation
patterns due to high albedo and good thermal insulation [1-5]. Under the background of
global warming, changes in snow cover will lead to ecological and environmental prob-
lems such as a reduction of water availability, extreme weather events, and frequent dis-
asters, profoundly affecting the ecosystem and sustainable socio-economic development
of the countries and regions concerned [6,7], which has received widespread attention
from these countries. The snowline is identified as the boundary separating snow-covered
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areas from snow-free areas [8-10]. Due to the patchiness of the snow cover edge, it is also
defined as a narrow belt that represents a zone of ~50% snow coverage [9,11,12]. As an
important indicator of climate change, snowline can reflect the increase and reduction of
snow, and it can also comprehensively reflect the basic state of the climate and environ-
ment of mountains, plateaus, and polar regions that lack meteorological stations [13].

The snowline altitude (SLA) is a valuable metric that integrates the competing effects
of snow accumulation and melt, and it can be used to assess future changes in snow cover
[1,14]. Regional SLA and its inter- and intra-annual variability are key characteristics that
indicate temporal variation in snow cover and duration of snow melt, and help in as-
sessing the hydrologic cycle balance [15]. For the estimation of snow-covered area and its
temporal evolution, SLA can be used as an input for hydrological modeling or validation
of snow model simulations [16,17]. Besides, SLA estimates can be applied to remove
clouds from satellite snow cover products [18,19]. The SLA at the end of the melting sea-
son can also serve as a good proxy for the equilibrium line altitude (ELA) on glaciers,
where much of the remaining end of summer snow cover is located, and therefore for
glacier mass balance [20-25].

Central Asia is the core area of the Silk Road economic belt. As the places most dis-
tanced from the oceans in the Eurasian continent, the Tienshan Mountains (TS) are called
the water tower of Central Asia. They consist of a series of high mountains, basins, and
valleys, boasting one of the most developed glacier mountains in the world [26,27]. Major
rivers recharged by glacier/snow melt water originating from the TS (e.g., the Ili River,
Syr Darya River, Amu Darya River, Tarim River, and Chu River) feed the lowland areas
of Kazakhstan, Kyrgyzstan, Uzbekistan, and China’s north-western Xinjiang Uyghur Au-
tonomous Region, which together form one of the largest irrigated areas in the world
[26,28,29]. Spatiotemporal variations of the snow cover in the TS exert a significant impact
on the changes of water source for its surrounding arid regions and the hydrological and
biological processes [30-32]. Therefore, the detection and exhaustive analysis of spatio-
temporal variation of the SLA over the entire TS are quite essential for the protection and
utilization of local water resources.

Satellite remote sensing offers the opportunity to monitor seasonal snow dynamics
in the inaccessible areas with rugged terrain and hostile climate. With the advantages of
high spectral resolution, high temporal resolution, wide spatial coverage, and being freely
available, the remote sensing snow cover products generated from the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) provide an excellent opportunity to study the
snow cover for global or large-scale areas. Hence, it is also suitable to assess snowline
changes in a continuous time series and space for quite a large-scale area, based on the
MODIS snow cover products. The MODIS snow cover products [33] have been widely
used to depict the spatiotemporal patterns of the seasonal or transient SLA in mountain-
ous areas [15,19,34-36]. Besides, some evaluation studies have suggested a high accuracy
of MODIS snow cover products under clear skies when compared with in situ observa-
tions and other higher resolution satellite data at both regional and global scales [37-39].

Seasonal snow cover in high latitude and altitude regions in the northern and south-
ern hemispheres is very sensitive to climate change [40,41]. Previous studies indicated that
nearly all regions have experienced a warming trend, and that the average global temper-
ature has increased 0.85 °C (from 0.65 to 1.06 °C) over the period from 1880 to 2012 [42].
As one of the most sensitive and prominent areas responding to global climate changes,
the TS have especially experienced this obvious warming trend over the past few decades
[43,44]. The temperature experienced a sharp increase in 1997, and since then has been in
a state of high variability [45]. Dramatic changes in temperatures have a strong impact on
mountainous hydrological processes and water resources, and increase the runoff in the
TS due to the accelerated glacier/snowmelt [46,47]. Therefore, under the background of
such climate change, examining the correlation between SLA and the meteorological fac-
tors can help to understand the dynamic behavior of snow cover.
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This study systematically investigated the SLA dynamics by taking advantage of
long-term, continuous observations from MODIS snow cover products over the TS. The
objectives of this study are to (1) determine the SLA and generate the daily SLA dataset
over the TS from 2001-2019; (2) analyze the spatiotemporal variations of SLA; (3) investi-
gate the potential influence of topographic factors (slope gradient and aspect) on SLA, and
the correlation between SLA and meteorological factors (precipitation, temperature, and
solar radiation).

2. Data and Methodology
2.1. Study Area

As the largest mountain system in Central Asia, the TS stretches approximately 2500
km long and 250-350 km wide within 38°-47° N and 67°-95° E, spanning regions from
Uzbekistan to Kyrgyzstan, and from southeastern Kazakhstan to Xinjiang of China (Fig-
ure 1) [48]. The TS is bordered by the Junggar Basin to the north and the Tarim Basin to
the south. The major peaks in the TS stand from about 4000 to 6000 m above sea level —
with the highest peak, Thomuer, at 7439 m, and the second highest peak, Khan Tengri, at
6995 m—and make up an important water tower in this in semiarid region [49]. The TS
has abundant precipitation due to westerly circulation and unique topography, exhibiting
heavily glaciated and snow-covered regions; annual precipitation in areas with altitude
greater than 2000 m mostly exceeds 500 mm and can even reach more than 2000 mm; there
are 15,953 glaciers with a total area of 15,416 km? [26,50,51]. Based on individual mountain
ranges, drainage, and climate features, the TS are geographically divided into four regions
[1,26,28,52]: the Western Tienshan Mountains (WTS), the Northern Tienshan Mountains
(NTS), the Central Tienshan Mountains (CTS), and the Eastern Tienshan Mountains (ETS)
(Figure 1). The climate characteristics and cryosphere change show obvious differences in
these four subregions [26,48,49,52]. The total area of the study area is 135.5 x 10* km?; and
the areas of these subregions account for 13.9% (CTS), 34.7% (WTS), 20.3% (NTS), and
31.1% (ETS), respectively (Figure 1).
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Figure 1. Location and the extent of the TS, and boundaries of the four subregions.

2.2. Data
2.2.1. MODIS Fractional Snow Cover (FSC) Data

In this study, the MOD10A1 data for 2001-2019 distributed by the National Snow
and Ice Data Center (NSIDC) [53] are utilized. There are MOD10A1 data of two versions
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(Collection 5 and Collection 6) through the NSIDC platform. The MOD10A1 C5 for 2001-
2016 and MOD10A1 C6 for 2017-2019 are used in our work. MOD10A1 C5 provides both
binary snow cover (the pixels are either snow or no-snow) and fractional snow cover (FSC)
[33]. The MODIS FSC mapping algorithm, developed by Salomonson and Appel [54], is
based on a statistical-linear relationship developed between the normalized-difference
snow index (NDSI) from MODIS and the true subpixel fraction of snow cover as deter-
mined using Landsat scenes. Evaluation studies have demonstrated that MODIS FSC data
are highly accurate (mean absolute error less than 0.1) [38,39,54,55].

FSC data are no longer provided in the MOD10A1 C6, therefore, for example, the
NDSI_Snow_Cover data is used instead. In order to keep the data consistent in this study,
the FSC data was obtained based the C6 NDSI_Snow_Cover product using the linear re-
gression method [56,57]. The FSC calculation formula for MOD10A1 C6 is as follows:

FSC,,,, = (~0.01+ (1.45x NDSI))x100 1)

The original MOD10A1 FSC data has a sinusoidal projection, which is mosaiced and
resampled from the original 463.3 m pixel size to 500 m, and converted to a WGS584-UTM
geographical projection using the MODIS reprojection tool (MRT). The final mosaiced im-
ages are converted to GeoTIFF file format.

2.2.2. Meteorological Data

The ERA reanalysis, from the European Center for Medium-Range Weather Fore-
casts (ECMWEF), is produced with a sequential data assimilation scheme, advancing for-
ward in time by using 12-hourly analysis cycles [58,59]. The meteorological data in the TS
from 2001 to 2019 are derived from the most recently released fifth generation of ECMWEF
reanalysis, ERA5. ERA5 reanalysis extends back to 1979 and provides hourly data at a
high resolution (0.25 degree ~ 31 km). To facilitate many climate applications, the
monthly-mean averages have been calculated as well in the datasets of “ERA5 monthly
averaged data on single levels from 1979 to present” [60]. This dataset has been regridded
to a regular lat-lon grid of 0.25 degrees for the reanalysis. To survey the linkages between
SLA changes and climate variations, the monthly temperature, precipitation, and surface
net solar radiation data in the TS from 2001 to 2019 are extracted from this dataset.

2.2.3. Other Data

The Shuttle Radar Topography Mission (SRTM) is a set of freely available global dig-
ital elevation data covering over 80% of the globe. In this study, the data are available at
1 arc-second (~30 m) resolution, with vertical accuracy reported as less than 16 m from
the U.S. The grid size of the DEM is resampled to 500 m in order to remain consistent with
the MODIS snowline pixels, and 500 m DEM is used to derive the SLA and calculate the
slope gradient and aspect within the study area.

In order to facilitate the analysis of SLA dynamics and the extraction of ERA5 mete-
orological grid data (about 31 km spatial resolution), the entire study area is divided into
1715 grids (i.e., the numbers of grids for the NTS, CTS, ETS, and WTS are 350, 240, 526,
and 599, respectively) with a cell size of 30 km. Eighty-two Landsat Operational Land
Imager (OLI) images (Table 1) covering the four grids for validation are used as reference
data for the SLA evaluation. The selection of these Landsat images primarily depends on
cloud cover.
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Table 1. Information about Landsat Operational Land Imager (OLI) images used in validation of SLA —snowline altitude.

Year Grid 1 Grid 2 Grid 3 Grid 4
ea Path 149, Row 31 Path 143, Row 31 Path 151, Row 31 Path 147, Row 30
6 A t, 7 September, 23 Sep- 27 July, 12 As t, 28 A t,
2013 HgUSt 7 oepiember, ep- 27 July ugus ugus 19 July 9 September, 25 September
tember Sep 29

2014 10 September, 26 September 14 July, 15 August, 31 August 6 July, 6 July, 7 August, 23 Au- 10 July, 26 July, 11 August, 12

gust September
11 July, 12 August, 29 Septem- 17 July, 18 August, 3 Septem- 9 July, 11 September, 27 Sep-
2015 13 July
ber ber, 19 September tember
4 A 21 11 July, 27 July, 28 A 2
2016 14 August, 15 September ugust, 5 September, July, 27 July, 28 August, 29 1 September, 17 September
September September
30 July, 31 August, 16 Septem- 2 July, 19 August, 4 Septem-
2017 2 September, 18 September 6 July, 22 July, 7 August ber ber, 20 September
10 August, 26 August, 27 Sep- 1 July, 3 September, 19 Sep-
201 19 July, 4 A 20 A 21 July, 6 A
018 9 July, 4 August, 20 August tember tember July, 6 August
2019 7 August, 23 August, 8 Septem- 12 July, 28 July, 13 August, 29 4 July, 5 August, 21 August, 22 24 July, 25 August
ber, 24 September August September
Total 19 24 22 17

2.3. Methodology

Taking the 130th day of 2016 as an example, the process of SLA determination from
MODIS FSC products is presented in Figure 2, including the cloud removal from MODIS
FSC data, extracting the largest lake mask, and determination of snowline and SLA.
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Figure 2. Process of SLA determination, including figures of (a) a subset of MODIS FSC image (130th day of 2016), (b) the
cloud-removed MODIS FSC and the largest lake area mask image, (c) the binary snow image, and (d) final snowline image
with the SLA values.

2.3.1. Cloud Removal from MODIS FSC Data

The extensive cloud cover over snow-covered region is a critical issue that greatly
limits the applications of the MODIS snow cover product to monitor the snow cover and
snowline [33,38]. A validation study of MODIS snow cover images over the Tibetan Plat-
eau found that about 47.3% of the areas were cloud covered [39]. Previous studies suggest
that the FSC maps more accurately represent the gradual changes of snow cover in each
pixel than the binary snow cover maps [33,54], thus the use of the FSC data could be better
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for the removal of the cloud cover by temporal filtering [39]. Following the cloud removal
method for MODIS FSC products developed by Tang et al. [39], the daily cloud-removed
FSC data in the study area are produced from 2001 to 2019. The cloud removal algorithm
is based on the cubic spline interpolation algorithm (temporal filtering). Details on the
cubic spline interpolation cloud removal method and the relevant accuracy evaluation
strategies can be found in the works of Tang et al. [39], and the method is also similar in
principle to that proposed by Dozier et al. [61]. From the applications of the cloud removal
method in the Tibetan Plateau and the TS [30,39,62,63], the cloud removal method is effi-
cient in retrieving the FSC information of the cloud-covered pixels in these areas, with the
overall mean absolute error less than 0.1. There is a high consistency between MODIS-
derived snow-covered days (SCD) and the in-situ observed SCD, with a mean consistency
over 85%, and a mean absolute error of less than 4.2 days [30,39]. The higher consistency
between MODIS-derived SCD and in situ SCD indicates that the cloud-removed MODIS
FSC data have a high accuracy to monitor the snowline in the TS.

2.3.2. Extracting the Largest Lake Area Mask

There are around 1667 lakes in the TS, with total area 96.5 + 14.2 km? of the TS. The
number of lakes along with the total lake area have been in a state of continuous increase
in the past few decades [52]. In general, the inland water bodies have been automatically
identified (the code is 237) in MODIS snow products. However, due to the existence of
lakes, it is easy to misclassify snow in the cold season. Seasonally frozen lakes (lake ice)
are often erroneously identified as snow-covered areas due to the similar spectral charac-
teristics of snow and ice. In such cases, the low-elevation lake boundaries are extracted as
snowline, which causes incorrect results.

To solve this problem, the largest lake area mask (Figure 2b) is produced from a com-
posite of 19 years (2001-2019) of MOD10A1 FSC data (Figure 2a) to eliminate the influence
of lake ice. The inland water that is identified in each pixel in the 19 years of MOD10A1
FSC data for more than one day is taken as the lake pixel. Simultaneously, some snowline
pixels located in the largest lake area mask were eliminated in the process of snowline
extracting. Figure 3 presents the spatial distribution of the largest extracted lake area
mask. Meanwhile the mean SCD is used as the base map, which is derived from the cloud-
removed daily MODIS FSC datasets during 2001-2019.
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Figure 3. Distribution of mean MODIS-derived SCD, and the largest lake area over the TS.

2.3.3. Determination of Snowline and SLA

The determination of snow cover through the availability of the cloud-removed
MODIS FSC data is an important step. The snowline is theoretically equivalent to the
snow cover outline, which is at the edge of the snow-covered areas. A binary map of snow
is tuned to classify a pixel as snow if its coverage is greater than 50% (i.e., FSC = 50%) and
snow-free otherwise (Figure 2c). Thus, the pixels at the edge of the snow-covered areas
(snowline pixels) are extracted; for each snow-covered pixel, if there is one or more of its
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surrounding pixels that are no-snow and the pixel is not located in the largest lake area
mask, we marked it as a snowline pixel (Figure 2d).

Once the snowline pixels have been marked, the SLA (Figure 2d) can be determined
by overlaying the snowline image on the 500 m DEM. Then the determination of SLA for
every 30 km grid was carried out by means of the SLA of 500 m snowline pixels.

2.3.4. SLA Dynamics Analysis

In this study, the application of the Mann-Kendall (M-K) test is to assess the tem-
poral significance of trends in meteorological factors and SLA from 2001 to 2019 on a grid-
by-grid basis. The M—K test is a nonparametric method of monotonic trends that has suc-
cessfully been applied to detect trends in a time series [64-67]. The statistical significance
of temporal trends is assumed by Z value, and the significance of the trends is evaluated
with a confidence level of p < 0.05 [68]. Sen’s slope is used to estimate the magnitude of
trends in meteorological factors and SLA from 2001 to 2019 in this study. The advantage
of Sen’s slope is to deal with data of non-normal distribution, and it is used instead of a
linear regression because it limits the influence that the outliers have on the slope [69,70].
In addition, correlation analysis was performed to analyze the relationship between SLA,
temperature, precipitation, and solar radiation on a grid-by-grid basis.

3. Results
3.1. Comparison of SLA Derived from MODIS FSC and Landsat OLI Images

To evaluate the method, we compared the SLA of four grids extracted from Landsat
images (Table 1) with the extraction results from MODIS. The process of SLA determina-
tion for a grid from Landsat images can be sketched as follows. First, Landsat images are
classified as snow or non-snow using the SNOWMAP approach [71]. Then, the bounda-
ries (snowline pixels) between snow cover and land are extracted. Lastly, the SLA of the
grid is determined as the average elevation of the multiple snowline pixels by combina-
tion with the 30 m SRTM DEM. The mean absolute error and root mean square error are
employed to evaluate the reliability of the MODIS-derived SLA (Table 2). In the four val-
idation grids, the mean absolute error of MODIS-derived SLA compared with the Land-
sat-derived values is between 7.8 and 14.6 m, and the root mean square error is between
9.7 and 16.7 m. We believe that the MODIS-derived SLA with such accuracy in the 30 km
grids can be applied to investigating the spatiotemporal patterns of SLA in the TS.

Table 2. Comparison of SLA extracted from Landsat OLI images and MODIS.

Grids Mean Absolute Error (m) Root Mean Square Error (m)
1 14.6 16.7
2 10.2 11.5
3 7.8 9.7
4 9.5 10.7

3.2. Spatiotemporal Patterns of SLA

Figure 4 presents the spatial pattern of multiyear (2001-2019) mean SLA for different
months over the TS. The spatial distribution of the SLA over the entire TS exhibits a large
spatial heterogeneity and corresponds well with the distribution of snow duration (SCD
in Figure 3). Apparently, in the peripheral mountainous area, SLA is relatively low. By
contrast, SLA is high in the vast interior area (especially in the CTS). Furthermore, Figures
5 and 6 show the time series of SLA for the four subregions from 2001 to 2019, and the
annual cycles of SLA over the entire TS and the four subregions, respectively. Strong sea-
sonal variations in SLA are found over the whole area of the TS (Figures 4-6). The seasonal
variations range of SLA is from about 2000 to 4100 m. The SLA from the end of November
to early March of the following year is lower than 2400 m, with relatively large standard
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deviations reflecting the high interannual variability, whereas in the June-September pe-
riod, the average SLA is greater than 3900 m and with a relatively small interannual vari-
ability (Figure 6b). Apparently, the SLA over the TS progressively increases, beginning in
March due to the snowpack ablation, and reaches the highest in August. A steady de-
crease of SLA begins in September along with the accumulation of snow, and reaches rel-
atively low (average SLA of 2209 m) in winter (Figure 6b).
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Figure 4. Spatial pattern of multiyear (2001-2019) monthly mean SLA over the TS.

However, for different subregions, the differences in the seasonal fluctuations of SLA
exhibit distinct climatological characteristics (Figure 6a). The NTS is situated under the
strong influence of the Siberian anticyclonic circulation, which brings precipitation mainly



Sustainability 2021, 13, 3992

9 of 21

in the form of snowfall in the cold season; simultaneously, it is also influenced by frontal
cyclonic circulation and northern jet stream, which bring considerable precipitation even
in the cold season [49]. As a result, the lowest SLAs occur in the NTS (Figure 6a). In winter,
the WTS is weakly influenced by the Siberian anticyclonic circulation, and the southwest
cyclonic circulation is moderate in winter, bringing in warm moist air and maximum pre-
cipitation; however, winter precipitation is relatively rare for the CTS and ETS [30,49].
This may explain why the SLA in the WTS is relatively lower than that in the CTS and
ETS (Figure 6a). The CTS has high mountains, so the transport of water vapor from the
Atlantic is blocked. The CTS is also adjacent to the Taklamakan Desert, and has dry air,
unlike the other subregions of the TS. In addition, the topographic-altitude-controlled spa-
tial pattern of the SLA could be ascribed to the mass elevation effect, which is essentially
the result of the thermodynamic effect of mountain masses and has been recognized as a
significant contributor to the vertical distribution of mountain snowline and timberline
[72,73]. Thus, SLA in the CTS is dramatically higher than the other regions.
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Figure 5. Dynamic variation of daily SLA from 2001 to 2019.
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Figure 6. The annual cycle of SLA for the four subregions (a), and the whole region of the TS (b).

The SLA values in (a, b) are averages of 19 years from 2001 to 2019. The error bars in (b) show the
standard deviation, indicating the interannual variations of SLA from 2001 to 2019.

To explore the variations of SLA in detail, the slope (Sen’s slope) of the trend in SLA
for the whole study area and the counts of SLA grids at the 5% significance level were
calculated on a grid-by-grid and month-by-month basis during the period 2001-2019 (Ta-
bles 3 and 4). Besides, the change trend (slope) of SLA and its significance level in August
for the 19 years are depicted in Figure 7 as an example. On the whole (excluding the null
value grids), the SLA over the entire TS shows a rising trend in August (the average slope
of the grids is 1.95 m/a), although a large number of grids (53.5%) are characterized by
weak trends in SLA (-1.5 < slope < 1.5 m/a) (Figure 7). Overall, 58.1% of the grids are
increased (0 < slope < 9.7 m/a), but only 28% of the grids are characterized by decreasing
trends (-10.1 <slope <0 m/a). For the different subregions, the average slopes of NTS, ETS,
WTS, and CTS are 1.36 m/a, 2.79 m/a, 2.08 m/a, and 1.29 m/a, respectively. As shown in
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Tables 3 and 4, the SLA over the entire TS from 2001 to 2019 generally displays an increas-
ing trend. In particular, the increasing trends are notable both at the start of the melt sea-
son SLA (March and April) and the end of melt season SLA (July and August) for the four
subregions. Despite the number of significantly decreased SLA grids (93) exceeding the
number of the significantly increased grids (10), the SLA in November over the entire TS
is rising. A slight decrease of the SLA in June is found for the entire TS (-1.17 m/a) during
2001-2019, with most of the decrease stemming from the ETS.
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Figure 7. Change trend (slope) of SLA and its significance level in August during 2001-2019 over the TS.
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Table 3. The change trend and the counts of SLA grids with significant trends for the entire TS and the four subregions during the period 2001-2019.
Entire TS NTS ETS WTS CTS
Months

P N Trend P N Trend P N Trend P N Trend P N Trend
Jan 40 35 1 3 6 1 13 15 l 13 9 1 11 5 1
Feb 36 18 1 7 6 1 14 7 I 8 3 0 7 2 0
Mar 15 5 1 3 1 1 8 3 1 3 1 0 1 0 0
Apr 15 1 6 2 1 4 1 1 1 0 0 4 0 0
May 2 1 1 2 0 1 0 0 0 1 l 0 0
Jun 1 14 1 0 0 0 13 l 1 1 0 0
Jul 9 0 1 0 0 6 0 i 1 0 0 2 0 0
Aug 9 3 1 1 0 1 4 0 1 3 1 1 1 2 !
Sep 10 6 1 1 1 4 3 1 0 2 ! 5 0 0
Oct 11 9 1 0 0 0 5 l 3 3 8 1 1
Nov 10 93 1 1 33 1 2 48 l 4 9 ! 3 3
Dec 67 57 1 10 22 ! 16 18 l 32 15 0 9 2 0

Notes: The NTS, ETS, WTS and CTS indicate the Northern Tienshan Mountains, the Eastern Tienshan Mountains, the Western Tienshan Mountains and the Central Tienshan Mountains,
respectively. P and N indicate the counts of SLA grids with statistically significant positive and negative trends at the 5% significance level, respectively; when P is higher than N, a red
up arrow indicates an increasing trend, and when P is lower than N, a blue down arrow indicates a decreasing trend.

Table 4. The slope of the change trend for the entire TS and the four subregions during the period 2001-2019.

Months Entire TS NTS ETS WTS CTS

Slopea Slopep Slopen Slopep Slopen Slopep Slopen Slopep Slopen Slopep Slopen
Jan 4.74 22.49 -15.54 10.51 -11.58 27.63 -16.84 17.93 -15.96 25.09 -15.63
Feb 12.21 24.83 -13.03 32.52 -13.59 28.06 -16.31 23.24 —4.22 12.51 -13.07
Mar 13.53 20.70 -7.99 19.47 -2.90 28.17 -8.14 6.07 -12.64 8.47 0
Apr 11.98 17.06 -13.45 18.00 -16.19 15.88 -7.95 18.29 0 16.53 0
May 9.94 18.75 ~7.69 18.75 0 0 0 0 ~7.69 0 0
Jun -1.17 14.43 -8.93 0 0 0 -8.89 14.43 -9.46 0 0
Jul 1.31 9.03 0 0 0 9.95 0 10.10 0 5.77 0
Aug 1.95 7.85 -8.42 7.81 0 7.18 0 8.14 -10.10 9.67 -7.58
Sep 4.05 14.86 -13.97 26.75 -13.73 7.14 -13.68 0 -14.52 18.67 0
Oct 1.12 17.04 -18.34 0 0 0 -18.55 14.65 -18.17 17.93 -17.79
Nov 1.40 15.47 -22.52 15.61 -26.41 13.04 —22.43 14.29 -11.99 18.61 -12.81
Dec 2.94 19.82 -17.25 14.43 -16.40 15.06 -16.68 22.20 -19.04 25.80 -17.15

Notes: Slope indicates Sen’s slope estimator; Slopea indicates the average slope of the SLA grids; Slopep and Slopen indicate the average slope of the SLA grids with statistically significant
positive and negative trends at the 5% significance level, respectively.
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3.3. The Influences of Topographic Factors on SLA

In high mountain regions, like the TS, SLAs in areas with similar climatic conditions
might respond differently given their different and complex topographies. In order to in-
vestigate the variation characteristic of SLA in different topographic conditions, the aspect
and slope gradient calculated by DEM are used in this study. The aspect of the TS is set as
the eight ranges: north (0°-22.5°, 337.5°-360°), northeast (22.5°-67.5°), east (67.5°-112.5°),
southeast (112.5°-157.5°), south (157.5°-202.5°), southwest (202.5°-247.5°), west (247.5°-
292.5°), and northwest (292.5°-337.5°). Likewise, the slope gradient is divided into four
ranges (0°-10°, 10°-20°, 20°-30°, and >30°).

From the SLA over the TS relative to different slope gradients located in four aspect
ranges (Figure 8), it is evident that the SLA increases with the steeper slope gradient. As
the slope gradient gradually increases, the SLA changes greatly. SLA within the slope
gradient of 0°-10° is considerably lower than other slope gradients in winter. In addition,
areas having a southerly aspect receive more solar radiation than the north, resulting in
more heat absorption and higher SLA (Figure 8). In contrast, SLAs in the Himalayan re-
gion are lower on the southerly aspect because of the influence of two atmospheric circu-
lations: the Indian Ocean and the summer southwest monsoon [36]. The two circulation
systems, combined with the huge topographic landform, exert climatic controls on the
distribution of SLA in the Himalayan region. Due to significant shielding of water vapor
transport by high topography as atmospheric travels north across the region, the southern
aspects are enriched and the northerly aspect depleted in their abundance of precipitation.
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Figure 8. SLA over the TS relative to different slope gradients (0°-10°, 10°-20°, 20°-30°, and >30°)
of different aspects (north, northeast, east, southeast, south, southwest, west, and northwest) in
spring (a), summer (b), autumn (c) and winter (d). The SLA values are averages of 19 years, from

2001 to 2019.
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3.4. Spatiotemporal Characteristics of Meteorological Factors Over the TS

Monthly distribution of precipitation, temperature, and solar radiation in the TS dur-
ing 2001-2019 shows obvious seasonal variations (Figure 9). The annual mean precipita-
tion across the TS is 469.4 mm, which is concentrated between April and July; the annual
mean temperature is 7.5 °C; and the annual mean radiation is 143.1 W m2 (Figure 9a). The
temperature and solar radiation tend to be remarkably consistent in their changes during
the year. Spatial distributions of the precipitation, temperature, and solar radiation are
shown in Figure 9b—d. The WTS and NTS have the greater annual precipitation, and are
characterized by a relatively humid climate, while the CTS and ETS have a typical conti-
nental climate. Besides, areas peripheral to the TS are characterized by less precipitation.
In contrast, the temperature and solar radiation are low in the central region and high in
the marginal region.
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Figure 9. (a) Monthly distribution of precipitation, temperature, and solar radiation in the TS dur-
ing 2001-2019. Annual spatial distributions of the precipitation (b), temperature (c) and solar radi-
ation (d) over the TS in the period 2001-2019.
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3.5. The Influences of Meteorological Factors on SLA

To explore possible mechanisms for SLA changes of the TS, we examined the corre-
lation between SLA and the variations of three important meteorological factors (temper-
ature, precipitation, and solar radiation) by correlation analysis. In this study, the monthly
averaged ERA5 climate reanalysis data were selected to investigate the relationship be-
tween SLA, temperature, precipitation, and solar radiation at monthly scales. Taking Oc-
tober as an example, the Pearson correlation coefficients between SLA, temperature, pre-
cipitation, and solar radiation during 2001-2019 are calculated on a grid-by-grid basis
(Figure 10). As can be seen from Figure 10, the correlation between SLA, temperature, and
solar radiation shows obvious consistency. The SLA increases with the increased temper-
ature and radiation in most areas of the TS (particularly in the WTS and CTS). It is evident
that the SLA decreases with increased precipitation, except for a small part of the ETS
(Figure 10). Additionally, correlation coefficients between SLA, temperature, and solar ra-
diation vary in different regions and months (Table 5). In March-June, it shows a significant
correlation between SLA, temperature, and solar radiation in the entire TS, while the corre-
lation between SLA and precipitation is insignificant. From September to November, these
meteorological factors have a great influence on SLA changes, with solar radiation being the
dominant one. In the winter period (i.e., from December to February of the following year),
the SLA shows no obvious correlation with temperature, precipitation, or solar radiation.
Because of the temperature being well below freezing in winter, there is little temperature-
related snow melting. The increased sublimation of the snow may cause the reduction of
winter snow at high altitudes where it is frequently accompanied by high winds. More than
half of the snow mass in the Tibetan plateau is lost by sublimation in winter [74].
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Figure 10. Spatial distribution of the Pearson correlation coefficients between SLA, temperature,
precipitation, and solar radiation in October during 2001-2019.
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Table 5. Pearson correlation coefficients between SLA, temperature, precipitation, and solar radiation in different subregions at monthly scales for the period of 2001-2019.

Months Temperature Precipitation Radiation

NTS ETS WTS CTS NTS ETS WTS CTS NTS ETS WTS CTS
Jan -0.008 -0.004 -0.025 -0.024 0.014 0.016 -0.037 0.032 0.032 0.043 -0.021 0.023
Feb -0.022 -0.041 -0.141 0.010 -0.025 0.027 -0.080 -0.162 0.015 -0.025 -0.038 0.148
Mar 0413 0.300 0.641 ** 0.450 -0.133 -0.073 -0.174 -0.307 0.430 * 0.347 0.627 ** 0.545 **
Apr 0.678 ** 0.559 ** 0.586 ** 0.624 ** -0.205 -0.180 -0.408 -0.412 0.681 ** 0.616 ** 0.580 ** 0.715 **
May 0.619 ** 0.523 * 0.710 ** 0.678 ** -0.155 -0.130 0.004 -0.036 0.627 ** 0.624 ** 0.610 ** 0.687 **
Jun 0.421 0.336 0.717 ** 0.554 ** -0.220 -0.245 -0.251 -0.155 0.640 ** 0.492 * 0.671 ** 0.511*
Jul 0.279 0.439 0.135 0.402 -0.137 -0.151 -0.022 -0.147 0.220 0.250 -0.045 0.377
Aug 0.244 0.375 0.292 0.296 -0.318 -0.227 -0.010 -0.383 0.321 0.300 0.120 0.406
Sep 0.569 ** 0.557 ** 0.520 * 0.641 ** -0.599 ** -0.468 * -0.385 -0.555 ** 0.773 ** 0.652 ** 0.598 ** 0.708 **
Oct 0.564 ** 0.568 ** 0.490 * 0.498 * -0.604 ** -0.382 -0.650 ** -0.432 * 0.769 ** 0.615 ** 0.768 ** 0.592 **
Nov 0.501 * 0.390 0.611 ** 0.399 -0.496 * -0.315 -0.623 ** -0.391 0.642 ** 0.413 0.753 ** 0.485 *
Dec -0.086 -0.038 0.194 0.055 -0.084 -0.043 -0.375 -0.212 0.121 0.093 0.484 * 0.268

Note: * and ** indicate statistical significance at the 0.05 and 0.01 level, respectively.
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4. Discussion

The TS is the main water source and ecological barrier of Central Asia, with unique
climatic and hydrological conditions. Based on MODIS snow cover products, this study
extracts spatiotemporal continuous SLA of the entire TS for 19 years. The uncertainty of
the MODIS-derived SLA may come from the following: (1) the errors that occurred due
to the pixel size of the remote sensing images, slope, and aspect of the terrain, affecting
the accuracy of the georeferencing and the quality of the DEM [75,76]; or (2) the errors that
occurred in the MODIS FSC mapping algorithm [38,77] and cloud removal method [39],
although the MODIS SCD threshold is calibrated in this method. For MODIS FSC map-
ping, Masson et al. has shown that NDSI linear regression produced better results when
used alongside atmospheric and topographic correction [78]; a new linear regression
model could be defined if a large series of validated and very accurate ground truth data
were to be established. In addition, the linear spectral unmixing approach is a more relia-
ble method for estimating snow cover fraction, and tends to produce more stable results
than the NDSI linear regression method [78]. Therefore, future research should examine
the SLA method presented here with the MODSCAG and MODImLAB approaches
[79,80]. Given the high resolution, the Landsat and Sentinel-2 images are suitable for high-
resolution SLA extraction. However, the cloud cover and longer revisit period greatly
limit their ability. Google Earth Engine (GEE) is a cloud-based platform that makes it easy
to access high-performance computing resources for processing very large geospatial da-
tasets [81]. The GEE platform integrates the Landsat and Sentinel-2 images from over the
last few decades, which can be accessed and processed by the Earth Engine application
programming interface (API). Therefore, the GEE platform provides a possible method
for SLA extraction in a continuous time and space for a large-scale area.

The MODIS-derived SLA method and gridded approach in this study can be effi-
ciently applied to SLA extraction for other large-scale areas. For a catchment scale, how-
ever, the regional snowline elevation can be better obtained by the method developed by
Krajci et al. in the case of cloud cover (<70%) [15]. However, this method must estimate an
elevation (i.e., the regional snowline elevation) where the number of snow-covered pixels
below and the number of snow-free pixels above are minimized, and only obtains one
SLA value for the entire basin [15]. If we want to estimate SLA dynamics and their long-
term trends at the catchment level, the recent study gives an available method of random
forest regression [82] combining high resolution satellite imagery and climate reanalysis
data.

Under the background of global warming, and the state of high variability in tem-
perature of the TS since 1997 [45], the cryosphere of the TS has been changing rapidly
[28,83-85]. Like many glaciers worldwide, the glaciers in the TS have generally been los-
ing mass over the past decades [28,86,87]. In this work, we find the SLA in the TS generally
shows a rising trend in the 19 years (Tables 3 and 4). This increasing trend is especially
significant at the end of melting season (July and August), and especially in August, with
average slopes of NTS (1.36 m/a), ETS (2.79 m/a), WTS (2.08 m/a), and CTS (1.29 m/a).
These rising trends of SLA at the end of melting season indicate a decrease in the annual
mass balance of glaciers across the 19 years. Glaciers in the TS are generally losing mass
(i.e. average annual mass balance is already negative) [28,85]. These results are consistent
with the conclusions drawn from previous studies on the relationship between the glacier
mass balance and SLA at the end of melting season [23,25,88]. It would be more beneficial
to reconstruct the annual mass balance time series if higher resolution data could be used
for estimating spatial and temporal continuous SLA over a large-scale area.

Due to the specific geographical location and climatic conditions, the snow cover and
mountain glaciers in the TS are very vulnerable to climate change. Our results show a
strong correlation between SLA, temperature, precipitation, and solar radiation (Figure
10), although the absolute values of the correlation coefficients vary due to the different
subregions. That is, the SLA increases with increased temperature/radiation and de-
creased precipitation. Solar radiation is the dominant climatic factor affecting the changes
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of SLA in the TS (Table 5). Due to the reduction in surface albedo caused by the decrease
in glacier and snow coverage, more solar radiation will be absorbed, and will then amplify
cryosphere warming, further intensifying ablation and snowmelt [89,90]. Nevertheless,
the effect of climate change on SLA is very complex. The 19 years of available MODIS
information is insufficient for definitive conclusions about climate change. Longer time
series of data need to be examined in further studies to obtain some more definitive con-
clusions about temporal trends of SLA and their relationship with climate change.

5. Conclusions

In this study, a large-scale SLA investigation methodology is developed using the
cloud-removed MODIS FSC products (MOD10A1). The 500 m resolution of a daily SLA
dataset is generated over the TS for the period 2001-2019. The spatiotemporal patterns of
SLA over the entire TS during 2001-2019 are investigated using the gridded approach,
with specific attention to the four subregions. We also explore the potential influence of
topographic factors (slope gradient and aspect) on SLA and the correlation between SLA
and meteorological factors (temperature, precipitation, and solar radiation) on a grid-by-
grid and month-by-month basis. The main findings are summarized as follows:

(1) The large-scale SLA monitoring method is efficient in monitoring the spatiotem-
poral patterns of the SLA in the TS. Compared with the Landsat-derived SLA of the four
validation grids (30 km), the mean absolute error of MODIS-derived SLA is between 7.8
and 14.6 m, and the root mean square error is between 9.7 and 16.7 m.

(2) Our results show strong seasonal fluctuations of SLA over the TS from 2001 to
2019, ranging from about 2000 (in late December) to 4100 m (in early August). The distri-
bution of SLA over the TS shows a large spatial heterogeneity due to complex topography
and geomorphology. The SLA increases with the steeper slope gradient. The SLA of the
northerly aspect is generally less than that of the south, due to receiving more solar radi-
ation.

(3) The SLA over the entire TS from 2001 to 2019 shows a rising trend. Except for a
slight decrease in June, the SLA increased in all other months, especially at the start of the
melting season (March and April) and the end of the melting season (July and August).
The SLA increases with increased temperature/radiation in the TS (particularly in the WTS
and CTS) and decreases with increased precipitation. Solar radiation is the dominant cli-
matic factor leading the SLA dynamics, and temperature has a greater influence on SLA
than precipitation. This study could enrich the understanding of the response of snow
cover dynamics to climate, and provide scientific support for eco-environment sustainable
management in the high mountain region. If global warming continues, the melting of
snow and peak runoff in the TS will increase. The early snowmelt may lead to a decrease
in summer flow, which in turn changes the flow regimes and water availability, thereby
affecting the ecosystem, agriculture, and water resources in the densely populated down-
stream areas.
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