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Abstract: Road traffic injuries are a major cause of morbidity and mortality worldwide and currently
rank ninth globally among the leading causes of disease burden regarding disability-adjusted life
years lost. Nonthaburi and Pathum Thani are parts of the greater Bangkok metropolitan area, and
the road traffic injury rate is very high in these areas. This study aimed to identify the environmental
factors affecting road traffic injury risk prone areas and classify road traffic injuries from an envi-
ronmental factor dataset using machine learning algorithms. Road traffic injury risk prone areas
were set as the dependent variables for the analysis, with other factors that influence road traffic
injury risk prone areas being set as independent variables. A total of 20 environmental factors were
selected from the spatial datasets. Then, machine learning algorithms were applied using a grid
search. The first experiment from 2017 in Nonthaburi and Pathum Thani was used for training the
model, and then, 2018 data from Nonthaburi and Pathum Thani were used for validation. The second
experiment used 2018 Nonthaburi data for the training, and 2018 Pathum Thani data were used
for the validation. The important factors were grocery stores, convenience stores, electronics stores,
drugstores, schools, gas stations, restaurants, supermarkets, and road geometrics, with length being
the most critical factor that influenced the road traffic injury risk prone model. The first and second
experiments in a random forest model provided the best model environmental factors affecting road
traffic injury risk prone areas, and machine learning can classify such road traffic injuries.

Keywords: road traffic injury; environmental factors; machine learning

1. Introduction

According to the World Health Organization (WHO), 1.2 million people die because
of road traffic collisions every year. On average, 3242 people are killed daily. Approx-
imately, 20–50 million people are injured or disabled in traffic collisions. Furthermore,
road traffic injuries are a leading cause of death among young people (15–19 years of age).
Approximately, 90% of road traffic deaths occur in low- and middle-income countries [1].

Road traffic injuries are a major cause of morbidity and mortality worldwide, espe-
cially in low- and middle-income countries, and they currently ranks ninth globally among
the leading causes of disease burden regarding disability-adjusted life years lost.

Studies have shown that road traffic accidents (RTAs) have complicated consequences,
which are caused by human, vehicle, and environmental factors. The impact of the environ-
mental factors, in terms of road traffic accidents, has been of interest to researchers for a long
time. Researchers are interested in weather/seasonal effects on road traffic injuries. Jones
et al. [2] studied the influence of geographical variations on RTAs and found a significant
association between rainy and foggy days with an increase in the number of road traffic
accidents, while some researchers are interested in the influence of lighting conditions on
road traffic injuries. Light conditions can be affected by mist and dewdrops that noticeably
and continuously fluctuate around the environment. Lam et al. [3] focused on the impacts
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of light on pedestrian-related accidental cases. In addition, some researchers are interested
in the point of interest (POI) that affects road traffic accidents. Jia et al. [4] studied a spatial
clustering method for macro-level traffic crash analysis based on open-source POI data and
traffic crashes. They found that residential density, bank, and hospital POIs have signif-
icant positive impacts on traffic crashes, whereas stores, restaurants, and entertainment
venues are found to be irrelevant for traffic crashes. Therefore, environmental factors have
great importance due to their effects on traffic accident severity and their injuries. More
importantly, some of these factors are controllable by addressing engineering and track
designing problems.

For many years, identifying hotspots and traditional statistical modeling have been
standard methods for finding the causes of road traffic injuries. Identifying the hotspots of
road traffic injuries is an important factor for detecting risk-prone areas. Hotspot detection
techniques, such as Getis-Ord Gi*, local Moran’s I, and kernel density estimation, have
been used to investigate the impacts of accidents [5,6]. Moreover, the spatial correlations
between crash occurrence and the spatial dependence of crashes have also been investi-
gated [7]. Ulak et al. [7] compared the accuracy and performance of hotspot delineation
using different hotspot detection techniques (Getis-Ord Gi*, local Moran’s I, KLINCS
(K-function local indicators of network-constrained clusters), and KLINCS-IC (Inverse
Cost)) under different roadway network-based spatial weights. Several similar research
projects have been conducted for hotspot analysis comparison purposes [8]. Several types
of research have examined the correlation between behavior and location. Bil et al. [9]
studied the spatiotemporal expression of a hotspot by using the kernel density estimation
(KDE)+ from crash data over 3 years, as did Liu and Sharma [10].

Hotspot analysis is case-based and requires a road traffic injury dataset to analyze the
hotspot. This method does not indicate factors influencing road traffic injuries and is not
applicable if road traffic injuries data are not available.

Over the last decade, traditional statistical techniques have been implemented to study
the relationship between road severity and influencing factors. Yan et al. [11] illustrated that
seven road environment factors (number of lanes, divided/undivided highway, accident
time, road surface condition, highway character, urban/rural, and speed limit), five factors
related to prominent roles (vehicle type, driver’s age, alcohol/drug use, driver’s residence,
and gender), and four factors related to struck roles (vehicle type, driver’s age, driver’s
residence, and gender) are significantly associated with the risk of rear-end accidents.
Furthermore, a significant interaction effect was observed among those risk factors when
analyzed with logistic regression. Karacasu et al. [12] showed that vehicle type, purpose,
education level, seat belts, and traffic signs are related to traffic accidents. However,
different road accident severities depend on the independent variable, which means risk-
prone areas depend on their environment.

Traditional statistical techniques are based on parametric assumptions and are use-
ful in finding relationships between variables and the significance of those relationships.
Machine learning algorithms can learn from the data without relying on rule-based pro-
gramming. To overcome the limitation of traditional statistical techniques, nonparametric
methods and artificial intelligence models have been used in different domains, including
traffic accidents. Yeoum and Lee [13] developed an accident prediction model to predict the
chance of accident occurrences for the Republic of Korea Air Force using an artificial neural
network (ANN) and logistic regression analysis. Aircraft accident records for 30 years were
used during the analysis and revealed that 9 out of 13 selected variables influence these
incidents. Machine learning and artificial intelligence are also becoming popular in other
domains, such as hydrology [14] and the construction industry [15].

In the context of traffic accidents, many researchers have tried to improve accuracy
by focusing on area and population techniques. For instance, Elvik et al. [16] focused on a
road bridge in Norway, and Yang et al. [17] attempted to study two-wheel electric vehicle
drivers at intersections. However, these techniques are limited to a small dataset, and a
detailed analysis of factors associated with accidents is recommended. In Thailand, there



Sustainability 2021, 13, 3907 3 of 25

remains a scarcity of studies on the prediction of road traffic injuries with a large dataset.
The assessment and prediction of road traffic injuries in risk-prone areas is now a necessity
to reduce these incidents.

Spatial prediction of road traffic injuries in risk-prone areas is a crucial step for road
traffic injury hazard mitigation and management. The spatial probability of road traffic
injuries in risk-prone areas can be expressed as the probability of spatial occurrence of a set
of environmental conditions. Producing a reliable spatial prediction of road traffic injuries
in risk-prone areas is not possible. For this reason, various approaches have been proposed
in the literature.

The ability to solve nonlinear problems makes machine learning algorithms applicable
to traffic accident analysis. Chong et al. [18] summarized the performance of four machine
learning paradigms applied to model the severity of the injuries that occur during traffic
accidents. Experimental results revealed that among the machine learning paradigms
considered, a hybrid decision tree-neural network approach outperformed the individual
approaches. Rahman et al. [19] evaluated the machine learning techniques to analyze
pedestrian and bicycle crashes at a macro-level. A gradient boosting method outperformed
other competing traditional techniques for macro-level crash prediction models. Similarly,
Kashani et al. [20] studied the injury severity of pillion passengers in Iran over four years.

Moreover, machine learning algorithms can learn from a large training dataset at a fast
learning rate. Arhin and Gatiba [21] implemented support vector machines (SVMs) and
Gaussian naïve Bayes classifiers (GNBCs) to predict the injury severity of crashes. A total of
3307 crashes that occurred from 2008 to 2015 were used to develop the models (eight SVM
models and a GNBC model). The SVM model based on the radial basis kernel function was
found to be the most accurate model. This model was able to predict accident-related injury
severity with an accuracy of approximately 83.2%. GNBC showed the lowest classification
accuracy of 48.5%.

In this study, there are two research questions: (1) Can machine learning predict road
traffic injuries in the same study area but for different years? (2). Can machine learning
of a road traffic injury model for the Nonthaburi area predict road traffic injuries in the
Pathum Thani area?

This paper is structured as follows: Section 2 provides information about the study
area: Nonthaburi and Pathum Thani, both of which are developing areas near Bangkok
with frequent road traffic accidents. This section describes the datasets that are used for
analysis. Section 3 details the experiments and results. The overall methodology of the
research is described in Section 4, which provides a discussion, conclusions of the research,
and recommendations for further improvement. Recommendations for policymakers are
also included.

2. Data and Methods
2.1. Case Study

Two developing provinces of Thailand, Nonthaburi and Pathum Thani, were selected
for this research. Both provinces are adjacent to Bangkok, the economic center of Thailand,
and are secondary areas of the city.

Nonthaburi has two city municipalities, seven town municipalities, and eleven sub-
district municipalities. Pathum Thani has one city municipality, nine town municipalities,
and seventeen subdistrict municipalities. Nonthaburi is a densely populated city, whereas
Pathum Thani is a densely industrial city. As of 2017, the human achievement index of
Nonthaburi and Pathum Thani was 0.68 and 0.64, respectively.

Nonthaburi and Pathum Thani comprise part of the greater Bangkok metropolitan
area. They incur a high number of road traffic injuries. Road traffic injuries occur in
places of cities where residential, industrial, and commercial areas are located. These
areas are the focus of all kinds of human activities, providing economic opportunities
to their inhabitants, which attract the rural population in mass. In these urban areas, a
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large proportion of people, including migrants from rural areas, commute every day using
different modes of transportation, exposing them to the risk of road traffic injuries.

2.2. Data

To analyze the correlation between environmental factors and road traffic injury risk
prone areas, the road traffic injury risk prone areas were set as dependent variables, and
other factors that influence those road traffic injury risk prone areas were set as independent
variables. A total of 20 environmental factors were considered from the spatial datasets.
Road traffic injuries datasets obtained from 2017 and 2018 were used for the training and
validation, respectively. The factors from the maps were resampled into a 50 m × 50 m
grid format using the FISHNET tool in QGIS. Figure 1 shows data of this study.
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2.2.1. Environmental Factors

It is not easy to obtain accurate and reliable dataset from the government. This is an
obstacle to spatial data analysis. However, with the help of open-source data, the data at
the point of interest are reliable. POIs can be collected from many sources. However, they
may not be a common factor used to analyze traditional road traffic injuries. Nevertheless,
these POI data are specifics of land use factors with accurate location data that are expected
to be related to users’ characteristics and road traffic injuries.

Due to the fact that traffic volume data do not include historical data in the year
required, the study focused on POI-based spatial data analysis, including a road dataset
and satellite index. The POI data were included with road traffic injury data later. The
advantage of POI data is that the data precisely represent land use, which leads to precise
solutions. The environmental factors were collected from three sources: Place Application
Programming Interface (Place API), the road, and Sentinel-2. Place Application Program-
ming Interface (Place API) Current open-source data provide precise location intelligence
and comprehensive location data. For this study, the environmental factors affecting road
traffic accidents and the set of environmental factors derived from the point of interest
were used as input factors for machine learning algorithms to predict road traffic accident
injuries. For the analysis, a dataset of twenty explanatory variables was derived from a
web map service. The variables include grocery stores, convenience stores, home goods
stores, food stores, clothing stores, electronics stores, furniture stores, car repair shops,
clothing stores, hardware stores, health care facilities, pet stores, bicycle stores, electronic
repair shops, drugstores, supermarkets, shoe stores, schools, gas stations, and restaurants.
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Each explanatory variable was reclassified using standard deviation. All of the re-
classified variables were then converted to a 50 m × 50 m grid format using a spatial
joins operation.

Road

Although the study focused on POI data, common factors were also used to analyze
traditional road traffic injuries, such as length and road data intersection.

A road dataset was obtained from the Nonthaburi office of public works and town
and country planning. Two explanatory variables, length, and intersection were derived
from the road dataset. Each explanatory variable was reclassified using standard deviation
and then converted into a 50 m × 50 m grid format using a spatial joins operation.

Sentinel-2

The normalized difference built-up index (NDBI) has been useful for mapping urban
built-up areas. Sentinel-2 satellite images covering the study area on 27 April 2017 were
downloaded, and the NDBI was extracted. The NDBI raster was also reclassified and
reprojected to a 50 m pixel size.

Descriptive statistics of the independent variables of Nonthaburi and Pathum Thani
Provinces are given in Tables 1 and 2, respectively, and show the amount of data in the
study area. The average column is the average number of data layers found in an area. The
max column is the maximum number of data layers found in an area, and the min column
is the minimum number of data layers found in an area. The table includes the number of
points in POI dataset from grocery to intersection and the length of the road is measured
in meters.

According to the dataset in Tables 1 and 2, the data are unbalanced and distributed.
Some data layers have a high standard deviation because the data points are spread out
over an extensive range of values. Tables 1 and 2 shows which point of interests are popular
in the study area.

Table 1. Characteristic parameters of the road environment in Nonthaburi Province 2017.

Environmental
Factors Sum Average Max Min Standard

Deviation

Grocery 434 0.17 6 0 0.55
Convenience 308 0.12 7 0 0.49
Home goods 434 0.17 6 0 0.55

Clothing 132 0.05 6 0 0.29
Electronic 189 0.07 3 0 0.31
Furniture 182 0.07 5 0 0.36
Car repair 143 0.05 4 0 0.28
Hardware 30 0.01 2 0 0.12

Health 39 0.01 2 0 0.13
Pet 44 0.02 2 0 0.15

Bicycle 29 0.01 2 0 0.11
Drugstore 30 0.01 3 0 0.12

Supermarket 21 0.01 2 0 0.09
Shoe 22 0.01 4 0 0.12

School 200 0.08 4 0 0.32
Gas station 338 0.13 8 0 0.56
Food store 2777 1.06 26 0 2.86

Intersection 38,874 14.85 135 0 17.75
Length 3,976,807 1519.02 7624.64 0 1205.52
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Table 2. Characteristic parameters of the road environment in Pathum Thani Province 2017.

Environmental
Factors Sum Average Max Min Standard

Deviation

Grocery 862 0.14 9 0 0.56
Convenience 481 0.08 11 0 0.42
Home goods 366 0.06 4 0 0.29

Clothing 128 0.02 6 0 0.18
Electronic 319 0.05 13 0 0.36
Furniture 320 0.05 9 0 0.33
Car repair 272 0.04 21 0 0.49
Hardware 73 0.01 3 0 0.12

Health 53 0.01 3 0 0.10
Pet 42 0.01 3 0 0.09

Bicycle 47 0.01 2 0 0.09
Drugstore 47 0.01 2 0 0.09

Supermarket 35 0.01 2 0 0.08
Shoe 33 0.01 2 0 0.07

School 313 0.05 5 0 0.28
Gas station 489 0.08 8 0 0.43
Food store 3261 0.52 30 0 2.03

Intersection 33,123 5.26 120 0 8.37
Length 5,662,197 898 6238 0 856

2.2.2. Road Traffic Injury Data

Thailand is ranked third in the world for road traffic deaths base on The World Health
Organization (WHO) report published in 2013. Traffic accident data were provided by
the Road Accidents Data Center for Road Safety. Accident severity data were obtained
from the Road Accidents Data Center for Road Safety Culture in Thailand. Traffic Accident
data was collected from claims that had been filed under the Protection for Motor Vehicle
Victims Act from RVP Company Limited in the provinces under study. The dataset includes
the location of deadly accidents across the country and other reliable information about
the accidents.

Table 3 shows the dataset, which includes the date, time, type of vehicle, number of
injuries, fatalities, and the description of the accident including the coordinates (latitude,
longitude) of the accident.

Table 3. Example of road accident data from the Center for Road Safety Culture in Thailand dataset.

Date Time Type Injury Fatality Description Latitude Longitude

1/1/2015 05:20 Motorcycle 75 CC 1 0 Inverted car 13.80 100.45
1/1/2015 17:00 Motorcycle 75 CC 2 0 Inverted car 13.83 100.37
1/2/2015 01:00 Truck 1 0 Car crash people 13.82 100.46

In this research, road traffic injuries that occurred from 2017-01-01 00.00 CET to 2018-
12-31 23.59 CET in Nonthaburi and Pathum Thani Provinces were considered.

In total, from 2017 to 2018 there were 5766 incidents with 6893 victims in Nonthaburi
Province. In Pathum Thani Province, the number of reported incidents was 11,965 with
14,092 victims.

Figure 2 shows the grid area with the location of road traffic injury incidents in the
high and low road traffic injury grid, respectively. The number of red dots represents the
frequency of road traffic injuries.
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2.2.3. Road Traffic Injury Risk Prone Areas

To analyze the relationship between factors related to road traffic injuries, the re-
searchers were required to create a road traffic injury risk prone area map to store the data
of dependent variables on the map. All independent variables were then added to the
map. Finally, we took a statistical analysis to find the independent variables related to the
dependent variables. For the preparation of the road traffic injury risk prone area map,
the researchers used kernel density estimation techniques to manage the data-dependent
variables.

The kernel density estimation (KDE) method has been considered as one of the best
approaches to study and explain the spatial patterns that exist in various parameters [22].
Compared to methods such as the statistical hotspot and clustering approaches, KDE has
been found to produce better results. KDE is more advantageous as the use of the density
function allows one to define an arbitrary spatial unit that is homogenous for the given
area. This ultimately assists in the comparison and classification task.

A count model was used to aggregate the preprocessed data. Furthermore, KDE
was used to generate a probability distribution function for the POI features. The natural
breaking algorithm was applied to identify the optimal arrangement of POI density values,
and the clusters were then reclassified.

In KDE, an asymmetrical surface is placed over each point, and a mathematical
operator is used to evaluate the distance between a reference location and the points. The
distances from the reference location to all the points on the surface.

The density estimates from KDE were classified into several classes based on the
levels of the density areas using a natural break cluster. The natural break algorithm
was used as it minimizes the inter-class variance and maximizes the intra-class variance.
This algorithm iteratively calculates the breaking points to obtain the sets of breaks with
minimum in-class variation and maximum between-class variation. The ordered data were
divided into groups.

The independent variables of this study are environmental factors, such as point of
interested road and the NDBI, and the dependent factor of this study is the road traffic
injury risk prone area.

The classes of accident severity, which are the numbers of traffic accidents with injuries
per grid unit (50 m × 50 m) per period, were examined in the grid. The study’s period for
training was the calendar year of 2017 and that for testing was the calendar in 2018. The
sequence was divided into the following three levels:

1. A low number of injured persons per a grid had an accident severity of 0–2 cases.
2. A moderate number of injured persons per a grid had an accident severity of 2–

15 cases.
3. A high number of injured persons per a grid had an accident severity of more than

15 cases.

Figure 3 shows the road traffic injuries and risk-prone area severity distribution in
Nonthaburi and Pathum Thani Provinces. The database used for road traffic injury severity
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analysis also includes other independent variables for each crash: point of interest, road
characteristics, and urban index, as shown in Tables 4 and 5.

Table 4. Characteristic parameters of the road environment in Nonthaburi Province in 2017.

Mean Standard Deviation

Low Number
of Injured

Persons

Moderate
Number of

Injured
Persons

High Number
of Injured

Persons

Low Number
of Injured

Persons

Moderate
Number of

Injured
Persons

High Number
of Injured

Persons

Grocery 0.14 0.29 0.47 0.50 0.70 1.12
Convenience 0.07 0.38 0.73 0.33 0.93 1.34
Home goods 0.14 0.29 0.47 0.50 0.70 1.12

Clothing 0.04 0.15 0.20 0.22 0.51 0.83
Electronic 0.05 0.16 0.36 0.26 0.48 0.71
Furniture 0.05 0.17 0.37 0.28 0.59 0.96
Car repair 0.04 0.16 0.27 0.22 0.53 0.58
Hardware 0.01 0.02 0.02 0.11 0.16 0.13

Health 0.01 0.04 0.07 0.10 0.24 0.25
Pet 0.01 0.05 0.03 0.12 0.26 0.18

Bicycle 0.01 0.03 0.03 0.09 0.20 0.18
Drugstore 0.01 0.02 0.05 0.11 0.15 0.22

Supermarket 0.01 0.01 0.03 0.09 0.11 0.18
Shoe 0.00 0.03 0.05 0.07 0.29 0.29

School 0.05 0.23 0.24 0.26 0.56 0.60
Gas station 0.08 0.43 0.66 0.41 1.06 1.31
Food store 0.76 2.87 4.46 2.25 4.77 5.85

Length 1.35 1.69 1.81 0.48 0.46 0.39
Intersection 2.50 2.70 2.73 0.54 0.58 0.52

NDBI 2.49 2.64 2.69 0.56 0.57 0.50

Table 5. Characteristic of road environment in Pathum Thani Province in 2017.

Mean Standard Deviation

Low Number
of Injured

Persons

Moderate
Number of

Injured
Persons

High Number
of Injured

Persons

Low Number
of Injured

Persons

Moderate
Number of

Injured
Persons

High Number
of Injured

Persons

Grocery 0.11 0.60 1.25 0.49 1.17 1.43
Convenience 0.04 0.63 1.29 0.30 1.04 1.63
Home goods 0.04 0.29 0.61 0.24 0.63 0.99

Clothing 0.01 0.14 0.25 0.13 0.54 0.59
Electronic 0.03 0.31 0.46 0.30 0.84 1.10
Furniture 0.03 0.36 0.64 0.23 0.96 1.25
Car repair 0.03 0.28 0.75 0.37 1.41 1.11
Hardware 0.01 0.07 0.04 0.11 0.26 0.19

Health 0.01 0.02 0.07 0.09 0.13 0.26
Pet 0.00 0.04 0.11 0.08 0.18 0.31

Bicycle 0.00 0.06 0.07 0.06 0.27 0.26
Drugstore 0.00 0.05 0.07 0.08 0.23 0.26

Supermarket 0.01 0.01 - 0.08 0.10 -
Shoe 0.00 0.04 - 0.06 0.18 -

School 0.04 0.24 0.36 0.24 0.60 0.87
Gas station 0.05 0.50 1.18 0.33 1.06 1.81
Food store 3.45 7.25 1.43 5.15 7.02 3.45

Length 1.41 1.81 2.00 0.50 0.42 -
Intersection 2.51 2.69 2.68 0.57 0.50 0.55

NDBI 2.51 2.62 2.61 0.58 0.52 0.50
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Road traffic injury risk prone area severity was classified into three levels. level 1,
representing low-frequency injuries, which accounted for 59.8% of the total crashes in
Nonthaburi Province and 87.54% of the total crashes in Pathum Thani Province; level 2,
denoting moderate-frequency injuries, which accounted for 33.95% of the total crashes
in Nonthaburi Province and 9.24% of those in Pathum Thani Province; and level 3, rep-
resenting high-frequency injuries with small proportions of 6.25% and 3.22% of the total
crashes in Nonthaburi and Pathum Thani, respectively. The road traffic injury risk prone
area severity distribution in Nonthaburi and Pathum Thani is shown in Figure 3.

Figure 4 shows examples of environmental factors, such as roads of various sizes,
water features, and land use. The transparent red box represents the high-frequency injury
area. The transparent blue box represents the moderate-frequency injury area, and the
remaining area represents the low-frequency road traffic injury area.

Tables 4 and 5 shows each data layer’s average and standard deviation by splitting the
data into three groups: first, a low number of injured persons per grid; second, a moderate
number of injured persons per grid; and third, a high number of injured persons per grid.

The class of independent variables analyzed from the grid is the number of indepen-
dent variables with a grid unit (50 m × 50 m) per period. The grid was regrouped by using
kernel density estimation values from road traffic injuries previously mentioned in the
Section 2.2.3; the independent variables obtained from each group of road traffic injuries
were counted, and the descriptive statistic of each groups are shown.
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Figure 4. Example of road traffic injury severity areas in Pathum Thani Province.

Tables 4 and 5 show the low number of injuries in the grid in Nonthaburi; the most
common POIs in Nonthaburi’s grid are restaurants, which is the same for Pathum Thani.
Restaurants displayed the same value in both the moderate and low numbers of injured
persons sections. In the high number of injured persons sections, restaurants, and gas
station can be observed. It is noted that as the number of injuries increases, the average of
each type of data increases accordingly.

The relationship between the dependent variable and the independent variable can be
summarized with the following mathematic equation:

Y = β0 + β1X1 + β2X2 + . . . + βiXi

Y = Dependent variable or road traffic injuries;

β0= Intercept;

βi = Slope for Xi;

X = Independent variable or environmental variables.

2.3. Overall Methodology

Figure 5 shows the flow chart of machine learning algorithms for the classification of
road traffic injury risk prone areas.

To analyze the correlation between environmental factors and road traffic injury risk
prone areas, the relevant factors were collected from Place API, the road, and Sentinel maps.
Each unit analysis in the training dataset has a label that indicates the road traffic injury risk
prone area level (dependent variable), as they are paired with individual environmental
factors (independent variables).
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A multiple linear regression model was developed to analyze the relations between
the response (dependent) variable and the predictor (independent) variables. The annual
frequency of road traffic accidents was used as the basic variable to conduct statistics and
analysis. Regression analysis helps in understanding the association between one or more
predictor (independent) variable and one continuous dependent (or outcome) variable.
In regression analysis, the dependent and independent variables are denoted by “Y” and
“X”, respectively. Thus, in this research, “Y” represents the road traffic injuries and “X”
represents environmental variables.

From the research methodology, an important challenge is class imbalance data man-
agement. Imbalanced classification issues are common in many science fields, To overcome
imbalanced dataset problem, many approaches have been developed. As the road safety
domain is based on a matched case–control design [23], synthetic minority oversam-
pling [24,25], or a combination of minority over-sampling and maximum dissimilarity
undersampling [26], the production of a balanced training dataset was proposed in this
study. The algorithm area is based on bootstrap aggregation [27].

The synthetic minority oversampling technique (SMOTE) is a popular oversampling
technique that generates new synthetic datasets around the minority samples. The syn-
thetic data for the minority classes are generated by interpolating around the nearest
neighbors of the consecutive minority class [28]. The SMOTE is useful for well-sampled
lower dimensional data compared to higher dimensional data. The generative bias (the
generation of synthetic instances within majority classes or not near the minority classes)
in the good samples’ lower dimension data is lower. The combination of bootstrap aggre-
gation (bagging) and under-sampling has been found to outperform other strategies for
handling imbalanced datasets [29].

In this research, balanced bootstrap training samples were generated, and then an
ensemble of classifiers were used for classification task [29].

The strategy implemented is as follows:

1. Random splitting of the dataset into training and test datasets in the ratio of 70:30.
2. From the training set, n bootstrap samples are taken.
3. Random down sampling is used to balance each of the samples.
4. A classifier is trained to the balanced samples.
5. The classifier is used on the test dataset, and the outcome is predicted.
6. The final decision is made based on majority voting.
7. The metrics are derived using the model’s outcomes and the actual observation in the

holdout, and the classifier’s performance is assessed.
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The process is iterated n times to obtain robust results; thus, it is somewhat similar
with a nested cross-validation concept [30]. In the present case, n = 5 iterations (i.e.,
ensembles) features different randomly sampled training and test datasets as they are
carried out.

Machine learning algorithms were then implemented using a grid search. Grid search
is the process of scanning the data to configure optimal parameters for a given model. The
grid search approach can be implemented across a variety of machine learning algorithms
to identify the best parameter combination [31].

Once the best model was obtained using the grid search, the model’s performance
was assessed on the test data. By comparing the predicted and observed severity of road
traffic injury risk prone area levels, the accuracy, which indicates the correctly classified
proportion, was calculated. Accuracy indicated the model’s classification performance.

In this study, we used three machine learning algorithms, namely, naïve Bayes, a
support vector machine, and random forest. This is because (1) the naïve Bayes classifier is
a quick and simple algorithm that can solve various classification problems, and it is easy
to implement, as only the probability is calculated. (2) SVM works well when there is a
clear margin of separation between classes and excellent theoretical guarantees regarding
overfitting. It can work well with an appropriate kernel even if data are not linearly
separable in the base feature space, and it is often used for text classification problems that
have very high dimensions. (3) Random forest works well with nonlinear data and large
datasets. Like SVMs, it seems to be quite popular nowadays, but it has some advantages
over SVMs, such as its fast speed and scalability, and it does not concern many parameters
like SVM does. All of these algorithms have their own merits.

As previously mentioned, three machine learning algorithms, SVM, naïve Bayes,
and random forest, were assessed in this research. In addition, this study also used cross-
validation and grid search techniques to reduce the risk of losing important patterns/trends
in the dataset, which in turn increases error induced by bias.

In road traffic injury modeling, the primary step was the development of the models,
which was conducted over several phases. The data were randomly split into two sets:
training and validation sets, and there are three research questions of this study. For this
study, machine learning was tested in terms of two research questions.

First research question: Can machine learning predict road traffic injuries in the same
study area but for different years?

Second research question: Can machine learning of a road traffic injury model for the
Nonthaburi area predict road traffic injuries in the Pathum Thani area?

3. Experiments and Results
3.1. Variable Control for the Machine Learning Model

The experiment was divided into three types: own province with a different year,
dataset, own province with a different area dataset, and own province for the grid search.
The first research question is as follows: can machine learning predict road traffic injuries
in the same study area but for different years?

In the first case (different year dataset), the dataset for 2017 was used to train the
model, and the dataset for 2018 was used for validation. In Nonthaburi Province, 2639
records in 2017 were used for model development, and 2639 records in 2018 were used to
test the model’s performance. Likewise, in Pathum Thani Province, 6302 records from 2017
were used for the development of the model, and 6302 records from 2018 were used for the
validation of the model.

The second research question is as follows: can machine learning of the road traffic
injuries in the Nonthaburi area predict road traffic injuries in the Pathum Thani area?

In the second case (different area dataset), the dataset of Nonthaburi Province in 2017
was used for model development, and the model was tested in Pathum Thani Province
for the same year. Thus, 2639 records from Nonthaburi Province were used for the de-
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velopment of the model, and 6302 records from Pathum Thani were used to validate the
developed model for implementation in Pathum Thani Province.

3.2. Validation Methods

An assessment of the model’s performance using an imbalanced dataset may not be
reliable, as the performance metrics used to evaluate the quality of the model may result in
misleading conclusions.

Several metrics can be calculated and used to describe and evaluate the quality and
overall predicted performance of the machine learning models. For the classification task,
most of the metrics can be derived from the confusion matrix. The confusion matrix is a
two-dimensional contingency matrix that illustrates the performance of classifiers on a set
of test data whose actual values are already known.

ACC = “TP+TN”/“TP + FN + FP + TN”

SST = “TP”/“TP + FN”

SPE = “TN”/“TN + FP”

PPV = “TP”/“TP + FP”

NPV = “TN”/“TN + FN”

F1 = 2 × “PPV × NPV”/“PPV + NPV”

where TP represents true positive, TN represents true negative, FP represents false positive,
FN represents false negative, TC represents the correctly classified pixel count, and TD
represents the incorrectly classified pixel count. A represents the road traffic injury pixel
count, B represents the non-road traffic injury pixel count, N represents the number of
samples in the dataset, yi represents the predicted value of the ith sample, and yi represents
the measured value of the ith sample.

Accuracy (ACC) indicates the ability of a binary classification test to identify or exclude
an outcome correctly. It is the ratio of correct predictions to the total number of samples.
When the dataset is severely imbalanced, the overall accuracy is not enough to explain the
performance of the model, as the overall accuracy can be higher with most of the samples
being classified into majority class.

Sensitivity (SST), or exact positive rate or recall, is the ratio of correctly classified
positives to the total number of samples that are actually positives. As sensitivity represents
the correct classification rate of the accident class, it is an important indicator to evaluate
and compare classifiers with.

Specificity (SPE), or exact negative rate, is the ratio of correctly classified negatives
to the total number of samples that are actually negative. Specificity is nearly identical to
accuracy as the number of events are lower.

Precision, or positive predictive value (PPV), is the ratio of correctly classified positives
to the total number of samples that are classified as positives.

Fallout, also known as the false-positive rate (NPV), is the ratio of correctly classified
negatives to the total number of samples that are classified as negatives. It represents the
percentage of “false alarms” and is a complementary rate to specificity.

The F1 score is computed as the harmonic mean of precision and sensitivity.

3.3. Training of Naïve Bayes, Random Forest and Support Vector Machine, and Generation of the
Road Traffic Injury Risk Prone Area

3.3.1. Support Vector Machine

In the case of SVM, this model with its optimal parameters for searching played a
crucial role in the performance of the model. The kernel function used in this research was
the radial basis function (RBF). The training process was initiated by using a grid search
approach to search for the optimal kernel parameters. To prevent overfitting, five-fold
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cross-validation was implemented with the grid search. Thus, the training dataset was
randomly divided into five equally sized subsets. Each subset was used as a test dataset for
the SVM model developed from the remaining four chunks. The cross-validation process
was then repeated five times with each of the five subsets used once as a test dataset.

The two kernel parameter influencing the RBF kernel function are { and γ. The
following procedure was used: (1) a grid space of ({, γ), where { = 2−5, 2−4, . . . , 210 and
γ = 210, 29, . . . , 2−4, was set; (2) for each parameter, using the pair of ({, γ) in the grid
space, five-fold cross-validation on the training dataset was conducted; (3) the parameter
pair of ({, γ) that had the highest accuracy classification was chosen; (4) finally, the best
parameters were used to construct an SVM model for road traffic injury predictions. The
best { and γ were determined as 128 and 0.11342, respectively. The correctly classified rate
of 91% was obtained. The Support vector machine with the radial basis function (RBF)
kernel grid search results was shown in Table 6.

Table 6. Support vector machine with the radial basis function (RBF) kernel grid search results.

Sigma C Accuracy Kappa

0.11 0.25 0.83 0.74
0.11 0.50 0.85 0.78
0.11 1.00 0.87 0.81
0.11 2.00 0.88 0.82
0.11 4.00 0.89 0.84
0.11 8.00 0.90 0.85
0.11 16.00 0.90 0.85
0.11 32.00 0.90 0.86
0.11 64.00 0.90 0.86
0.11 128.00 0.91 0.86

Tuning parameter “sigma” was held constant at a value of 0.11. The final values used for the model were
sigma = 0.11 and C = 128.

3.3.2. Random Forest

Random forest includes an implementation of probability forests for estimating in-
dividual probabilities for response, according to Malley et al. (2012), where the forest
probability estimate is obtained as the average of all probability estimates for every single
tree. A detailed accuracy assessment for Random Forest is shown in Table 7. It can be
observed that the precision, F-measure, and TP rates are all higher (>90%) than the FP rate
(<10%). This implies that the model shows good performance for the training dataset, and
there is good agreement between the observed and the predicted values. The best mtry
was 13. The correctly classified rate of 92% was obtained.

3.3.3. Naïve Bayes

Naïve Bayes computes the probability of each output class, and then the classification
is performed for the class with the higher posterior probability. The NB model obtained
an overall classification accuracy of 82.6%. Table 8 shows the model assessment and
performance results.

After the models (SVM, RF, and NB) were trained and the outputs were generated,
open-source geospatial software (QGIS) was used for further analysis.

3.4. Results
3.4.1. Factor Importance

Table 9 shows the results of the multiple linear regression model results and the
variable assignments based on quartiles. The regression model showed a relatively high
coefficient of determination (R2 = 0.80, F = 1511709.75, P < 0.001). It was observed that
the regression model fits the data well. Overall important variable metrics are shown in
Table 10. Unsurprisingly, grocery and convenience stores prevailed as the most important
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features in the regression selection method. In addition, electronics and drug stores were
also very important variables in this context.

Table 7. Random Forest grid search results.

mtry Accuracy Kappa

1.00 0.75 0.62
2.00 0.86 0.78
3.00 0.91 0.86
4.00 0.91 0.87
5.00 0.91 0.87
6.00 0.92 0.87
7.00 0.92 0.87
8.00 0.92 0.87
9.00 0.92 0.87
10.00 0.92 0.87
11.00 0.92 0.87
12.00 0.92 0.88
13.00 0.92 0.88
14.00 0.92 0.88
15.00 0.92 0.88

The final value used for the model was mtry = 13.

Table 8. Naïve Bayes grid search results.

Usekernel fL Adjust Accuracy

1 TRUE 1 5 0.826
2 TRUE 0 5 0.825
3 TRUE 2 5 0.824
4 TRUE 3 5 0.823
5 TRUE 4 5 0.822

The final values used for the model were fL = 1, usekernel = TRUE and adjust = 5.

Table 9. Variable ranks extracted using the regression selection method.

Estimate Std. Error t Value Pr (>|t|) Std.

(Intercept) 30.4472 6.8302 4.458 0.00000857 ***
Grocery 16.879 0.5018 33.635 <2 × 10−16 ***

Convenience 10.2248 0.8601 11.888 <2 × 10−16 ***
Electronics −10.1203 0.7483 −13.524 <2 × 10−16 ***
Drugstore −31.1778 1.9051 −16.365 <2 × 10−16 ***
Restaurant 3.2839 0.9755 3.366 0.00077 ***

Length 1.6609 0.4675 3.553 0.000387 ***
Supermarket 15.0796 4.1839 3.604 0.000318 ***

School −4.2553 0.637 −6.68 2.81 × 10−11 ***
Gas station 5.0706 0.6387 7.938 2.8 × 10−15 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. Residual standard error: 9.654 on 3214 degrees of freedom.
Multiple R-squared: 0.8038, Adjusted R-squared: 0.8027. F-statistic: 731.6 on 20 and 3214 Degrees of Freedom,
p-value: <2.2 × 10−16.

The results show that certain public welfare factors, including schools and gas stations,
are variables of high importance. In addition, two variables related to food, such as
restaurants and supermarkets, were related with the highest occurrence rates of road traffic
injuries. Road geometrics such as length were statistically significant.
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Table 10. Model development in different years in the Nonthaburi dataset.

Model Sensitivity Specificity Precision Recall F1 Accuracy

NB Low-frequency injury 1.00 0.79 0.68 1.00 0.81 0.89
Moderate-frequency injury 0.38 0.89 0.65 0.38 0.48 0.64

High-frequency injury 0.68 0.83 0.69 0.68 0.68 0.76
RF Low-frequency injury 0.93 0.93 0.85 0.93 0.89 0.93

Moderate-frequency injury 0.79 0.88 0.77 0.79 0.78 0.84
High-frequency injury 0.83 0.96 0.92 0.83 0.87 0.89

SVM Low-frequency injury 0.61 0.91 0.76 0.61 0.67 0.76
Moderate-frequency injury 0.51 0.72 0.49 0.51 0.50 0.62

High-frequency injury 0.82 0.83 0.71 0.82 0.76 0.82

3.4.2. Model Performance

The validations of nine road traffic injury susceptibility maps were performed by com-
paring them with the level of road traffic injury risk prone area locations using prediction
rate methods. The road traffic injury susceptibility map consists of three algorithms in
different years in Nonthaburi Province and three algorithms in different years in Pathum
Thani Province. Moreover, three algorithms using the Nonthaburi 2018 dataset for training
and the Pathum Thani 2018 dataset for testing were used.

This shows that all the models have an excellent prediction capability. The highest
prediction capability is from RF, followed by NB and SVM-RBF, respectively.

First research question: can machine learning predict road traffic injuries in the same
study area but for different years?

Table 10 and Figure 6 shows the model development in different years in the Non-
thaburi dataset. For low-frequency injury cases, NB (1.0) had the highest sensitivity,
followed by RF (0.93) and SVM (0.61), respectively. Meanwhile, for moderate-frequency
cases, RF (0.79) had the highest sensitivity. RF (0.83) was the same in high-frequency cases.
In terms of specificity, it was found that low-frequency RF (0.93) cases had the highest
specificity, just as in the high-frequency cases (0.96). Meanwhile, for moderate-frequency
cases, NB (0.89) and RF (0.88) gave similar results. When bringing precision and recall to
the F1 score to identify the best harmonic mean models, RF had the best F1 score.
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Table 11 and Figure 7 show model development in different years in the Pathum Thani
dataset. For low-frequency injury cases, NB (1) had the highest sensitivity, followed by RF
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(0.94) and SVM (0.88), respectively. Meanwhile, for moderate-frequency cases, SVM (0.72)
had the highest sensitivity, and in high-frequency cases, RF (0.8) had strong sensitivity. In
terms of specificity, it was found that in low-frequency cases, RF (0.89) had the highest
specificity, and the same was true for moderate-frequency (0.86), while in serious cases,
SVM (0.94) was slightly different from RF (0.92) and NB (0.91). When bringing precision
and recall to the F1 score to identify the best harmonic mean models, RF had the best F1
score, the same as in Nonthaburi Province.
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Second research question: can a machine learning of road traffic injury model for the
Nonthaburi area predict road traffic injuries in the Pathum Thani area?

Table 12 and Figure 8 shows model three in different provinces, the Nonthaburi 2018
training area, and Pathum Thani Province in 2018 as a testing area. It can be observed that
RF models have the highest accuracy, the same as that of model one and model two.
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The resulted map of first question was shown in Figures 9 and 10. Then, the resulted
map of second research question was shown in Figure 11.
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Table 11. Model development in different years in the Pathum Thani dataset.

Model Sensitivity Specificity Precision Recall F1 Accuracy

NB Low-frequency injury 1.00 0.82 0.71 1.00 0.83 0.91
Moderate-frequency injury 0.56 0.85 0.67 0.56 0.61 0.71

High-frequency injury 0.64 0.91 0.80 0.64 0.71 0.78
RF Low-frequency injury 0.94 0.89 0.78 0.94 0.85 0.91

Moderate-frequency injury 0.63 0.86 0.71 0.63 0.67 0.75
High-frequency injury 0.80 0.92 0.85 0.80 0.82 0.86

SVM Low-frequency injury 0.88 0.81 0.68 0.88 0.77 0.85
Moderate-frequency injury 0.72 0.80 0.65 0.72 0.68 0.76

High-frequency injury 0.52 0.94 0.83 0.52 0.64 0.73
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Table 12. Model development for all districts in the Nonthaburi dataset and Pathum Thani dataset.

Model Sensitivity Specificity Precision Recall F1 Accuracy

NB Low-frequency injury 1.00 0.74 0.61 1.00 0.76 0.87
Moderate-frequency injury 0.65 0.83 0.66 0.65 0.66 0.74

High-frequency injury 0.47 0.97 0.91 0.47 0.62 0.72
RF Low-frequency injury 0.77 0.96 0.88 0.77 0.82 0.86

Moderate-frequency injury 0.79 0.73 0.61 0.79 0.69 0.76
High-frequency injury 0.69 0.93 0.85 0.69 0.76 0.81

SVM Low-frequency injury 0.81 0.43 0.36 0.81 0.50 0.62
Moderate-frequency injury 0.29 0.80 0.44 0.29 0.35 0.55

High-frequency injury 0.27 0.95 0.75 0.27 0.40 0.61
Sustainability 2021, 13, x FOR PEER REVIEW 22 of 26 
 

 

Figure 11. Road traffic injuries in Pathum Thani (dataset of Nonthaburi of 2018 used for model development and dataset 

of Pathum Thani for the same year used for testing). 

 

Figure 12. Model development for major road in the Nonthaburi and Pathum Thani dataset. 

Figure 11. Road traffic injuries in Pathum Thani (dataset of Nonthaburi of 2018 used for model development and dataset of
Pathum Thani for the same year used for testing).

For low-frequency injury cases, NB (1) had the highest sensitivity. Meanwhile, for
moderate-frequency cases, RF (0.79) had the highest sensitivity, and in high-frequency
cases, RF (0.69) had strong sensitivity. In terms of specificity, it was found that in low-
frequency cases, RF (0.96) had the highest specificity, while in moderate-frequency, NB
displayed the highest sensitivity (0.83). In serious cases, NB (0.97) was slightly different
from SVM (0.95) and RF (0.95, When bringing precision and recall to the F1 score to i the
best harmonic mean models, RF had the best F1 score.

All of the developed models were validated and compared with each other using
suitable metrics. Finally, the maps representing the road traffic injury risk prone areas of
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the study area were prepared and classified into low-frequency injury areas, moderate-
frequency injury areas, and high-frequency injury areas.

Using critical factors that affect road traffic injuries, main roads and minor roads were
examined. Then, the grid model unit that overlaps the main road in the area before training
the model was selected. The same step was taken for minor roads in the area.

Table 13 and Figure 12 show three models in the major road; the major road in
Nonthaburi 2017 was a training area, and the major road in Pathum Thani Province in
2017 was a testing area. It can be observed that the RF models have the highest accuracy.
However, while the moderate frequency section was not very well classified, the overall
accuracy was close to that shown in Table 12.

Table 13. Model development for major road in the Nonthaburi and Pathum Thani dataset.

Model Sensitivity Specificity Precision Recall F1 Accuracy

NB Low-frequency injury 0.99 0.64 0.77 0.99 0.86 0.81
Moderate-frequency injury 0.32 0.85 0.40 0.32 0.35 0.58

High-frequency injury 0.14 0.90 0.28 0.14 0.19 0.52
RF Low-frequency injury 0.98 0.67 0.78 0.98 0.87 0.83

Moderate-frequency injury 0.43 0.99 0.96 0.43 0.60 0.71
High-frequency injury 0.75 0.94 0.77 0.75 0.76 0.85

SVM Low-frequency injury 0.94 0.50 0.69 0.94 0.80 0.72
Moderate-frequency injury 0.27 0.97 0.71 0.27 0.39 0.62

High-frequency injury 0.61 0.95 0.78 0.61 0.68 0.78
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Table 14 and Figure 13 show minor road cases; the predicted results were not as good
as expected. However, RF came first in the classification results. The reason may be that
the POI of the area was like that of the major road, but there was not a high volume of road
traffic, resulting in few road traffic injuries.
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Table 14. Model development for minor road in the Nonthaburi and Pathum Thani dataset.

Model Sensitivity Specificity Precision Recall F1 Accuracy

NB Low-frequency injury 1.00 0.42 0.90 1.00 0.95 0.71
Moderate-frequency injury 0.00 0.97 0.00 0.00 0.00 0.49

High-frequency injury 0.41 1.00 1.00 0.41 0.58 0.70
RF Low-frequency injury 0.93 0.55 0.92 0.93 0.92 0.74

Moderate-frequency injury 0.39 0.91 0.21 0.39 0.27 0.65
High-frequency injury 0.41 1.00 0.92 0.41 0.57 0.70

SVM Low-frequency injury 0.93 0.39 0.89 0.93 0.91 0.66
Moderate-frequency injury 0.39 0.92 0.22 0.39 0.28 0.65

High-frequency injury 0.22 1.00 0.90 0.22 0.35 0.61
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4. Discussion and Conclusions
4.1. Discussion

Ratanavaraha et al. [32] studied the factors affecting accident severity on expressways
in Thailand by using accident data for the period of 2007 to 2010. The multiple logistic
regression technique was applied by identifying factors and their statistical relationships
with the severity of crashes, which were categorized into three groups: property damage
only, injury accident, and fatal accident. The results of the study were satisfactory. However,
it was found that such studies on expressways are clearly factors, but road traffic injuries
often occur in dynamic areas. In addition, there are factors that require urgent attention, a
considerable amount of time, and a large budget before the government conducts surveys.

As a result of this problem, the data do not catch up to solve the problem. Place API
is an alternative to this study. Moreover, supposing the factors change a lot, traditional
statistics may not be suitable for data analysis because they cannot play the role of tuning
parameters like machine learning algorithms, which can be flexible in supporting data
analysis situations that data change.

Therefore, this study focused on using place APIs for experiments, and we intended to
use machine learning in many situations to accommodate the area’s changing conditions.
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4.2. Conclusions
4.2.1. Factor Importance

The determination of the areas that are high road traffic injury risk prone areas is
one of the essential steps in reducing road traffic injuries in Thailand. This study is more
robust than previous studies for three main reasons. First, many scholars have performed
analysis by splitting the dataset into training and test datasets only. In this study, five-fold
cross-validation was used. More robust results were obtained by averaging the outcomes
from different models (ensembles), Second, in this study, the models were trained with
a grid search, which yielded the most optimal results based on the training data. Third,
a repeated cross-validation procedure was applied as a robust method, which aided in
preventing over-optimistic performance results in the research.

Thus, we developed an ensemble modeling approach to improve the performance
of the model and achieve the most accurate and reliable estimate of road traffic injuries
for a risk-prone area map. In this study, a feature selection method was implemented,
and the features were ranked based on importance score. It was revealed that grocery
stores, convenience stores, electronics stores, drug stores, schools, gas stations, restaurants,
supermarkets, and road geometrics such as length were the most critical factors that
influenced the road traffic injury risk prone model, because these variables are important
elements in the livelihood of the city. Many people need to buy goods for everyday
consumption, making the area crowded with people and traffic. These variables are also
frequently accessed, so road traffic injuries can easily occur.

4.2.2. Model Performance

We were able to delineate the environmental factors in terms of road traffic injury risk
prone areas, and so we used SVM, random forest, and naïve Bayes techniques. Apart from
providing a distribution map of road traffic injury risk prone areas for Nonthaburi and
Pathum Thani Provinces, the study shows that machine learning, especially random forest,
can predict road traffic injury risk prone areas. Likewise, the research results can aid in the
development of monitoring systems for protection against road traffic injuries.

Machine learning analysis differs from hotspot analysis, as a historical dataset of road
traffic injuries is not required. Machine learning algorithms can predict road traffic injury
risk prone areas from various environmental factors and are particularly convenient for
assessing the risk of road traffic injury in areas that do not have a historical record of road
traffic injuries.

The significance of this research is its contribution to the literature by (1) identifying
factors that influence road traffic injuries; (2) illustrating the effectiveness of machine
learning algorithms to identify road traffic injury risk prone areas from environmental
factors; and (3) verifying the model with different years and province datasets.

The advantages of this study are as follows: (1) the delineation of the environmental
factor in terms of road traffic injury risk prone areas; (2) the strengthening of the prompt
decision-making process; (3) the incorporation of different stakeholders for a faster and
effective decision-making process, (4) the formulation of and suggestions regarding an
organizational framework to minimize road traffic injury; and (5) the development of
monitoring systems for protection against and the prevention of road traffic injury.

The limitation of this study is that the dataset is used in a static format. This may
result in the need to update the data and the model frequently.

This study is a multidisciplinary approach based on algorithms used for diagnoses in
many fields, and a machine learning approach was developed. The developed approach
can be used in many fields with suitable modifications. The integration of dynamic data
can help to overcome the limitations caused by a continuously transforming city.
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