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Abstract: Prunus padus L., is not very popular plant, it is commonly found due to low soil require-
ments and easy to settle in various places. As for now, concerning food technology, there is no
wide application for P. padus. Therefore, the aim of this study is to evaluate the possibility of us-
ing bird cherry bark as an ingredient in herbal functional teas. In the first step, the conditions for
extraction of the bark were electrochemically optimized. It was proven that the highest content of
polyphenols could be found in the sample consisting of chamomile, linden flower, and calendula
(7939.8 ± 106.6 mg/100 g dm). In the beta-carotene bleaching test, the highest activity could be
spotted for calendula tea (16.7 ± 1.1c%) and chamomile tea (15.0 ± 2.0c%) and concerning the test
for linden flower tea without added bark (134.4 ± 15.1b µg ascorbic acid /mL). The property of the
tested teas to inhibit cholinesterases was proven. What is more, P. padus bark infusion showed the
highest activity of 15.8 ± 1.1d µg neostigmine/mL, for acetylcholinesterases (AChE) inhibition and
21.2 ± 1.0c µg neostigmine/mL for butyrylcholinesterases (BChE). The same tea also showed the
highest activity to reduce ions of iron (Fe(III)): 25.3 ± 0.9c µg Trolox /mL and glutathione reductase
and glutathione peroxidase inhibition, 87.0± 1.1e% and 64.9± 2.0d% respectively. The use of P. padus
bark may be vital in the preventive care concerning modern-age diseases and allow for the production
of a new range of products with distinctive sensory characteristics and functional properties and, at
the same time, in combating the spread of P. padus in the farm and forest ecosystem.

Keywords: Prunus padus; bird cherry; antioxidants; SWV; cholinesterase; COX-2; SOD; catalase;
glutathione reductase; inhibition; bioactive food

1. Introduction
1.1. Soil Conditions and Physiology of Bird Cherry as Invasive Plant

Prunus padus L. (bird cherry) belongs to the Rosaceae family, Padus subgenus of
Prunus genus L. Taking into consideration all plants from Prunus species, bird cherry grows
farthest to the north in Europe, spreading to the coasts of the Arctic Ocean. What is
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more, in the Alps it grows at a higher altitude than any other deciduous tree [1]. This
species is highly invasive, tolerant of low and high temperatures, as well as tolerant of
many soil types. It owes its ecological invasion to the high efficiency of its vegetative
and generative propagation, thanks to characteristics such as the high capacity and speed
of seed germination, its overproduction, its longevity, its spread, the rapid growth and
development of individuals, its low requirements in relation to habitat factors, and its high
tolerance to climatic conditions. In many European countries, the bird cherry is called a
“forest weed” due to its dense undergrowth, which prevents the regeneration and growth
of many tree species. Dense bird cherry bushes cause displacement of native species and
completely prevent their natural regeneration, leading to the complete degradation of
forest phytocenoses. Therefore, the negative impact of P. padus on the natural environment
involves the displacement of native species. The intensity of this displacement depends
on the original condition of the existing forest community. Despite determining many
methods of removal of bird cherry, the most effective one has not yet been discovered.

Therefore, the expansion of this species is a threat to biodiversity conservation, and
the development of effective strategies to combat invasive species is one of the most
challenging tasks facing nature conservation, both concerning the preservation of natural
vegetation and native plants. The literature on the topic contains statements that show that
depriving bird cherry of their bark can limit and weaken their growth [2].

1.2. Nutritional and Functional Potential Related to the Phytocomponents Present in Prunus
padus L.

Bird cherry contains numerous compounds that might be healthy. Its bark has a
pleasant, distinctive pungent scent, similar to that of black currant. As a herbaceous
plant, it is harvested in summer. It contains, among others: tocopherols, vitamins, tannins,
terpenes, and polyphenols [3].

P. padus bark is known for its anti-inflammatory, antimicrobial, and antioxidant prop-
erties [4]. Bird cherry bark has the property of iron ions chelation and reduction [5]. It
is used to brew infusions with medical properties [6]. The compounds present in bird
cherry may prove vital for herbal medicine or in the production of extracts, as they have
health-promoting properties, e.g., lowering the risk of cancer, cardiovascular disease, and
diabetes. In addition, they reduce inflammation [7]. This is due to the polyphenols which
improve the oxidant/antioxidant balance in the organism. Polyphenols can support the
effects of health-promoting substances [8].

Modern medicine uses synthetic acetylcholinesterases (AChE) and butyrylcholinesterases
(BChE) inhibitors for the symptomatic treatment of dementia, but these drugs often cause
side effects that could be minimized by supporting therapy using phytochemicals [9].
The literature confirms the possible effect of polyphenols as preventive and supportive
agents for the treatment of neurodegenerative diseases. Polyphenols may also be useful in
inhibiting other enzymes that are crucial in eliminat-ing the effects of oxidative stress. This
is due to the multidirectional action of polyphenols as antioxidants [10].

In recent years, the nutritional use of P. padus is increasing. Due to the presence of
active compounds, its health-promoting effects may be expected in terms of chelating
and reducing metal ions, and it may also be a source of substances helpful in inhibiting
cholinesterase activity and inhibiting glutathione reductase and glutathione peroxidase.
The aim of this study was to evaluate the possibility of using it as an ingredient in functional
teas with a broad spectrum of health-promoting properties, while also inhibiting the spread
of the species.

2. Materials and Methods
2.1. Preparation of Tea Blends and Infusions with P. padus Bark

The test sample was bird cherry (P. padus) bark from an orchard in Ozierany Małe in
Podlasie region, Poland (53◦ 13′ 14.865” N 23◦ 51′ 9.327” E) and was prepared as described
above [5]. The ingredients for the preparation of infusions (Prunus padus L. bark), linden
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flower (Tilia europaea L.), chamomile flower (Matricarnia Chamomilla L.) and calendula
(Calendula officinalis L.) were ground in a Retsch (Haan, Germany) Grindomix GM 200 for
15 s at 500 rpm at 21 ◦C to obtain a particle size of 0.5–0.9 mm. The teas were prepared
by mixing the dry ingredients and weighing 2-gram portions, which were packed in
disposable tissue paper teabags. Eleven samples were prepared, four of which contained
only one component: P (100% P. padus), Ch (100% Matricarnia Chamomilla L.), C (100%
Calendula officinalis L.) and T (100% Tilia europaea L.), the first sample was a base labeled B
(33.33% Ch + 33.33% C + 33.33% T), and six samples contained P. padus (P) bark at different
concentrations: BP5 (5% P + 95%B), BP10 (10% P + 90%B), BP15 (15% P + 85%B), BP20
(20% P + 80%B), BP25 (25% P + 75%B), BP30 (30% P + 70%B). The infusion was obtained by
extracting the bag, containing dry product, with 200 mL of water at 80 ◦C in 15 min.

2.2. An Electrochemical Method for Optimizing Bird Cherry Bark Extraction Conditions

The content of redox compounds in bark extracts was determined using square wave
voltammetry (SWV) and the procedure described previously [11]. Measurements were
performed using a potentiostat PGSTAT12 with the GPES 4.9 software (EcoChemie, The
Netherlands) and a three-electrode system consisting of a reference (Ag/AgCl, 3 M KCl)
(Mineral, Poland), auxiliary (platinum) (Mineral, Poland), and working (carbon paste
electrode: CPE). The CPE was made by itself according to a described procedure [12].
Carbon paste was made by mixing graphite powder (Sigma) with mineral oil (Sigma) in
the ratio of 70:30 (w/w). The surface of the CPE was reestablished before use by removing
its outer layer on a filter paper, application of fresh paste, and polishing it to a smooth
finish on a frosted glass slide. Before carrying out measurement, the surface of CPE was
conditioned in 0.05 M phosphate buffer with 0.01 M KCl (pH 7.0) at +1.7 V for 60 s. Next,
the electrodes were immersed for 120 s in the extract dissolved in phosphate buffer (1:1,
v/v) and the three measurements of SWV in the range from −0.3 V to + 1.4 V were taken.
SWV parameters were: step potential of 5 mV, frequency of 50 Hz, and amplitude of
40 mV. Baselines with moving average were subtracted from SWV voltammograms, and
the peak potential, peak height (current), peak area for each signal, and the total peak areas
were determined. Additionally, the electrochemical index (EI) was calculated, describing
the electrochemical activity of extracts, expressed as the total area of all redox signals, in
relation to 1 g dry matter of plant material [11]. One ml of the tested extract contained
0.03125 g dry plant material.

2.3. Phenolic Acids, Flanovols, and Low Molecular Weight Organic Acid (LMWOA)

Phenolic compounds in the samples were analyzed after alkaline and acid hydrolysis.
The analysis was performed using a Waters Acquity Class H UPLC system equipped
with a Waters Acquity Photodiode Array (PDA) detector (Waters, USA). Chromatographic
separation was performed on an Acquity UPLC®BEH C18 column (100 mm × 2.1 mm,
particle size 1.7 µm) (Waters, Ireland). Gradient elution was conducted using the following
mobile phase composition: A: acetonitrile with 0.1% formic acid, B: 1% aqueous formic
acid mixture (pH = 2). The concentrations of phenolic compounds were determined using
an internal standard at wavelengths λ = 320 nm and 280 nm and expressed in mg/100 g
dry weight. The detection level was 1 µg/g.

Low molecular weight organic acid (LMWOA) analysis was performed using a Waters
Acquity Class H UPLC system. The separation was performed on an Acquity UPLC BEH
C18 column (150 mm × 2.1 mm, 1.7 um, Waters) thermostatically heated to 35 ◦C. Gradient
elution was performed with water and acetonitrile (both containing 0.1% formic acid,
pH = 2) at a flow rate of 0.4 mL/min. Detection was performed using a Waters Photodiode
Array (PDA) Detector (Waters Corporation, Milford, MA, USA) at λ = 280 nm. Results
were expressed as milligrams per 100 g dry weight of tea.
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2.4. Linoleic Acid Oxidation, Beta-Carotene Bleaching Test and FRAP Method

Linoleic acid oxidation. The study used the method published by Kozarski et al. (2012)
with some modifications [13]. Linoleic acid (800 mg) was dissolved in 20 mL of absolute
MeOH and 200 mL of 0.2 M sodium phosphate buffer (pH 6.5) and Tween 20 (6.5 mM
conc. of Tween 20 was obtained). The emulsion was sonicated for 10 min. 1.8 mL linoleic
acid emulsion was mixed with 0.2 mL of the sample and incubated at 37 ◦C. Samples
(0.1 mL) were taken out after 6 h of incubation and mixed with 1.2 mL of absolute MeOH.
The absorbance against the blank sample was measured at 234 nm, without the studied
solution. Ten ascorbic acid solutions (concentration in the range 124.5–1824.3 µg ascorbic
acid/mL) were used for the preparation of the calibration curve in the same way as the
tested samples. In addition, the content was measured at 234 nm (a mixture containing the
studied sample and buffer only [13]. Each sample was analyzed at least four times.

Beta-carotene bleaching test. The study used the method published by Öztürk et al.
(2011) with some modifications [14]. Seven mg of β-carotene in 5 mL of chloroform
was mixed with 350 µL of linoleic acid and 2.8 g of Tween 80. Vacuum evaporation of
chloroform was performed (40 ◦C) and 100 mL of DDI (doubly distilled water) saturated
with oxygen was added followed by vigorous shaking. The sample (200 µL) was mixed
with β-carotene/linoleic acid emulsion (200 µL). Zero time absorbance and the change in
absorbance were measured at 463 nm after 4 h at 50 ◦C. A positive sample was prepared
using ascorbic acid. A total of 0.94 mg/mL of stock solution, used instead of samples, was
prepared followed by a serial dilution (9.4–94 µg/mL), as described above. In addition,
the content of samples was measured (a mixture containing the studied sample and DDI
water only). The percentage of activity of the samples was calculated according to the
blank samples containing emulsion and DDI water only [14]. Each sample was analyzed at
least four times.

The FRAP method of Hanafy et al. (2017) with slight modifications was used [15].
The amount of 20 µL of the tested solution was mixed with 1900 µL of FRAP (ferric ion
reducing antioxidant power) solution, shaken for 30 min at room temperature and the
absorbance was read at 593 nm, after shaking for 30 s. The FRAP solution was prepared by
mixing 2.5 mL 5 mM TPTZ solution (prepared in 40 mM HCl solution), 2.5 mL 5 mM FeCl3
solution, and 25 mL acetate buffer (0.3M pH 3.6), and warming in water at 37 ◦C for 20 min.
A blank (reagent) sample was prepared with buffer instead of the sample and the content
of the sample was measured (a mixture containing the studied sample and buffer only).
All samples were measured at 593 nm. The calibration curve was prepared using Trolox
solution: 0.51 mg of Trolox was dissolved in 1 mL of DDI water. An amount of 20 µL of
20 standard solutions (containing 0.0243–0.524 mg Trolox/mL) was studied, as described
above [15]. Each sample was analyzed at least four times.

2.5. Cholinesterase (AChE and BChE), Catalase and SOD Inhibition

Inhibition of AChE and BChE tests were performed as described in a work by
Baranowska-Wójcik et al. (2020) [16]. Neostigmine standard solutions (neostigmine bro-
mide, Sigma Aldrich N2001, 2.57–22.85 µg/mL in ethanol: DDI (doubly distilled water)
1:1) were prepared and analyzed using the same method as tested samples. The calibra-
tion curve was developed and the inhibition of enzymes was expressed in the equivalent
concentration of neostigmine (µg/mL). Each sample was analyzed at least four times.

Inhibition of catalase test. The method of Watanabe et al. (2007), with slight modifi-
cations, was used [17]. The reaction mixture was composed of 50 samples, 945 µL EDTA
(ethylenediaminetetraacetic acid) solution (6.2 mg EDTA in 1 M Tri-HCl, pH 7.0, previ-
ously filtered through 0.45 µm membrane), and 12 µL of 30% H2O2 solution (final conc.
0.035 M/L). The reaction was started by adding 2.5 µL catalase solution (Sigma C3515,
previously diluted 100-fold using 1M Tris-HCl, pH 7.0). Absorbances were measured at
240 nm at the start and after 2 min. In controls, the tested sample was replaced by Tris
buffer. The calculations were performed as follows: Inhibition [%] = 100 − 100 × (Abs. of
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the sample 0 min − Abs. of the sample 2 min)/(Abs. of the control 0 min − Abs. of the
control 2 min) [17]. Each sample was analyzed at least four times.

This study adopted methods for inhibition of SOD from Parschat et ale. (2001) im-
plementing their own modifications [18]. The test mixture was composed of 50 µL of the
sample, 10 µL SOD (0.24 U), 160 µL of nitro blue tetrazolium (NBT, 0.0025 M), 140 µL
phosphate buffer (0.2 M, pH 7.5), 30 µL xanthine (150 mM in 1 M NaOH), and 10 µL xan-
thine oxidase (0.065 U, Sigma Aldrich X4875). The change in the absorbance in the control
sample (without test sample) at 550 nm was 0.02/min. The change in the absorbance was
measured after 0 min and 20 min. The calculations were performed as follows: Inhibition
[%] = 100 − 100 × (Abs. of the sample 0 min. − Abs. of the sample 2 min)/(Abs. of
the control 0 min − Abs. of the control 2 min) [18]. Each sample was analyzed at least
four times.

2.6. Inhibition of Glutathione Reductase, Inhibition of Glutathione Peroxidase

Inhibition of glutathione reductase. The method of Moreira et al. (2014) was used [19].
The studied sample (150 µL) was mixed with 660 µL of 0.1 mM sodium phosphate buffer.
Then, 25 µL of EDTA solution and 30 µL of GSSG (glutathione disuflide) solution were
added, samples were incubated for 5 mins at 25 ◦C, and 40 µL of NADPH (nicotinamide
adenine dinucleotide phosphate) solution was added (all reagents were dissolved in
0.1 mM sodium phosphate buffer, pH 7.6) (concentrations of reagents in the final mixture
(805 µL) were as follows: 0.5 mM EDTA, 10 mM GSSG, and 10 mM NADPH). The initial
absorbance (340 nm) was recorded, and the reaction was initiated by adding 2 U enzyme
(2 µL, Sigma Aldrich G3664). The absorbance (340 nm) was recorded after 2.5 min of
incubation at 25 ◦C. A blank sample was prepared with buffer instead of the sample and
the content of the sample was measured (a mixture containing the studied sample and
buffer only). One unit of enzyme activity was defined as nmol of NADPH consumed/min
− mL of the sample, in comparison with nmol of NADPH consumed/min in the blank
(reagent) sample [19]. Each sample was analyzed at least four times.

Inhibition of glutathione peroxidase. In the study, the method of Singh et al. (2000)
was used with some modifications [20]. The sample (150 µL) was a mix of 20 µL EDTA
solution, 3 µL of glutathione reductase (0.2 U Sigma G3664), 10 µL of GSH solution, 3 µL
of glutathione peroxidase (0.04 U Sigma G6137), 55 µL of H2O2, and 663 µL of 50 mM
sodium phosphate, pH 7.0). To start the reaction, 10 µL of NADPH solution (N5130) was
added and, after 2 min of incubation at 25 ◦C, the decrease in the absorbance (340 nm) was
read. All solutions were prepared in a 50 mM buffer solution and the concentration of the
reagents in the final mixture was as follows: 1 mM EDTA, 0.2 U glutathione reductase,
2 mM GSH, 0.04 U glutathione peroxidase, 1.5 mMH2O2, and 0.8 mM NADPH. A blank
sample was prepared with buffer instead of the sample and the content of the sample
was measured (a mixture containing the studied sample and buffer only). One unit of
enzyme activity has been defined as nmol of NADPH consumed/min − mL of the sample,
in comparison with nmol of NADPH consumed/min in the blank (reagent) sample [20].
Each sample was analyzed at least four times.

2.7. Sensory Analysis by Sensory Profiling

For a detailed sensory description of these samples the method of quantitative descrip-
tive analysis, i.e., sensory profiling, was applied, which was performed by a 20-person team
specially trained for this purpose. Individual quality descriptors selected in preliminary
studies were evaluated: color (clear, straw, brown, green), taste (sweet, sour, bitter, fruity,
astringent, grassy, foreign), scent (fruity, earthy, sweet, sour, unfamiliar, intense) and overall
desirability of the teas. The intensity of each quality descriptor was determined using a
10-cm unstructured linear scale with appropriate boundary markings. The results obtained
were described as numerical values expressed in conventional units.
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2.8. Statistical Analysis

All tests were conducted three times and the results are expressed as mean ± SD.
The routine statistical tests (average values and standard deviation) were performed.
Statistical differences were calculated with significant differences identified at p < 0.05
(Statistica Software ver. 13.1 StatSoft, Cracow, Poland). Additionally, the analysis of the
principal components was performed (PCA). The electrochemical results were treated as
an additional factor to the model based on standard analytical techniques. The p values for
Levene’s test of independent variables were calculated.

3. Results
3.1. Electrochemical Analysis

Optimization of the process conditions is aimed at determining the best solutions
concerning the criterion of the quality of the final product. The stage that determines the
content of phenolic compounds, as well as the antioxidant activity of infusions, is the
extraction process. What is more, a vital element also includes the choice of time and
temperature. Electrochemical activity (antioxidant potential) of the bark of P. padus was
tested using different extraction temperatures (80 ◦C and 100 ◦C ) and extraction duration
(15, 30, or 45 min). The electrochemical (SWV: square wave voltammetry) measurement
procedure was identical to the one adopted in the previous studies [5,21].

The total peak current, total peak area and electrochemical activity of the extracts from
the bark of P. padus, prepared using different temperature and extraction time, was tested.

Below (Table 1), there is a summary of average results (number of measurements
n = 3).

Table 1. Electrochemical parameters determined for Prunus padus L. (P. padus) bark extracts.

Signal Current—Square Wave Voltammetry (SWV)

Sample
P. padus

Bark Extract

Peak Potential
Ep [V]

Peak
Current
I [µA]

Peak Area
EP × I

[V × µA]

Total Peak
Current I [µA]

Total Peak
Area

[V × µA]

EI
[V × µA/1 g

d.m.]

80 ◦C/15 min
0.247 5.491 0.925

7.403 1.411 45.1540.694 1.912 0.486

80 ◦C/30 min
0.262 7.918 1.529

12.734 3.413 109.2200.594 4.816 1.884

80 ◦C/45 min
0.247 9.689 1.874

15.315 3.933 125.8510.562 5.626 2.059

100 ◦C/15 min
0.254 3.592 0.719

7.438 1.993 63.7810.623 3.581 1.110

100 ◦C/30 min
0.271 4.143 0.858

9.190 2.736 87.5410.564 5.047 1.878

100 ◦C/45 min
0.262 5.518 1.160

10.872 3.114 99.6320.559 5.354 1.954

Concerning the electrochemical test, one could see that the highest antioxidant activity
was characteristic for an infusion prepared at 45 min at 80 ◦C (total peak area 3.933 V × µA)
(Figure 1).

Extending the extraction process time from 15 to 45 min increased the tested electro-
chemical activity by 170%, however, due to the very long brewing time, the most practical
brewing time, from the consumer’s point of view, of 15 min and a temperature of 80 ◦C
were chosen for further analysis. The infusions obtained in this way were also characterized
by high electrochemical activity.
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Figure 1. Square wave voltammetry (SWV) voltammograms for P. padus bark extracts (80 ◦C (a) and 100 ◦C (b)).

3.2. Content of Phytochemicals Compounds in Infusions with P. padus Bark Added

Of the samples tested, sample B (Table 2) was characterized by the highest polyphenol con-
tent, in which the total content of polyphenolic compounds was 7939.8± 106.6 mg/100 g dw.
It had the highest content of isorhamnetins (1951.3± 3.6 mg/100 g dw), as well as catechins
(1251.6 ± 3.2 mg/100 g dw) and apigenins (900 ± 1.5 mg/100 g dw). Nonetheless, oxalic
acid (1.2 ± 0.1 mg/100 g dw) and maleic acid (7.1 ± 0.1 mg/100 g dw) were compounds
with the lowest content in the sample. Among the infusions with added P. padus bark,
the total polyphenols content ranged from 7509.2 ± 189.6 mg/100 g in sample BP5 to
6546.4 ± 66.5 mg/100 g in sample BP30. One could see that the content of isorhamnetin
(between 1841.6± 20.7 and 1362.2± 3.2 mg/100 g dm) and catechins (between 1206.4 ± 4.8
and 1140.9 ± 2.5 mg/100 g dm) was the highest. On the contrary, the infusions with bird
cherry bark added were characterized by low content of oxalic acid (between 0.9 ± 0.1 and
1.1 ± 0.1 mg/100 g dm) and vanillic acid (between 4.8 ± 0.3 and 6.2 ± 0.1 mg/100 g dm).
Concerning low molecular weight organic acids (LMWOA), their lowest value was deter-
mined in sample Ch, while the highest value was obtained for the infusion prepared from
bark alone (B) and was 1300% higher than in the tea with chamomile. All teas with P. padus
bark contained a very high amount of acids.
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Table 2. Content of phytochemicals compounds in dietary infusions with the bark of P. padus.

SAMPLE
mg/100 g dw P Ch C T B BP5 BP10 BP15 BP20 BP25 BP30

PHENOLIC ACIDS

Gallic acid 16 ± 0.8 1.4 ± 0.2 ND 0.3 ± 0.1 18.3 ± 0.7 18 ± 0.7 18 ± 0.5 18 ± 0.3 18 ± 0.1 18 ± 0.1 17 ± 0.2
2,5-dihydroksybenzoic acid 102.8 ± 5.1 15 ± 2 ND 72 ± 1.3 188 ± 0.7 178 ± 2.3 172 ± 5 174 ± 0.6 168 ± 2.4 161 ± 1 155.6 ± 3

4-hyrdoksybenzoic acid 89.1 ± 1 108.7 ± 2.6 ND 3.8 ± 0.4 196.8 ± 4.7 188 ± 2.6 183.2 ± 3 178 ± 2 175.3 ± 1.7 168 ± 0.7 159 ± 0.1
Caffeic acid 3.4 ± 0.4 49 ± 1 102.1 ± 3.3 2 ± 0.2 151.8 ± 1.5 138.2 ± 4.8 132.9 ± 4.5 124 ± 4 119.9 ± 0.3 113.1 ± 1.4 100.9 ± 1.3

Syringic acid 43.2 ± 0.9 3.1 ± 0.2 ND 0.3 ± 0.2 44.2 ± 1.4 39.5 ± 0.9 43.5 ± 0.6 43.8 ± 0.5 42.5 ± 1.1 43.3 ± 1.7 41 ± 0.8
P-coumric acid 172.1 ± 2 1.6 ± 0.1 ND 0.7 ± 0.1 169.5 ±1.5 164.6 ± 5.5 159.4 ± 1.2 166.1 ± 3.4 166.5 ± 4.3 168.7 ± 1.4 171.3 ± 1.1

Ferulic acid 349.8 ± 7.5 87.5 ± 0.9 10.5 ± 0.4 13.9 ± 0.3 455.4 ± 1.6 438 ± 2.7 439.8 ± 0.6 432.9 ± 2.6 434 ± 1.6 427.7 ± 1.9 420.1 ± 1.5
Chlorogenic acid 16.5 ± 0.7 54.8 ± 2.2 38 ± 0.4 ND 100.6 ± 2 87.4 ± 2.3 87.8 ± 2.4 87.2 ± 1.1 81.9 ± 2.1 76.6 ± 0.9 73.7 ± 1.3

Sinapic acid 71 ± 2.5 1.5 ± 0.2 ND 0.6 ± 0.1 70.6 ± 0.7 68.2 ± 2.1 69.3 ± 0.7 69.5 ± 0.7 70.1 ± 0.6 70.2 ± 0.3 71.4 ± 1.1
T-cinamic acid 1.7 ± 0.2 0.7 ± 0.2 6.3 ± 0.6 0.9 ± 0.1 9 ± 0.2 7.7 ± 0.3 7.7 ± 0.4 7.4 ± 0.2 7.2 ± 0.3 6.9 ± 0.2 6.5 ± 0.3

Vanillic acid 0.7 ± 0.2 ND ND 7.1 ± 0.2 7 ± 0.2 6 ± 0.5 6.2 ± 0.1 6 ± 0.1 5.6 ± 0.2 5.1 ± 0.2 4.8 ± 0.3
Salicylic acid 96 ± 1.3 2.4 ± 0.2 0.3 ± 0.1 ND 90.7 ± 1.8 88.4 ± 0.8 87.9 ± 2.9 90.3 ± 0.8 88.7 ± 1.2 87.9 ± 1.8 92.6 ± 0.9

Total phenolic acids 962.2 ± 22.3 325 ± 9.6 157.2 ± 9.3 101.1 ± 2.8 1501.5 ± 33.6 1421.7 ± 50.6 1407.5 ± 42 1396.9 ± 33 1377.2 ± 31.6 1346.4 ± 23.7 1314.2 ± 25

FLAVONOIDS

Naringenina 18 ± 2.4 169.1 ± 3.4 16.3 ± 0.6 0.1 ± 0.1 198.9 ± 1.9 168.6 ± 1.8 176.4 ± 1 169.9 ± 1.4 161.2 ± 4.4 149.2 ± 0.9 140.9 ± 0.7
Vitexin 6.4 ± 0.3 0.6 ± 0.1 24.3 ± 1.6 ND 29.3 ± 0.4 25.2 ± 1.1 24.4 ± 0.8 24.9 ± 0.3 24.1 ± 0.4 22.5 ± 1.1 20.7 ± 0.8
Rutin 5.4 ± 0.3 25.2 ± 0.6 9.9 ± 0.3 24.5 ± 1.2 60.4 ± 0.7 53.8 ± 1.5 51.6 ± 1.3 51.4 ± 1 48.6 ± 0.6 45.5 ± 1.3 40 ± 1.3

Quercetin 593 ± 7.9 70.8 ± 3.3 24 ± 1.4 0.1 ± 0.1 665.3 ± 2.9 657.9 ± 2.5 657.5 ± 2.5 648.3 ± 6.4 647.4 ± 2.6 643.2 ± 3.1 641.8 ± 1.6
Apigenin 10.4 ± 0.3 886.6 ± 26 10.1 ± 0.6 0.2 ± 0.1 900 ± 1.5 850.8 ± 1.3 809 ± 2.9 764 ± 3.2 719.5 ± 1.1 670 ± 1.5 630.3 ± 1.3

Kaempferol 3.1 ± 0.2 11 ± 0.8 0.5 ± 0.2 10.9 ± 0.6 22.4 ± 0.9 20.1 ± 0.6 19.5 ± 0.7 19 ± 0.4 17.2 ± 1.6 17.3 ± 0.4 16.3 ± 0.1
Luteolin 9.5 ± 0.3 1.9 ± 0.2 3.6 ± 0.2 0.2 ± 0.1 14.2 ± 0.6 12.8 ± 0.3 13.2 ± 0.3 13.4 ± 0.5 13.1 ± 0.3 12.9 ± 0.2 12.2 ± 0.1
Catechin 887.4 ± 4.6 149.3 ± 4.9 241.3 ± 3.3 5.5 ± 0.3 1251.6 ± 3.2 1208.8 ± 8.4 1206.4 ± 4.8 1191.1 ± 2.1 1172 ± 2.7 1157.6 ± 2.4 1140.9 ± 2.5

Isorhamnetin ND ND 207.4 ± 3.5 ND 1951.3 ± 3.6 1841.6 ± 20.7 1747.7 ± 3.1 1652.2 ± 5.3 1555.73 ± 3.9 1454.4 ± 5.4 1362.2 ± 3.2
Lycorine ND ND 289 ± 3.6 ND 275.9 ± 5.4 253.9 ± 4.08 241.9 ± 2 232.3 ± 1.8 217.1 ± 3.1 203.4 ± 2.2 191.9 ± 1.6
Myricetin ND ND ND 31.5 ± 1.1 29.6 ± 0.9 27.3 ± 0.7 24.4 ± 0.7 24.3 ± 0.8 23 ± 0.6 21.1 ± 0.9 19.6 ± 0.6

Total flavonoids 1533.1 ± 32.4 1314.6 ± 78.4 826.4 ± 30.1 73.1 ± 6.5 5398.8 ± 45.4 5120.9 ± 85.5 4972 ± 41.2 4790.8 ± 45.7 3426.9 ± 21.2 4397.2 ± 38.2 4216.6 ± 27.5

LMWOAs

Oxalic acid 1.3 ± 0.2 ND ND ND 1.2 ± 0.1 1 ± 0.1 0.9 ± 0.2 1 ± 0.2 0.9 ± 0.1 1.1 ± 0.1 0.9 ± 0.1
Maleic acid 7.3 ± 0.4 ND ND 0.2 ± 0.1 7.1 ± 0.1 7 ± 0.2 6.7 ± 0.3 7 ± 0.2 7.2 ± 0.1 7.1 ± 0.1 7.1 ± 0.1
Citric acid 118.4 ± 2.1 11.3 ± 0.1 0.7 ± 0.2 6.5 ± 0.3 129.4 ± 1 124.3 ± 3.5 121.9 ± 1.9 127.2 ± 1.7 128.1 ± 1.4 125.5 ± 1.6 125.8 ± 0.8
Malic acid 319 ± 5.9 ND ND 27 ± 1.4 337.8 ± 2.6 324.7 ± 7.4 330.7 ± 1.8 330.7 ± 3 327.1 ± 6.5 329.7 ± 0.9 331.6 ± 0.8

Quinic acid 80.4 ± 1 6.3 ± 0.5 13.1 ± 0.6 165.8 ± 1.3 246.9 ± 6.9 223.1 ± 9.4 227.7 ± 2.4 220.9 ± 0.9 211.5 ± 1.1 202.8 ± 3.1 192.1 ± 3.2
Shikimic acid 166.5 ± 0.8 57.7 ± 1.9 104.4 ± 2.6 203.3 ± 2.8 317.1 ± 3.2 286.5 ± 6.2 299.4 ± 3.7 294.5 ± 3.7 280.7 ± 7.9 272.8 ± 3.5 268.3 ± 2

Total LMWOA’s 692.8 ± 10.5 75.3 ± 6 118.3 ± 6.5 402.7 ± 11.5 1039.5 ± 27.6 966.6 ± 53.4 987.3 ± 20.5 981 ± 9.7 955.4 ± 34 938.9 ± 18.5 925.7 ± 14

Total Polyphenols 3188.1 ± 65.2 1714.9 ± 94 1102 ± 92 576.8 ± 41.5 7939.8 ± 106.6 7509.2 ± 189.6 7366.8 ± 103.9 7168.7 ± 88.7 5759.6 ± 86.8 6682.5 ± 80.4 6546.4 ± 66.5

ND—not detected, DW—dry weight. Results are mean values of three determinations ± standard deviation. Values sharing the same letter in a line are not significantly different (p ≤ 0.05).
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3.3. Linoleic Acid Oxidation, Beta-Carotene Bleaching Test and FRAP Method

It was decided to broaden the scope of the study by incorporating the linoleic acid
oxidation test, in which the highest antioxidant activity against this acid was determined
in tea without added bird cherry bark (B) (134.4 ± 15.1b µg ascorbic acid /mL), and the
lowest in tea with its 20% content (BP20) (107.3 ± 7.2a µg ascorbic acid /mL). Concerning
the beta-carotene bleaching test, a common method used to assess antioxidant activity, the
highest results were obtained for samples: C (16.7 ± 1.1c%) and Ch (15.0 ± 2.0c%), and
the lowest was shown by the BP20 sample (9.2 ± 0.4a%). The infusions with the addition
of bark were characterized in terms of their ability to reduce Fe (III) to Fe (II). This ability
represents antioxidant activity as expressed by its mechanism of action as the ability to
donate an electron. This reaction is associated with an increase in the negative charge and,
as a result, a decrease in the degree of oxidation. In the assay for the ability to reduce Fe
(III) iron ions, one could see that this property was most visible for infusions containing
only bird cherry bark (P), respectively: 25.3 ± 0.9c µg Trolox /mL, and for an infusion with
20% addition of the tested material (BP20) 22.1 ± 0.3b (Table 3).

Table 3. Linoleic acid oxidation and beta-carotene bleaching test.

Sample Linoleic Acid Oxidation Activity
(µg Ascorbic Acid/mL)

Beta-Carotene Bleaching Test
Inhibition (%)

FRAP Activity
(µg Trolox/mL)

Blank samples 134.4 ± 15.1 b 12.4 ± 0.9 bc 23.1 ± 3.7 bc

C 122.2 ± 21.5 ab 16.7 ± 1.1 c 19.3 ± 0.7 ab

Ch 114.0 ± 20.0 ab 15.0 ± 2.0 c 16.5 ± 1.5 a

P 103.2 ± 11.3 a 10.2 ± 0.8 ab 25.3 ± 0.9 c

T 117.9 ± 14.6 ab 12.6 ± 1.7 bc 20.0 ± 2.0 ab

BP5 112.4 ± 10.0 ab 11.4 ± 0.5 b 18.3 ± 1.7 ab

BP10 115.0 ± 18.4 ab 10.2 ± 2.1 ab 20.7 ± 0.3 b

BP15 104.2 ± 11.9 a 12.5 ± 0.0 b 21.5 ± 1.0 b

BP20 107.3 ± 7.2 a 9.2 ± 0.4 a 22.1 ± 0.3 b

BP25 100.4 ± 16.1 a 11.0 ± 3.2 ab 20.9± 2.4 ab

BP30 108.1 ± 15.1 ab 12.7 ± 0.2 b 19.4 ± 2.2 a

The results are mean values of three determinations ± standard deviation. The values sharing the same letter in a line are not significantly
different (p ≤ 0.05).

3.4. Inhibition of AChE, BChE, Catalase and SOD

The ability to inhibit acetylcholinesterases (AChE) and butyrylcholinesterases (BChE)
was demonstrated for all tested extracts. The highest ability to inhibit cholinesterase was
determined for an infusion of bird cherry bark alone (P) 15.8± 1.1d µg neostigmine/mL for
AChE and 21.2 ± 1.0c µg neostigmine/mL for BChE (Table 4). Concerning bark teas, the
highest activity was determined for the infusion with 20% addition of the tested material
(BP20) 12.1 ± 0.1c µg neostigmine/mL for AChE and 18.5 ± 1.5bc µg neostigmine/mL
for BChE. Cholinesterases are enzymes that cleave choline esters. There are two enzymes
belonging to the cholinesterase group, AChE, which is present in the nervous system and
interrupts neurotransmission, and BChE found in the brain, serum, and nervous system.
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Table 4. Inhibition of acetylcholinesterases (AChE), butyrylcholinesterases (BChE), catalase and (SOD) superoxide dismutase
in teas with P. padus bark added.

Sample Inhibition of AChE
(µg Neostigmine/mL)

Inhibition of BChE
(µg Neostigmine/mL)

Inhibition of Catalase
(%)

Inhibition of SOD
(%)

Blank samples 9.6 ± 1.8 b 13.9 ± 1.0 a 34.5 ± 3.6 a 23.9 ± 1.3 b

C 8.9 ± 1.1 b 14.4 ± 1.0 ab 41.7 ± 4.4 ab 26.4 ± 0.9 bc

Ch 5.9 ± 1.7 a 16.2 ± 2.0 ab 37.2 ± 3.8 a 19.8 ± 1.4 a

P 15.8 ± 1.1 d 21.2 ± 1.0 c 62.9 ± 2.8 e 37.5 ± 2.3 e

T 7.2 ± 0.9 a 14.0 ± 0.3 a 43.9 ± 1.5 b 24.5 ± 1.3 b

BP5 10.6 ± 1.1 bc 14.7 ± 2.5 ab 45.7 ± 2.5 bc 26.9 ± 1.4 bc

BP10 12.0 ± 1.0 b 16.8 ± 1.4 b 50.1 ± 3.1 c 29.3 ± 1.9 c

BP15 11.0 ± 1.8 bc 17.3 ± 1.0 b 54.8 ± 2.0 cd 31.7 ± 2.2 cd

BP20 12.1 ± 0.1 c 18.5 ± 1.5 bc 57.2 ± 2.2 d 32.0 ± 1.5 cd

BP25 11.2 ± 0.6 bc 16.4 ±1.8 b 55.7 ± 2.9 cd 31.5 ± 1.0 c

BP30 12.0 ± 0.3 c 16.5 ± 1.6 b 58.9 ± 1.1 de 33.6 ± 0.5 d

The results are mean values of three determinations ± standard deviation. The values sharing the same letter in a line are not significantly
different (p ≤ 0.05).

Catalase, on the other hand, is a protein enzyme, a type of haemoprotein that plays a
vital role in cell protection and as an antioxidant. Superoxide dismutase enzymes catalyze
the dismutation of superoxide radicals to hydrogen peroxide (H2O2) and molecular oxygen
(O2), providing cellular defense against reactive oxygen species and consequently constitute
an important defense mechanism against superoxide radicals’ toxicity. As indicated by
the statistical analysis of the results, the mixture containing the addition of bird cherry
bark in the range of 10–30% of the share was characterized by a statistically higher activity
than the raw material base or the mixture with the addition of 5% bark. Catalasa and
SOD inhibition for the BP20, BP25, and BP30 trials, although nominally different, did not
differ statistically.

The results obtained for the inhibition of catalase and SOD enzymes were similar.
Again, the highest inhibitory activity was determined for the infusion of bird cherry bark
alone (P), 62.9 ± 2.8e % for catalase and 37.5 ± 2.3e% for SOD, and the lowest for the
infusion consisting of the base alone (B), 34.5 ± 3.6a% and 23.9 ± 1.3b%, respectively.
Concerning the bark teas, the highest activity was discovered for the infusion with 20%
addition of the tested material, the same as for AChE and BChE.

3.5. Inhibition of Glutathione Reductase, Inhibition of Glutathione Peroxidase

Glutathione reductase is a homodimeric flavoprotein and key antioxidant enzyme
in regard to maintaining an intracellular reducing environment, which is crucial for the
cell in combating oxidative stress. Glutathione peroxidase-1 is an intracellular antioxidant
enzyme that decreases hydrogen peroxide to water enzymatically in order to limit its
damaging effects.

Testing the ability to inhibit glutathione reductase and glutathione peroxidase, one
could spot that in both cases the highest values were obtained for the infusion in which
the only ingredient was bird cherry bark—87.0 ± 1.1e% for glutathione reductase and
64.9 ± 2.0d% for peroxidase (Table 5). Among teas with added bark, the highest activity
was determined for infusions with 25% addition of the tested material (BP25) (77.9 ± 1.6d%
and 53.3 ± 3.2c%) as well as 20% addition of bark (BP20) (74.2 ± 2.9cd and 53.7 ± 2.7c)
(Table 5).
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Table 5. Inhibition of glutathione reductase, inhibition of glutathione peroxidase.

Sample Glutathione Reductase
Inhibition (%)

Glutathione Peroxidase
Inhibition (%)

Blank samples 65.8 ± 3.1 b 40.9 ± 1.3 a

C 57.2 ± 2.2 a 44.3 ± 0.9 b

Ch 55.6 ± 4.1 a 39.8 ± 1.7 a

P 87.0 ± 1.1 e 64.9 ± 2.0 d

T 63.8 ± 4.5 b 44.4 ± 1.3 b

BP5 66.8 ± 2.5 b 46.1 ± 3.5 b

BP10 70.3 ± 3.1 bc 48.6 ± 4.1 bc

BP15 76.1 ± 0.9 d 52.2 ± 1.6 c

BP20 74.2 ± 2.9 cd 53.7 ± 2.7 c

BP25 77.9 ± 1.6 d 53.3 ± 3.2 c

BP30 72.0 ± 1.8 c 49.3 ± 4.1 bc

The results are mean values of three determinations ± standard deviation. The values sharing the same letter in a
line are not significantly different (p ≤ 0.05).

3.6. Sensory Analysis of Teas with the Addition of the Bark of P. padus

The dominant color for most samples of the tested teas containing the bark of bird
cherry was brown (Figure 2). Among all samples, green was the least noticeable color and it
ranged, in the terms of value, from 0.62 to 1.92. The samples were of heterogeneous clarity,
with sample P having the highest mean score of 5.5 and sample BP10 with the lowest score
(0.96). The teas containing bark of bird cherry were characterized by a variety of flavors,
the distinguishing feature of a sour aftertaste was dominant and it was followed by grassy
flavor, which was the second dominant flavor. It was demonstrated that sweet flavor was
rated on a 10-point scale ranging from 0.9 for sample C to 5.7 in the case of sample BP30. It
was also discovered that, among all studied types of teas, the fruity flavor was found to
be poorly recognizable, with intensity scores ranging from 0.7 to 3.44. Almost all samples
of the tea that contained the bark of bird cherry were scored very similarly in the terms
of color distinguishing feature and it was closer to brown. The Ch sample was of a more
intense brown color and was clearer.
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4. Discussion and Conclusions

In agriculture as well as in forestry, bird cherry is an issue because it disrupts the
ecosystem. Due to the abundant occurrence of bird cherry in natural ecosystems and its
low requirement when it comes to the growth conditions, and thus its ability to spread
easily and quickly, it seems unquestionable that finding an effective method of using its
properties in a wide industrial or food spectrum should become one of the most important
tasks for scientists and technologists nowadays. The use, and the elimination of bird cherry
at the same time, can limit its growth and its bark can be a source of many bioactive com-
pounds. Due to the high content of active compounds and the antioxidant and inhibitory
activities of bird cherry, as determined in this study, a new method can be indicated for the
elimination of the tree from the environment, with simultaneous efficient use of its bark for
nutritional purposes.

Products such as herbal infusions rich in polyphenol can support the prevention of
chronic diseases [5,10,22,23]. Bird cherry, due to the fact that it contains a lot of active
compounds, can be an attractive raw material to use in teas, however, the high content
of those substances can also make the taste of herbal infusions unattractive and specific.
Therefore, to meet the expectations of consumers and to improve the sensory values, it can
be used as an ingredient in mixtures that are used to prepare herbal teas. Such practices are
common in food technology, for example, to enrich products with bioactive components.
Similar research was conducted by Dziedzinski et al. (2020), and it was related to infusions
with the addition of hops, bringing an intense aroma, and in that case, it was also proved
that the developed recipe, which included hops as an ingredient, could be an interesting
alternative and a proposal in supporting the treatment and preventing the development of
neurodegenerative diseases [24].

New raw materials, such as bird cherry bark, which have not been used in industry so
far, may be a source of active compounds increasing the health-promoting value of food.
Currently, there are visible trends for the search for this type of raw materials, as well as
trends related to the management of waste materials or by-products of the food industry,
such products are, for example, bran, spent grain, or pulp after juice production. Therefore,
sustainable development that takes into account the acquisition of raw materials that do not
require agrotechnical treatments (bark of invasive plants) as well as the use of by-products
and additional processes increasing the stability of compounds in the processing process,
e.g., through the process of microencapsulation, allows you to maintain balance in the
environment and increase the nutritional value and functional properties of products [25].

In this study, it was confirmed that the addition of the bark of bird cherry can influence
the functional properties, which is the result of the specific composition of the compounds
present in the bark. According to earlier studies, a significant amount of polyphenols
was identified in certain anatomical parts of P. padus [5]. This may be the future of the
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management of bird cherry and the use of its bark for the purposes of food production.
The bark of bird cherry contains many bioactive compounds that are particularly rich
in catechins and their derivatives which contribute to the beneficial effects of herbal or
tea infusions, they effectively eliminate reactive oxygen species in vitro and may also
act indirectly as antioxidants thanks to their effects on transcription factors and enzyme
activity [26]. In 2015, scientists from Korea also studied the total content of polyphenol in
methanolic extracts from the bark of P. padus [27]. The bark was also a research material
for another group of scientists who determined the high content of phenolic in water
extracts and it was suggested by them that this could be a way to eliminate it from the
environment [28]. Those benefits may also be the result of the high antioxidant potential,
e.g., the reduction activity [27].

The classic antioxidant activity of polyphenols, based on their reducing properties,
includes the direct scavenging of reactive oxygen and nitrogen species (ROS and RFA) and
the reduction of the amount of ROS and/or RFA formed. This action is indirect through the
regeneration of other antioxidants such as α-tocopherol or β-carotene and by chelating or
reducing transition metals. Polyphenols have antioxidant properties due to their chemical
structure which determines the ability to easily donate hydrogen atoms and/or electrons.
Moreover, the phenoxy radicals of the polyphenols may participate in subsequent stages in
reactions characteristic for radicals, such as dimerization or reactions with other radicals,
they may also undergo further oxidation to the ochinone form. Moreover, in addition
to their classic antioxidant activity, polyphenols can act as antioxidants, influencing the
intracellular redox balance, thanks to other mechanisms such as inhibition of “pro-oxidative”
enzymes, such as eg lipoxygenase [5,27].

Such actions may indicate the personalized use of the bark of bird cherry in the preven-
tion of neurodegenerative diseases. Acetylcholinesterase (AChE) and butyrylcholinesterase
(BChE) are two enzymes that are sensitive to different chemicals and have the ability to
bind to key parts of enzymes. They are sensitive to a broad spectrum of molecules. The
research on natural inhibitors which resulted in creating, e.g., physostigmine and galan-
tamine, began years ago, and more recently, synthetic synthetic versions of these products
were also introduced [29]. Our study presented a highly visible property of inhibiting
cholinesterases in bird cherry bark. The search for this type of material was commenced
by other researchers. Yang et al. (2015) analyzed Peganum harmala L. and stated that
the 2-aldehyde tetrahydroharmine contained in it can inhibit both AChE and BChE [30].
Polyphenols may also have other properties concerning catalase inhibition. Catalase is pro-
duced by aerobic organisms. It takes part in cell protection by degrading reactive oxygen
species. Thus, catalase may prove helpful in chronic inflammation [31], whereas SOD is one
of the main antioxidant enzymes that protect against the harmful effects of reactive oxygen
species on the cell [32]. Our results for inhibition of catalase and SOD enzyme indicate
high inhibitory activity of bird cherry bark, proving that it can be a relevant ingredient for
improving the functional properties of food products.

The research also evaluated the property of infusions to inhibit glutathione peroxidase,
which is an intracellular antioxidant enzyme, and glutathione reductase, which catalyzes
the reduction of glutathione disulfide to the sulfhydryl form, a molecule crucial for com-
bating oxidative stress and maintaining the intracellular reducing environment [33,34].

The quality of food consists of its nutritional value, health safety, and, above all,
sensory characteristics which should be accepted by consumers. This can be achieved by
using different types of combinations, mixing together ingredients with a specific taste,
aroma, and color to obtain a product with the best health-promoting property for the
consumer and a pleasant and desirable taste. When carrying out this study, a product both
tasty and having many health-promoting properties resulting from the antioxidant and
inhibitory activity against key enzymes in neurodegenerative diseases was obtained.
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14. Öztürk, M.; Duru, E.; Kivrak, Ş.; Mercan-Doĝan, N.; Türkoglu, A.; Özler, M.A. In vitro antioxidant, anticholinesterase and
antimicrobial activity studies on three Agaricus species with fatty acid compositions and iron contents: A comparative study on
the three most edible mushrooms. Food Chem. Toxicol. 2011, 49, 1353–1360. [CrossRef] [PubMed]

15. Hanafy, D.M.; Prenzler, P.D.; Burrows, G.E.; Ryan, D.; Nielsen, S.; El Sawi, S.A.; El Alfy, T.S.; Abdelrahman, E.H.; Obied,
H.K. Biophenols of mints: Antioxidant, acetylcholinesterase, butyrylcholinesterase and histone deacetylase inhibition activities
targeting Alzheimer’s disease treatment. J. Funct. Foods 2017, 33, 345–362. [CrossRef]

16. Baranowska-wójcik, E.; Szwajgier, D.; Winiarska-mieczan, A. Regardless of the brewing conditions, various types of tea are a
source of acetylcholinesterase inhibitors. Nutrients 2020, 12, 709. [CrossRef]

17. Watanabe, M.; de Moura Neiva, L.B.; da Costa Santos, C.X.; Rafael Martins Laurindo, F.; de Fátima Fernandes Vattimo, M.
Isoflavone and the heme oxygenase system in ischemic acute kidney injury in rats. Food Chem. Toxicol. 2007, 45, 2366–2371.
[CrossRef]

http://doi.org/10.1080/14786410903230359
http://www.ncbi.nlm.nih.gov/pubmed/21347973
http://doi.org/10.1016/j.jep.2012.09.023
http://doi.org/10.1080/10942912.2020.1843486
http://doi.org/10.1016/0378-8741(91)90056-J
http://doi.org/10.1080/10408390903001719
http://doi.org/10.2174/1871527316666170223161004
http://www.ncbi.nlm.nih.gov/pubmed/28240188
http://doi.org/10.1016/j.rechem.2020.100041
http://doi.org/10.3390/su12051938
http://doi.org/10.1080/19476337.2019.1653378
http://doi.org/10.1016/j.bioelechem.2008.03.003
http://doi.org/10.1016/j.jfca.2012.02.004
http://doi.org/10.1016/j.fct.2011.03.019
http://www.ncbi.nlm.nih.gov/pubmed/21419821
http://doi.org/10.1016/j.jff.2017.03.027
http://doi.org/10.3390/nu12030709
http://doi.org/10.1016/j.fct.2007.06.013


Sustainability 2021, 13, 3913 15 of 15

18. Parschat, K.; Canne, C.; Hüttermann, J.; Kappl, R.; Fetzner, S. Xanthine dehydrogenase from Pseudomonas putida 86: Specificity,
oxidation-reduction potentials of its redox-active centers, and first EPR characterization. Biochim. Biophys. Acta Protein Struct. Mol.
Enzymol. 2001, 1544, 151–165. [CrossRef]

19. Moreira, P.R.; Maioli, M.A.; Medeiros, H.C.D.; Guelfi, M.; Pereira, F.T.V.; Mingatto, F.E. Protective effect of bixin on carbon
tetrachloride-induced hepatotoxicity in rats. Biol. Res. 2014, 47, 49. [CrossRef]

20. Singh, R.P.; Padmavathi, B.; Rao, A.R. Modulatory influence of Adhatoda vesica (Justicia adhatoda) leaf extract on the enzymes of
xenobiotic metabolism, antioxidant status and lipid peroxidation in mice. Mol. Cell. Biochem. 2000, 213, 99–109. [CrossRef]

21. Telichowska, A.; Kobus-Cisowska, J.; Ligaj, M.; Stuper-Szablewska, K.; Szymanowska, D.; Tichoniuk, M.; Szulc, P. Polyphenol
content and antioxidant activities of Prunus padus L. And Prunus serotina L. Leaves: Electrochemical and spectrophotometric
approach and their antimicrobial properties. Open Chem. 2020, 18, 1125–1135. [CrossRef]

22. Kobus-Cisowska, J.; Szymanowska, D.; Maciejewska, P.; Kmiecik, D.; Gramza-Michałowska, A.; Kulczyński, B.; Cielecka-Piontek,
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