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Abstract: The purpose of this paper is to provide new insights into travelers’ bi-attribute (travel
time and travel cost) risky mode choice behavior with one risky option (i.e., the highway) and
one non-risky option (i.e., the transit) from the long-term planning perspective. In the classical
Wardropian User Equilibrium principle, travelers make their choice decisions only based on the
mean travel times, which might be an unrealistic behavioral assumption. In this paper, an alternative
approach is proposed to partially remedy this unrealistic behavioral assumption with flow-dependent
salience theory, based on which we study travelers’ context-dependent bi-attribute mode choice
behavior, focusing on the effect of travelers’ salience characteristic. Travelers’ attention is drawn
to the bi-attribute salient travel utility, and then the objective probability of each state for the risky
world is distorted in favor of this bi-attribute salient travel utility. A long-term bi-attribute salient
user equilibrium will be achieved when no traveler can improve their bi-attribute salient travel utility
by unilaterally changing the choice decisions. Conditions for the existence and uniqueness of the
bi-attribute salient user equilibrium are presented, and based on the equilibrium results, we analyze
travelers’ risk attitudes in this bi-attribute risky choice problem. Finally, numerical examples are
conducted to examine the sensitivity of equilibrium solutions to the input parameters, which are cost
difference and salience bias.

Keywords: bi-attribute choice behavior; salient travel utility; salient user equilibrium; cost difference;
behavioral insights

1. Introduction

One of the powerful principles widely used in the traditional four-step transportation
planning model is the Wardrop’s user equilibrium model, also known as Wardrop’s first
principle proposed in [1], which can be stated as: No traveler can decrease his (her) travel
time by unilaterally changing his (her) choice decisions. In this paper, we use this principle
to study travelers’ mode choice behavior as [2].

There are several unrealistic assumptions underlying this principle. One of these
is that travel times on the traffic network are deterministic. However, several studies
show that uncertainty is inevitable, which could come from the demand side, and/or the
supply side (e.g., [3,4]). Numerous studies that consider the uncertainty on the traffic
network have been conducted. For example, the authors in [5] classified the travelers into
three categories on the stochastic traffic network, which are risk-neutral, risk-seeking and
risk-averse. The authors in [6] incorporated the random evolution of traffic states in the
cell-based multi-class dynamic traffic assignment. The authors in [7] studied a risk-neutral
congestion pricing problem and formulated it as a stochastic programming problem. The
authors in [8] proposed a general approach to incorporate stochastic variations into the
macroscopic traffic model. The authors in [9] studied a simultaneous route and departure
time choice problem with stochastic travel times, where the demand is fixed and the link
capacity is stochastic. The work of [10] classified uncertainty during the decision making
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into two kinds, risk and ambiguity. The difference between risk and ambiguity is whether
the probability distribution of the uncertainty is known or not. For the risk analysis, it is
known, while it is not known for the ambiguity analysis. Our study in this paper belongs
to the decision making analysis under risk.

Another assumption underlying the user equilibrium principle is that only travel time
is considered in travelers’ choice decision. However, it has been empirically demonstrated
that traveler’s choice behavior might be affected by several different attributes, e.g., travel
time, travel time reliability, travel cost, schedule delay, travel distance, and so on (e.g., [11]).
The authors in [11] showed that the three most important factors influencing traveler’s
choice behavior are shorter travel time, travel time reliability and shorter distance. From
the statistical analysis, 40% of the total respondents select shorter travel time as the first
reason, 32% of these respondents select travel time reliability as the second reason, and
31% of these respondents select shorter distance as the third reason. Note here that the sum
is bigger than 100%, because some respondents indicate more than one attributes as the
most important. Scholars have also made substantial progress in travelers’ multi-attribute
analysis theoretically. For example, the authors in [12] combined the travel time and travel
cost as the generalized cost. The authors in [13] discussed the weighted sum of travel
time and travel time reliability and proposed the travel time budget (TTB) model. The
authors in [3] proposed the mean-excess travel time (METT) model based on the TTB model,
where travel time, travel time reliability and travel time unreliability are incorporated. The
authors in [14] incorporated the day-to-day variations into the TTB model, and proposed a
subjective-utility TTB model. The authors in [15] presented the non-expected route travel
time model, which generalized TTB model and METT model. The authors in [16] used the
target-oriented method to study the impact of travel time and travel cost. Our study in this
paper considers the effect of travel time and travel cost, i.e., it is a bi-attribute analysis.

With all the aforementioned discussions, we study travelers’ bi-attribute (travel time
and travel cost) risky mode choice behavior with Wardrop’s user equilibrium principle,
which partially remedy the unrealistic assumptions underlying this principle. It is assumed
that these two options form travelers’ choice context, i.e., travelers’ context-dependent
mode choice behavior is studied in this paper. In particular, we propose to use the flow-
dependent salience theory in [17], an extension of the original salience theory in [18],
to study this kind of choice behavior. After its introduction, salience theory has been
recognized as a powerful theory for context-dependent choice under risk (e.g., [19–21]),
and in recent years, various studies have been conducted to examine the salience effect in
the lab (e.g., [22–24]) and in the field (e.g., [25,26]). Especially, the authors in [26] discussed
the salience effect in the labor market with New York taxi data. Although we do not carry
out the behavioral experiments on the salience effect in travelers’ choice behavior, e.g., the
mode choice and route choice, we believe it does exist based on the aforementioned studies.
Another related research stream is to calibrate the parameter (namely the so-called salience
bias) in the salience theory, e.g., [18,24], which could shed some light on the parameter
calibration in travelers’ choice behavior, if we had collected the data.

According to the salience theory, a decision maker assigns each state a subjective
probability, which depends on the state’s objective probability and its salience. From these
discussions, we see that there is some similarity between the salience theory and prospect
theory proposed in [27], because distorted probability (i.e., the subjective probability)
exists in both these two theories. However, the way to obtain the distorted probability is
different for these two theories. In salience theory, the distorted probability is obtained
as aforementioned, while in prospect theory, the distorted probability is obtained with a
specific weighting function (e.g., [28,29]). Another difference is that the S-shaped value
function used in [27] is not needed in the salience theory, i.e., it is not needed in our model.
Meanwhile, decision makers’ risk-averse and risk-seeking attitudes can both be captured
by these two theories, but the way to model these is completely different. In salience theory,
decision makers’ risk attitudes are determined by the properties of salience function [18],
while in prospect theory, these attitudes are determined by the value function with the
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reference [29]. Finally, decision makers’ preference reversals can be captured by the salience
theory, but not the prospect theory, which might be helpful to study travelers’ preference
reversals, e.g., [30]. Other differences between these two theories can be found in [31].

Prospect theory and its extension, the cumulative prospect theory [32], have been
widely used in the studies on transportation and traffic (e.g., [28,29,33,34]). However, to
the best of our knowledge, only a few scholars discuss the effect of travelers’ salience
characteristic on the policy design and implementation, e.g., [35,36] studied the effect of
travelers’ salience characteristic on the pricing policy, which does not attract much attention
in transportation and traffic studies.

Considering that the research on the effect of travelers’ salience characteristic is still
in its infancy, we focus on a stylized situation in this paper, where we consider travelers’
mode choice between two options (one risky option, i.e., the highway, and one non-risky
option, i.e., the transit) in the risky world with two state, and travel cost here refers to the
toll for the highway and fare for the transit. The motivation on this two-option choice
analysis is that travelers usually consider two modes in practice (e.g., [37,38]), while the
motivation for the two-state world assumption is the study in [39], where the authors point
out two flaws about the original salience theory. The first one is that, for some ranges of
probabilities, certainty equivalent is not defined, and the second one is that monotonicity is
violated by the model. We conjecture that these two flaws also exist in the flow-dependent
salience theory, an extension on the original salience theory, which is the foundation of our
analysis. Although we focus on the stylized situation, we make a thorough analysis on it
and obtain some novel results. The other contributions are summarized as follows.

We propose a bi-attribute salient travel utility model with the continuous salience
ranking (also known as endogenous salience ranking), compared to the conventional
discrete ranking method proposed in [18]. Furthermore, we develop a bi-attribute salient
user equilibrium model based on this choice model and prove its solution existence and
uniqueness. Moreover, we analyze travelers’ risk attitudes in the bi-attribute mode choice
problem based on the equilibrium results. Finally, we conduct the numerical examples to
investigate the sensitivity of equilibrium solutions to the input parameters, which are cost
difference and salience bias, to shed light on travelers’ bi-attribute salient behavior. Our
findings provide insights into travelers’ behavioral studies related to the travel cost, which
can further provide implications for the policy design and implementation, especially on
the congestion tolling and transit fare design.

The remainder of the paper is organized as follows. In Section 2, we present the basic
definitions and notations used in this paper. In Section 3, we propose the bi-attribute salient
travel utility model after introducing the flow-dependent salience theory. In Section 4, we
analyze the solution existence and uniqueness of the bi-attribute salient user equilibrium,
and based on this, we discuss travelers’ risk attitudes on the bi-attribute risky mode choice.
In Section 5, we conduct the numerical examples to show the performance of the proposed
model via the sensitivity analysis, followed by the conclusions and major findings in
Section 7.

2. Definitions and Notations

We assume N travelers go from the common origin, e.g., the suburb area, to the
common destination, e.g., the core area, and study their bi-attribute (travel time and travel
cost) risky mode choice behavior with one risky option, i.e., the highway, denoted by R,
and one non-risky option, i.e., the transit, denoted by NR. Furthermore, we investigate
its long-run effect and assume there is no other mode options, e.g., staying at home. As
aforementioned, travelers mainly focus on these two travel modes in practice. There are
two states of the world, say good state and bad state, and the set of states is denoted by S.
We use p(p ∈ (0, 1)) to denote the probability of bad state and then 1−p is the probability
of good state. When p= 0 or p= 1, the risky option degenerates into a non-risky option,
which will not be discussed furthermore. On the non-risky option NR, the travel utility
functions are the same for both states, denoted by uNR, while the travel utility function
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on the risky option depends on the state, denoted by u+ in the good state, and u− in the
bad state.

The nonlinear travel utility functions shown in Equation (1) are used in our study,
which are in the form of the difference between the utility value (due to the arrival at
the destination) U and the generalized cost (weighted sum of travel time and travel cost)
between the origin and the destination. Moreover, we assume that travelers could specify
a suitable value U to make the utility functions always positive as [28] and [40].

u+(nR) = U − [t0 + βτ1],
u−(nR) = U − [t−(nR) + βτ1],
uNR(N − nR) = U −

[
tNR(N − nR) + βτ2

]
,

(1)

where nR denotes the traffic flows on the risky option, and then travel flows on the non-
risky option is N − nR. Travel costs on these two options, risky and non-risky option,
are τ1 and τ2, respectively, and β > 0 denotes value of travel cost, which converts the
travel cost into travel time. At the same time, t−(nR) and tNR(N − nR) are defined as
travel time functions on the risky option and the non-risky option, respectively. In this
paper, the travel time functions t−(nR) and tNR(N − nR) are considered to be a continuous
strictly increasing function of the traffic volume on the corresponding option, and then

we have dt−(nR)
dnR

> 0 and dtNR(N−nR)
dnR

< 0. In addition, it is assumed that t−(N) > tNR(N),
i.e., travel time of the risky option in bad state is larger than that of the non-risky option
when the flow is N, and the free flow travel times t0 on these two options are identical.
Therefore, the bad state is the most undesirable. Finally, the utility in the good state of the
risky option is a constant, which is normalized as U − (t0 + βτ1). Assumptions made here
could simplify our discussions in this paper, but our method can be extended accordingly
if some assumptions are relaxed, and nevertheless, the insights and implications obtained
according to our results will not be changed. The relationship between these travel time
functions is shown in Figure 1.

Figure 1. The relationship between the travel time functions.

3. Bi-Attribute Salient Travel Utility Model Based on Flow-Dependent
Salience Theory

In this section, we introduce the flow-dependent salience theory first, and then propose
the bi-attribute salient route utility model based on this theory.

3.1. Flow-Dependent Salience Theory

Following the principle of expected utility theory, the bi-attribute expected travel
utility on the risky option is (1− p)u+(nR) + pu−(nR), while the bi-attribute travel utility
on the non-risky option is uNR(N − nR). However, decision makers’ mind might focus
on whatever is odd, unusual or different, which is the essential meaning of salience
([41]). Therefore, travelers could over-weight the route’s most salient states in S, and
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assign a subjective probability to each state s (good or bad state), which depends on the
objective probability of the state s and its salience. To formally define the flow-dependent
salience theory, let umax

s and umin
s denote the largest and smallest utilities for each state s,

respectively, and u−i
s denote the utility of route j, j 6= s

Definition 1. The salience of state s for option i, i = R, NR, is a continuous and bounded
functionσ

(
ui

s(nR), u−i
s (nR)

)
for a given flow nR that satisfies the following two conditions:

1. Ordering. If for states, s̃ ∈ S we have that
[
umin

s (nR), umax
s (nR)

]
is a subset of[

umin
s̃ (nR), umax

s̃ (nR)
]
, then

σ
(

ui
s(nR), u−i

s (nR)
)
< σ

(
ui

s̃(nR), u−i
s̃ (nR)

)
(2)

2. Diminishing sensitivity. If ui
s(nR) > 0 f or i = R, NR, then for any ε > 0,

σ
(

ui
s(nR) + ε, u−i

s (nR) + ε
)
< σ

(
ui

s(nR), u−i
s (nR)

)
(3)

In the original salience theory ([18]), there is another property for the salience function,
called reflection, which can handle negative utility. However, this property is not needed in
our study, because all the values of utility functions are positive. To illustrate Definition (1),
we use salience function

σ
(

ui
s(nR), u−i

s (nR)
)
=

∣∣ui
s(nR)− u−i

s (nR)
∣∣

ui
s(nR) + u−i

s (nR)
(4)

It can be verified that this salience function satisfies both properties used in Defini-
tion (1). For a given value of nR, the ordering property shows that the difference between
the utility ui

s(nR) of option u−i
s (nR) of other option increases, and thus the salience of the

state s will increase, which is captured by
∣∣ui

s(nR)− u−i
s (nR)

∣∣. For a given value of nR, the
diminishing sensitivity property shows that if a state’s utility becomes larger, and thus the
salience will decrease, which is captured by ui

s(nR)− u−i
s (nR). Moreover, we see that the

salience function (4) also satisfies the symmetry property, because we discuss the mode
choice between two options. Particularly, given states s, s̃ ∈ S, state s is said to be more
salient than s̃ for option i(i = R, NR), if σ

(
ui

s(nR), u−i
s (nR)

)
> σ

(
ui

s̃(nR), u−i
s̃ (nR)

)
.

We see that the travel utilities and the salience function are both flow-dependent,
where the flow denotes the traffic flow on the risky option, and thus, we call it flow-
dependent salience theory.

3.2. Bi-Attribute Salient Travel Utility Model

Based on the flow-dependent salience theory, we propose the bi-attribute salient travel
utility model as follows.

Definition 2. According to the flow-dependent salience theory, travelers evaluate the bi-attribute
salient travel utility on the risky option according to the formulation

UR(nR) =
δ1(1− p)u+(nR) + δ2 pu−(nR)

δ1(1− p) + δ2 p
(5)

while travelers evaluate the bi-attribute salient travel utility on the non-risky option according to
the formulation

UNR(nR) =
δ1(1− p)uNR(N − nR) + δ2 puNR(N − nR)

δ1(1− p) + δ2 p
= uNR(N − nR) (6)
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where δ1 = δ−σ1(u+(nR),uNR(N−nR)), and δ2 = δ−σ2(u−(nR),uNR(N−nR)).
According to Equation (4), we have

σ1 =
|u+(nR)−uNR(N−nR)|
u+(nR)+uNR(N−nR)

=
|tNR(N−nR)−t0+β(τ2−τ1)|

2U−tNR(N−nR)−t0−β(τ2+τ1)

(7)

σ2 =
|u−(nR)−uNR(N−nR)|
u−(nR)+uNR(N−nR)

=
|tNR(N−nR)−t−(nR)+β(τ2−τ1)|

2U−tNR(N−nR)−t−(nR)−β(τ2+τ1)

(8)

From Definition (2), we see that the bi-attribute salient travel utility on the risky
option can be written as (1− p′)u+(nR) + p′u−(nR), where p′ = δ2 p

δ1(1−p)+δ2 p , and the bi-
attribute salient travel utility on the non-risky option remains the same, regardless of the
composition of the choice set. Compared to the formulation for the bi-attribute expected
utility theory, i.e., (1− p)u+(nR) + pu−(nR), we see that the only difference is the change
of the objective probability, which is called distorted probability for bad state and good
state based on flow-dependent salience theory.

Parameter δ(δ ∈ (0, 1]) indicates travelers’ susceptibility to the salience, called salience
bias. δ = 1 means rational travelers, and thus there is no distortion on the objective
probabilities of the states. In the following study, when δ < 1, the travelers are called
salient travelers. Smaller value of δ means stronger salience bias, and vice versa. In the
special situation where δ→ 0 , the salient travelers will only pay their attention on the
most bi-attribute salient travel utility.

Based on the bi-attribute salient route utility presented in Definition (2), we obtain the
following proposition about the mode preference, which is basis of our equilibrium analysis.

Proposition 1. For a given flow nR, a salient traveler will choose the risky option if and only if the
following inequality satisfied.

δ1(1− p)
[
u+(nR)− uNR(N − nR)

]
+ δ2 p

[
u−(nR)− uNR(N − nR)

]
> 0 (9)

Proof. For a given flow variable nR, based on the bi-attribute salient travel utility, a salient
traveler prefers the risky option to the non-risky option if and only if UR(nR) > UNR(nR) i.e.,

δ1(1− p)[u+(nR) + δ2 pu−(nR)]

δ1(1− p) + δ2 p
> uNR(N − nR) (10)

Equation (9) can be obtained by Equation (10) after some rearrangement, which completes
the proof. �

4. Bi-Attribute Salient User Equilibrium Analysis

In this section, we study the long-run effect of bi-attribute salient travel utility, and
propose the bi-attribute salient user equilibrium (BaSUE), which can be stated as: No
traveler can improve their bi-attribute salient travel utility by unilaterally changing their options.
Furthermore, we compare the results of the BaSUE with those of bi-attribute expected
user equilibrium (BaEUE), which can be stated as: No traveler can improve their bi-attribute
expected travel utility by unilaterally changing their options.

Based on Proposition (1), we see that at the BaSUE, the following equation is satisfied.

δ1(1− p)
[
u+(nR)− uNR(N − nR)

]
+ δ2 p

[
u−(nR)− uNR(N − nR)

]
= 0 (11)
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Furthermore, we define the following flow-dependent mode preference function based
on Equation (11), which is the foundation of our equilibrium analysis.

Definition 3. The flow-dependent mode preference function, denoted by VR→NR(nR)is defined as

VR→NR(nR) = δ1(1− p)
[
u+(nR)− uNR(N − nR)

]
+ δ2 p

[
u−(nR)− uNR(N − nR)

]
(12)

From Definition (3), we see that when VR→NR(nR) > 0, the salient travelers prefer the
risky option to the non-risky option, when VR→NR(nR) < 0, the salient travelers prefer the
non-risky option to the risky option, and when VR→NR(nR) = 0, the BaSUE is reached.

4.1. Formal Results on the BaSUE

Next, we present the formal analysis on the BaSUE, and before that, following the
principle of expected utility theory, we present the analysis on the BaEUE as a benchmark
case for comparison. We always use nRe to denote the equilibrium flow on the risky option.

Proposition 2. When −
[
tNR(N)− t0

]
≥ β(τ2 − τ1), there exists a corner BaEUE, where

nRe = 0, and when β(τ2 − τ1) ≥ p[t−(N)− t0], there exists a corner BaEUE, where nRe = N.

Proof. The proof can be completed based on the following logic. A corner BaEUE is
obtained when either of the following two conditions is satisfied.

1. When nR = 0, the bi-attribute expected travel utility of the risky option is still not
greater than the travel utility of the non-risky option, i.e., (1− p)u+(0) + pu−(0) ≤
uNR(N). In this situation, we obtain that nRe = 0 is a corner BaEUE. Substitut-
ing the travel utility functions into this inequality and rearranging it, we obtain
−
[
tNR(N)− t0

]
≥ β(τ2 − τ1).

2. When nR = N, the bi-attribute expected travel utility of the risky option is still not less
than the travel utility of the non-risky option, i.e., (1− p)u+(N) + pu−(N) ≤ uNR(0).
In this situation, we obtain that nRe = N is a corner BaEUE. Substituting the travel
utility functions into this inequality and rearranging it, we obtain p[t−(N)− t0] ≤
β(τ2 − τ1). �

The intuitive interpretation on Proposition (2) is that when the travel cost of one
option is too large (or too small) compared to that of the other option, travelers’ mode
choice decisions cannot be changed, even though increase in traffic flow causes the increase
in travel time. That is, when the travel cost of a certain option is too large, no matter
how the traffic flow is distributed, travelers will choose the option with a small travel
cost, and vice versa. According to this proposition, we only discuss the situations where
−
[
tNR(N)− t0

]
< β(τ2 − τ1) < p[t−(N)− t0] is satisfied.

Surprisingly, result in Proposition (2) is also a sound prerequisite for the analysis on
BaSUE due to the inherent relationship between the expected utility theory and salience
theory as discussed in the part of flow-dependent salience theory, which will be elaborated
in the following discussions. We divide the condition −

[
tNR(N)− t0

]
< β(τ2 − τ1) <

p[t−(N)− t0] into two cases, and the motivation for this division is the utility value when
the flow on each option is N.

1. Case 1: 0 < β(τ2 − τ1) < p[t−(N)− t0]. In this case, the corresponding relationship
between different travel utility functions is shown in Figure 2 schematically. We see
that when the flow on each option is N, u+(N) ≥ uNR(N) > u−(N) is satisfied. The
relationship u+(N) = uNR(N) when τ1 = τ2 is not shown explicitly, and one can
modify Figure 2 for this straightforwardly. Moreover, relationship u+(N) = uNR(N)
can also be incorporated into Case 2 without loss of generality.

2. Case 2: −
[
tNR(N)− t0

]
< β(τ2 − τ1) < 0. In this case, the corresponding relationship

between different travel utility functions is shown in Figure 3 schematically. We see
that when the flow on each option is N, uNR(N) > u+(N) > u−(N) is satisfied.
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Figure 2. Schematic relationship between different travel utility functions when τ1 ≤ τ2.

Figure 3. Schematic relationship between different travel utility functions when τ1 > τ2.

From Figures 2 and 3, we see that when nR ∈ [0, nt] (here, nt denotes the tempo-
rary value of nR, and is obtained by solving the equation u−(nR)− uNR(N − nR) = 0),
u+(nR) − uNR(N − nR) > 0 and u−(nR) − uNR(N − nR) ≥ 0). Substituting these two
inequalities into the flow-dependent mode preference function and with δ1 and δ2 being
positive, we have

VR→NR(nR)
= δ1(1− p)

[
u+(nR)− uNR(N − nR)

]
+ δ2 p

[
u−(nR)− uNR(N − nR)

]
> 0 (13)

i.e., the salient travelers always prefer the risky option to the non-risky option. There-
fore, we obtain that when nR ∈ [0, nt], there is no BaSUE. The aforementioned discussions
are true for both cases, while for Case 2, we can obtain more results.

When nR ∈ [n′t, N], N] (here, n′t also denotes the temporary value of nR, and
is obtained by solving the equation u+(nR) − uNR(N − nR) = 0), we have u+(nR) −
uNR(N − nR) ≤ 0 and u−(nR)− uNR(N − nR) < 0. Substituting these two inequalities
into the flow-dependent mode preference function and with δ1 and δ2 being positive,
we have

VR→NR(nR)
= δ1(1− p)

[
u+(nR)− uNR(N − nR)

]
+ δ2 p

[
u−(nR)− uNR(N − nR)

]
< 0 (14)
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i.e., the salient travelers always prefer the non-risky option to the risky option. There-
fore, we obtain that when nR ∈ [n′t, N], there is no BaSUE. Therefore, in the following
discussions, we only consider interval (nt, N] for Case 1, and interval (nt, n′t) for Case 2.

Next we discuss the BaSUE in these two cases separately based on the following
technical lemma.

Lemma 1. The flow-dependent mode preference function VR→NR(nR)
is a strictly decreasing

function of the flow nR in the considered interval (nt, N] or (nt, n′t).

Proof. We prove this lemma is true for interval (nt, n′t), and the proof for interval (nt, N]
can be completed similarly, which is omitted for brevity. �

It is obvious that in the interval (nt, n′t), VR→NR(nR)
is continuous. The derivative of

VR→NR(nR)
is

dVR→NR(nR)

dnR
= (1− p)δ1

[
− ln δ dσ1

dnR

(
tNR(N − nR)− t0 + β(τ2 − τ1)

)
+ dtNR(N−nR)

dnR

]
+

pδ2

[
− ln δ dσ2

dnR

(
tNR(N − nR)− t−(nR) + β(τ2 − τ1)

)
+
(

dtNR(N−nR)
dnR

− dt−(nR)
dnR

)]
To prove the strict monotonicity of the flow-dependent mode preference function, the

following steps are followed. When nR(nt, n′t)σ1 = tNR(N−nR)−t0+β(τ2−τ1)
2U−tRN(N−nR)−t0−β(τ2+τ1)

, and thus

dσ1
dnR

= 2
dtNR(N−nR)

dnR
[U−(t0+βτ1)]

[2U−tNR(N−nR)−t0−β(τ2+τ1)]
2 . Because dtNR(N−nR)

dnR
< 0 and [U − (t0 + βτ1)] > 0, we

obtain dσ2
dnR

> 0.

When nR(nt, n′t), σ1 = t−(nR)−tNR(N−nR)−β(τ2−τ1)
2U−tRN(N−nR)−t−(nR)−β(τ2+τ1)

, and thus

dσ2
dnR

= −2
dtNR(N−nR)

dnR
[U−(t−(nR)+βτ1)]−

dt−(nR)
dnR

[U−(tNR(N−nR)+βτ2)]

[2U−tNR(N−nR)−t−(nR)−β(τ2+τ1)]
2 . Because dtNR(N−nR)

dnR
<

0, dt−(nR)
dnR

> 0, U − (t−(nR) + βτ1) > 0, and U −
(
tNR(N − nR) + βτ2

)
> 0, we obtain

dσ2
dnR

> 0.
From Figure 3, we see that u+(nR)− uNR(N − nR) > 0,u−(nR)− uNR(N − nR) < 0

when nR ∈ (nt, n′t), which can also be verified with the travel utility functions. There-
fore dσ1

dnR
= tNR(N − nR) − t0 + β(τ2 − τ1) < 0 and dσ2

dnR
= tNR(N − nR) − t−(nR) +

β(τ2 − τ1) < 0, δ ∈ (0, 1) implies ln δ < 0 and we have δ1 > 0 and δ2 > 0.

Combining all these results, we can show that
dVR→NR(nR)

dnR
< 0, ∀nR ∈ (nt, n′t).

4.1.1. Case 1

In this case, 0 ≤ β(τ2 − τ1) < p[t−(N)− t0] is satisfied, which corresponds to Figure 2,
and we present the formal results on the equilibrium in this section.

The right-hand side of this inequality is the value when nR = N with the ob-
jective probability, which motivates us to discuss the value when nR = N with the
distorted probability.

When nR = N, one of three possible situations can happen given the specific travel util-
ity functions. If σ1

(
u+(N), uNR(0)

)
< σ2

(
u−(N), uNR(0)

)
, i.e., bad state is salient (Recall

that δ ∈ (0, 1), δ1 > δ2. Similarly, we obtain when σ1
(
u+(N), uNR(0)

)
> σ2

(
u−(N), uNR(0)

)
i.e., good state is salient, δ1 < δ2, and when σ1

(
u+(N), uNR(0)

)
= σ2

(
u−(N), uNR(0)

)
,

i.e., no state is salient, δ1 = δ2.
If δ ∈ (0, 1), δ1 > δ2, we have δ2 p

δ1(1−p)+δ2 p < δ2 p
δ2(1−p)+δ2 p = p i.e., the distorted

probability is strictly less than the objective probability. Similarly, if δ1 = δ2, we have
δ2 p

δ1(1−p)+δ2 p = p, and if δ1 < δ2, we have δ2 p
δ1(1−p)+δ2 p > p.

Next, we discuss the three possible situations separately.



Sustainability 2021, 13, 3901 10 of 24

Proposition 3. If δ1 > δ2 when nR = N, there is a unique BaSUE betweennt and N. In particular,
the cost difference, which ensures that there is still no corner equilibrium, becomes smaller.

Proof. We complete the first part of the proof in two steps. When δ2 p
δ1(1−p)+δ2 p [t

−(N)− t0] <

β(τ2 − τ1), we have

VR→NR(N) = pδ2
[
t0 − t−(N) + β(τ2 − τ1)

]
+ (1− p)δ1[β(τ2 − τ1)]

> pδ2

[
t0 − t−(N) +

δ2 p
δ1(1− p) + δ2 p

[
t−(N)− t0

]]
+ (1− p)δ1

[
δ2 p

δ1(1− p) + δ2 p
[
t−(N)− t0

]]
= pδ2

δ1(1− p)[t0 − t−(N)]

δ1(1− p) + δ2 p
+ (1− p)δ1

[
δ2 p

δ1(1− p) + δ2 p
[
t−(N)− t0

]]
= 0

(15)

Therefore, the salient travelers always prefer the risky option. That is, there is no
BaSUE when δ2 p

δ1(1−p)+δ2 p [t
−(N)− t0] < β(τ2 − τ1) < p(t−(N)− t0).

When 0 ≤ β(τ2 − τ1) ≤ δ2 p
δ1(1−p)+δ2 p [t

−(N)− t0], there is a unique BaSUE between nt

and N. It can be verified that δ2 p
δ1(1−p)+δ2 p [t

−(N)− t0] = β(τ2 − τ1), i.e., VR→NR(N) = 0.

Following the similar steps used in the proof of Lemma (1), we obtain dVR→NR(nR)
dnR

< 0, ∀nR ∈
(nt, N). Combining the results that VR→NR(nt) > 0 and VR→NR(N) ≤ 0, we can show that
there is a unique value of nR ∈ (nt, N] that satisfies VR→NR(nRe) = 0, which completes the
first part of the proof.�

Finally, δ2 p
δ1(1−p)+δ2 p < p means that the cost difference, which ensures that there is still

no corner equilibrium, becomes smaller.

Proposition 4. If δ1 = δ2 when nR = N, there is a unique BaSUE between nt and N. In
particular, the cost difference, which ensures that there is still no corner equilibrium, remains
the same.

Proof. If δ1 = δ2 when nR = N, the BaSUE becomes the BaEUE. Follow the aforemen-
tioned discussions, we have dVR→NR(nR)

dnR
< 0, ∀nR ∈ (nt, N). Combining the results that

VR→NR(nt) > 0 and VR→NR(N) ≤ 0, we complete the first part of the proof. �

Finally, δ2 p
δ1(1−p)+δ2 p = p means that the cost difference, which ensures that there is still

no corner equilibrium, remains the same.

Proposition 5. If δ1 < δ2 when nR = N, there is a unique BaSUE between nt and N. In
particular, we can increase the cost difference, and meanwhile, guarantee that there is still no
corner equilibrium.

Proof. If δ1 < δ2 when nR = N, we have

β(τ2 − τ1) < p
[
t−(N)− t0

]
<

δ2 p
δ1(1− p) + δ2 p

[
t−(N)− t0

]
Follow the aforementioned discussions, we have dVR→NR(nR)

dnR
< 0, ∀nR ∈ (nt, N).

Combining the results that VR→NR(nt) > 0 and VR→NR(N) ≤ 0, we complete the first part
of the proof. �

Finally, δ2 p
δ1(1−p)+δ2 p > p means that we can increase the cost difference, and meanwhile,

guarantee that there is still no corner equilibrium.
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All the results in the above three propositions about the corner equilibrium can be
verified with the logic discussed in Proposition (2), by replacing the objective probability p
with the distorted probability p′.

4.1.2. Case 2

In this case, −
[
tNR(N)− t0

]
< β(τ2 − τ1) < 0 is satisfied, which corresponds to

Figure 3, and we present the formal results on the equilibrium in this section. In this case,
there is no objective probability p on left-hand side of the inequality, which is different from
that in Case 1.

Proposition 6. There is a unique BaSUE nRe between nt and n′t.

Proof. VR→NR(nt) = δ1(1− p)
[
u+(nt)− uNR(N − nt)

]
> 0, VR→NR(n′t) = δ2 p[u−(n′t)−

uNR(N − n′t)
]
< 0, combining these results in Lemma (1), we obtain that there is a unique

value of nR ∈ (nt, n′t) hat satisfies VR→NR(nRe) = 0, which completes the proof. �

4.2. Travelers’ Risk Attitude on the Bi-Attribute Risky Mode Choice

In this section, we present the results on travelers’ attitude based on the BaSUE.

Theorem 1. At the equilibrium, if no state is salient, i.e., δ1 = δ2, travelers are risk-neutral; if good
state is salient, i.e., δ1 < δ2, travelers are risk-seeking; if bad state is salient, i.e., δ1 > δ2, travelers
are risk-averse.

Proof. At the BaSUE, if no state is salient, we have δ1 = δ2, and thus Equation (13)
becomes pδ1(1− p)

[
u−(nR)− uNR(nR)

]
+ (1− p)δ1

[
u+(nR)− uNR(nR)

]
= 0. Then we

have p
[
u−(nR)− uNR(nR)

]
+ (1− p)

[
u+(nR)− uNR(nR)

]
= 0, i.e.,

pu−(nR) + (1− p)u+(nR) = 0 (16)

Therefore, we obtain the BaEUE. The distorted probability of good state will become larger
if it is salient, which will increase the left-hand-side value of Equation (16). Therefore, more
travelers will choose the risky option, i.e., they are risk-seeking. Similarly, the distorted
probability of the bad state will become larger if it is salient, which will decrease the
left-hand-side value of Equation (16). Therefore, more travelers will choose the non-risky
option, i.e., they are risk-averse. �

In practice, maybe only one state is salient for a specific situation, as shown in the fol-
lowing Figure 4. Next, we propose the flow-dependent salience ranking analysis to present
more detailed results based on Theorem (1), and obtain the following two propositions.
Result in Proposition (7) is motivated by the discussion on the BaSUE in Case 1, where the
relationship between δ1 and δ2 is a key prerequisite when nR = N. Here, we discuss the
conditions for this relationship.
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Figure 4. Relationship between different salience functions.

When nR = N, we have σ1 = β(τ2−τ1)
2U−2t0−β(τ2+τ1)

and σ2 = t−(N)−t0−β(τ2−τ1)
2U−t0−t−(N)−β(τ2+τ1)

. If
σ1 < (=,>)σ2 (see Figure 4), we obtain

β(τ2 − τ1)

2U − 2t0 − β(τ2 + τ1)
< (=,>)

t−(N)− t0 − β(τ2 − τ1)

2U − t0 − t−(N)− β(τ2 + τ1)
(17)

Equation (17) can be seen as the sufficient conditions to figure out the salient state
when nR = N.

With the sufficient conditions, we obtain the following proposition.

Proposition 7. In the case that 0 ≤ β(τ2 − τ1) < p(t−(N)− t0), one of the following three
situations can happen given the travel utility functions.

1. σ1(N) < σ2(N)is satisfied, and then we can find ann∗R ∈ (nt, N). WhennR ∈ (nt, n∗R),σ1 >
σ2, i.e., good state is salient and travelers are risk-seeking; whennR ∈ (n∗R, N),σ2 > σ1, i.e.,
bad state is salient and travelers are risk-averse; whennR = n∗R, σ1 = σ2, i.e., no state is
salient and travelers are risk-neutral.

2. σ1(N) = σ2(N)is satisfied, and then when nR ∈ (nt, N), σ1 > σ2, i.e., good state is salient
and travelers are risk-seeking, and when nR = N, σ1 = σ2, i.e., no state is salient and
travelers are risk-neutral.

3. σ1(N) > σ2(N)is satisfied, and then whennR ∈ (nt, N], σ1 > σ2, i.e., good state is salient
and travelers are risk-seeking.

Proof. According to the aforementioned discussions in Lemma (1), σ1(nR) and σ2(nR) are
both continuous functions of nR. dσ1

dnR
< 0, ∀nR ∈ (nt, N], i.e., σ1 is a strictly decreasing

function of nR when nR ∈ (nt, N], and dσ2
dnR

> 0, ∀nR ∈ (nt, N], i.e.,σ2 is a strictly increasing
function of nR when nR ∈ (nt, N] We have discussed the relationship between σ1 and σ2
when nR = N. With the strict monotonicity properties, we need to figure out the relation-
ship between σ1 and σ2 when nR = nt. Recalling that nt is obtained by solving the equation
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u−(nR)− uNR(N − nR) = 0, we have σ2(nt) = 0 and σ1(nt) > 0 by Equations (7) and (8).
Therefore, combining all the results, we obtain the following three possible situations.

(a) σ1(N) < σ2(N) as schematically shown in the upper-left figure of Figure 4. Then
there exists n∗R ∈ (nt, N). When nR ∈ (nt, n∗R), σ1 > σ2, when nR ∈ (n∗R, N), σ2 > σ1,
when nR = n∗R, σ2 = σ1.

(b) σ1(N) = σ2(N) as schematically shown in the upper-right figure of Figure 4. When
nR ∈ (nt, N)σ1 > σ2 and when nR = N, σ1 = σ2.

(c) σ1(N) > σ2(N) as schematically shown in the bottom figure of Figure 4. When
nR ∈ (nt, N], σ1 > σ2. Combining with the results in Theorem (1), we complete
the proof. �

Next, we talk about another case, i.e., Case 2.

Proposition 8. In the case that −
[
tNR(N)− t0

]
< β(τ2 − τ1) < 0, we can find an n∗R ∈

(nt, n′t). When nR ∈ (nt, n∗R), σ1 > σ2, i.e., good state is salient and travelers are risk-seeking;
when nR ∈ (n∗R, n′), σ2 > σ1, i.e., bad state is salient and travelers are risk-averse; when
nR = n∗R, σ1 = σ2, i.e., no state is salient and travelers are risk-neutral.

Proof. It is obvious that in the interval (nt, n′t), σ1(nR) and σ2(nR) are both continuous func-

tions of nR. We have σ1 = tNR(N−nR)−t0+β(τ2−τ1)
2U−tNR(N−nR)−t0−β(τ2+τ1)

,σ2 = t−(nR)−tNR(N−nR)−β(τ2−τ1)
2U−tNR(N−nR)−t−(nR)−β(τ2+τ1)

,

when nR ∈ (nt, n′t). According to Lemma (1), dσ1
dnR

< 0, ∀nR ∈ (nt, n′t),i.e.,σ1 is a strictly

decreasing function of nR when nR ∈ (nt, n′t), and dσ2
dnR

> 0, ∀nR ∈ (nt, n′t), i.e., σ2 is a
strictly increasing function of nR when nR ∈ (nt, n′t). Moreover, when nR = nt, we have
σ2(nt) = 0 and σ1(nt) > 0; when nR = n′t, σ2(n′t) = 0 and σ1(n′t) = 0, recalling the
calculation of n′t. Therefore, there is a value between nt and n′t, defined as n∗R, that σ1 = σ2,
as schematically shown in Figure 5. Furthermore, when nR ∈ (nt, n∗R), σ1 > σ2; when
nR ∈ (n∗R, n′t), σ2 > σ1. Combining with the results in Theorem (1), we complete the proof. �

Figure 5. Relationship between different salience functions.

5. Numerical Examples

In this section, we conduct the numerical examples to show the performance of
the proposed method, focusing on the sensitivity of equilibrium solution to the input
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parameters, the cost difference and the salience bias. We assume that there are N = 3000
travelers in the system, and use the following quadratic travel utility functions.

u = U −
(

t0 + at0

(
f
Q

)2
+ βτ

)
(18)

where f denotes the traffic flow, Q denotes the capacity, t0 denotes the free-flow travel
time, and parameters a = 0.15. The free-flow travel times on both options are 80, and the
capacity of risky option and non-risky option are 1000 and 1200, respectively. The intrinsic
value U is 205, and the value of travel cost β is 0.5. We change the value of p from 0 to
1, and use the linspace function in Matlab to generate 51 representative values. All the
flow-dependent mode choice functions are solved with solve function in Matlab 2014a. We
run the numerical examples for each case.

6. Case 1

In this case, 0 ≤ β(τ2 − τ1) < p(t−(N)− t0) is satisfied. The travel cost on the risky
option is 20, while the travel cost on the non-risky option is increased from 21 to 30 with the
step size being 3. That is, we choose four representative values for travel cost on non-risky
option. The salience bias δ is 0.3. The final equilibrium results are shown in Tables 1–4
(here we select 17 representative values for p) and Figures 6–9.

Table 1. Comparison of the equilibrium flow for representative values of p(τ1 = 20 and τ2 = 21).

p 0.02 0.08 0.14 0.20 0.26 0.32 0.38 0.44 0.50
Expected flow 2627 2270 2093 1971 1878 1802 1738 1683 1635

BaSUE flow 2500 2177 2025 1921 1843 1778 1723 1675 1632
p 0.56 0.62 0.68 0.74 0.80 0.86 0.92 0.98 -

Expected flow 1592 1553 1518 1486 1456 1429 1403 1379 -
BaSUE flow 1593 1557 1524 1492 1463 1434 1407 1380 -

Table 2. Comparison of the equilibrium flow for representative values of p(τ1 = 20 and τ2 = 24).

p 0.02 0.08 0.14 0.20 0.26 0.32 0.38 0.44 0.50
Expected flow 2923 2364 2162 2028 1927 1846 1779 1721 1670

BaSUE flow 2631 2247 2081 1971 1887 1820 1762 1721 1667
p 0.56 0.62 0.68 0.74 0.80 0.86 0.92 0.98 -

Expected flow 1625 1585 1548 1515 1484 1456 1429 1405 -
BaSUE flow 1627 1589 1554 1522 1491 1462 1433 1406 -

Table 3. Comparison of the equilibrium flow for representative values of p(τ1 = 20 and τ2 = 27).

p 0.02 0.08 0.14 0.20 0.26 0.32 0.38 0.44 0.50
Expected flow 3000 2469 2234 2081 1978 1892 1820 1759 1706

BaSUE flow 2775 2318 2138 2021 1933 1861 1801 1749 1702
p 0.56 0.62 0.68 0.74 0.80 0.86 0.92 0.98 -

Expected flow 1659 1617 1579 1544 1512 1483 1455 1430 -
BaSUE flow 1660 1621 1585 1551 1519 1489 1460 1431 -

Table 4. Comparison of the equilibrium flow for representative values of p(τ1 = 20 and τ2 = 30).

p 0.02 0.08 0.14 0.20 0.26 0.32 0.38 0.44 0.50
Expected flow 3000 2587 2310 2147 2029 1937 1862 1797 1742

BaSUE flow 2923 2391 2196 2071 1978 1903 1840 1786 1737
p 0.56 0.62 0.68 0.74 0.80 0.86 0.92 0.98 -

Expected flow 1692 1649 1609 1573 1540 1510 1481 1455 -
BaSUE flow 1694 1653 1616 1581 1548 1516 1486 1456 -
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Figure 6. τ1 = 20 and τ2 = 21.

Figure 7. τ1 = 20 and τ2 = 24.

Figure 8. τ1 = 20 and τ2 = 27.

Figure 9. τ1 = 20 and τ2 = 30.
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Before we discuss the main insights of the results, we present four common aspects
in all the testings. (1) In our testing, the sufficient condition σ1(N) < σ2(N) is satisfied,
i.e., the relationship between σ1 and σ2 are shown in the upper-left figure of Figure 4. One
can modify the travel utility func-tions to test other two situations; (2) In all the following
figures, we claim that the cross point (denoted by ne

R) of the two curves, the curve for
expected flow following the principle of expected utility theory and the curve for BaSUE
flow following the principle of flow-dependent salience theory, is a special situation, where
travelers are risk-neutral according to Theorem (1). The condition, that the solution to the
flow-dependent mode choice function and the solution to the equation σ1(nR) < σ2(nR)
coincide, needs to be satisfied, which can be verified by the related definitions. The above
condition can also be used to figure out the P̃ of the bad state when travelers are risk-
neutral. (3) When p = 0 or p = 1,we obtain the degeneration values for the equilibrium
solution. In both cases, when p = 0, the solution is obtained by solving the equation
u+(nR) = uNR(N − nR), and when p = 1, the solution is obtained by solving the equation
u−(nR) = uNR(N − nR), given the specific values of τ1 and τ2. (4) In all the testings, we
can always find the unique BaSUE solution, which demonstrates Proposition (3).

From these tables and figures, we see the following insights.

(1) Given a specific objective probability (e.g., p = 0.2), when the cost difference (cost
difference here means τ2 − τ1) become larger and larger, traffic flow on the risky
option will become larger and larger, and vice versa. The intuitive explanation for
this is that the increase of travel cost on non-risky option will make travelers choose
the risky option.

(2) When the probability of bad state is not large (e.g., p = 0.2), travelers are risk-averse,
and when the probability of bad state is relatively large (e.g., p = 0.7), travelers are
risk-seeking. We also see the cross point and its corresponding p̃, where travelers
are risk-neutral as discussed before. For p ∈ (0, p̃), travelers are risk averse, and for
p ∈ ( p̃, 1), travelers are risk-seeking. These results seem to be non-intuitive, and it
seems that if the travelers know that the risky option is in bad state (in good state)
with high probability, they should choose the non-risky (risky) option, i.e., they should
be risk-averse (risk-seeking). However, travelers’ salience characteristic means they
put their attention on the unusual aspect. That is, if the risky option is in bad state (in
good state) with high probability, considering the low (high) flow on the risky option
(see Figures 6–9), the good state (the bad state) is the unusual aspect according to our
travel utility functions. Moreover, we can combine the results in Proposition (7) to
present more interpretation on these phenomena. When the probability of bad state
is not large, the equilibrium solution nRe is larger than nc

R, and thus, we know bad
state is salient according to Proposition (7). In contrast, we know good state is salient
when the probability of bad state is large. Therefore, we see these phenomena in the
testings. All the above discussions also demonstrate the validity of Theorem (1).

(3) When the cost difference become larger and larger, the extent of travelers’ risk-averse
attitude becomes stronger almost, except when p is very small, e.g., p = 0.02. This
is because larger cost difference will make travelers choose the risky option, which
further makes the difference between travel utility of risky option in good state and
the travel utility of non-risky option become smaller, considering the high flow on the
risky option (see Figures 6–9). Therefore, the bad state is more salient, which leads
to the stronger extent of travelers’ risk-averse attitude. However, there is almost no
difference between the risk-neutral equilibrium flow, i.e., the expected flow, and the
risk-seeking equilibrium flow, i.e., the BaSUE flow when p is relatively large. That
is, travelers’ risk-seeking attitude following the flow-dependent salience theory has
almost no effect on the equilibrium flow, compared to the results of expected utility
theory. This is because the flow on the risky option is not large (see Figures 6–9),
which make the difference between the utilities on risky and non-risky option small.

(4) With the increase of cost difference, we clearly see the corner equilibrium following
the principle of expected utility theory. Meanwhile, larger cost difference means more
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situations with corner equilibrium. However, there is no corner equilibrium for BaSUE
even though we increase the cost difference, which demonstrate Proposition (5).

Next, we fix the travel cost on the risky option (τ1 = 20) and non-risky option (τ1 = 25),
and change the values of salience bias δ. We choose four representative values for δ, which
are 0.1, 0.3, 0.5 and 0.7. δ = 0.1 implies that travelers have stronger salience bias, while
δ = 0.7 implies the salience bias is weaker. The final equilibrium results are shown in
Figures 10–13. From these figures, we see the following insights. (1) With the increase
of the value for δ, the extent of travelers’ risk-averse attitude and risk-seeking attitude
become weaker, and vice versa. (2) The value of δ has no effect on the cross point, where
travelers are risk-neutral, as discussed before. (3) We clearly see the values for p, where
there exists the corner equilibrium for expected flow, and the value of δ has no effect on this.
(4) Even though travelers have very strong salience bias, e.g., δ = 0.1, the effect of travelers’
risk-seeking attitude following the flow-dependent salience theory on the equilibrium
results can be ignored, compared to the results of expected utility theory. We can present
similar explanations as the above testing.

Figure 10. δ = 0.1.

Figure 11. δ = 0.3.



Sustainability 2021, 13, 3901 18 of 24

Figure 12. δ = 0.5.

Figure 13. δ = 0.7.

6.1. Case 2

In this case, −
[
tNR(N)− t0

]
< β(τ2 − τ1) < 0 is satisfied. The travel cost on the

non-risky option is 20, while the cost on the risky option is increased from 21 to 30 with
the step size being 3. That is, we choose four representative values for travel cost on risky
option. The salience bias δ is also 0.3. The final equilibrium results are shown in Tables 5–8
(here we also select 17 representative values for p) and Figures 14–17.

Table 5. Comparison of the equilibrium flow for representative values of p(τ1 = 21 and τ2 = 20).

p 0.02 0.08 0.14 0.20 0.26 0.32 0.38 0.44 0.50
Expected flow 2509 2211 2048 1934 1845 1772 1711 1658 1611

BaSUE flow 2419 2130 1987 1888 1813 1750 1697 1650 1609
p 0.56 0.62 0.68 0.74 0.80 0.86 0.92 0.98 -

Expected flow 1570 1532 1498 1467 1438 1411 1386 1363 -
BaSUE flow 1571 1536 1503 1473 1444 1416 1389 1364 -

Table 6. Comparison of the equilibrium flow for representative values of p(τ1 = 24and τ2 = 20).

p 0.02 0.08 0.14 0.20 0.26 0.32 0.38 0.44 0.50
Expected flow 2367 2127 1984 1879 1797 1729 1671 1620 1576

BaSUE flow 2308 2062 1931 1839 1768 1709 1658 1614 1574
p 0.56 0.62 0.68 0.74 0.80 0.86 0.92 0.98 -

Expected flow 1536 1500 1468 1437 1410 1384 1360 1337 -
BaSUE flow 1537 1504 1473 1443 1415 1389 1363 1338 -
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Table 7. Comparison of the equilibrium flow for representative values of p(τ1 = 27 and τ2 = 20).

p 0.02 0.08 0.14 0.20 0.26 0.32 0.38 0.44 0.50
Expected flow 2248 2049 1921 1825 1749 1685 1631 1583 1541

BaSUE flow 2207 1995 1876 1790 1723 1667 1619 1577 1539
p 0.56 0.62 0.68 0.74 0.80 0.86 0.92 0.98 -

Expected flow 1503 1469 1437 1408 1382 1357 1334 1312 -
BaSUE flow 1504 1472 1442 1414 1387 1361 1337 1313 -

Table 8. Comparison of the equilibrium flow for representative values of p(τ1 = 30 and τ2 = 20).

p 0.02 0.08 0.14 0.20 0.26 0.32 0.38 0.44 0.50
Expected flow 2144 1976 1861 1773 1702 1642 1591 1546 1506

BaSUE flow 2114 1931 1822 1742 1679 1626 1581 1540 1504
p 0.56 0.62 0.68 0.74 0.80 0.86 0.92 0.98 -

Expected flow 1470 1437 1407 1379 1354 1330 1308 1287 -
BaSUE flow 1471 1440 1411 1384 1359 1334 1310 1288 -

Figure 14. τ1 = 21 and τ2 = 20.

Figure 15. τ1 = 24 and τ2 = 20.
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Figure 16. τ1 = 27 and τ2 = 20.

Figure 17. τ1 = 30 and τ2 = 20.

From these tables and figures, we see the following insights. (1) Given a specific value
of objective probability (e.g., p = 0.2), when the cost difference (cost difference here means
τ1 − τ2) becomes larger and larger, traffic flow on the risky option will become smaller and
smaller, and vice versa. The intuitive explanation for this is that the increase of travel cost
on risky option will make travelers choose the non-risky option. (2) We also see travelers’
risk-seeking and risk-averse attitudes for different objective probability ps, and can give
similar explanations as those in Case 1. Also, the risk-neutral attitude is a special condition.
(3) When the cost difference become larger and larger, the extent of travelers’ risk-averse
attitude almost remains the same, even though it becomes weaker. Increase in the cost
difference will make more travelers choose non-risky option, and the difference between the
utility of the risky option in good state and the utility of the non-risky option become larger.
Meanwhile, increase of the value of τ1 makes this difference become smaller. Therefore, this
difference remains almost the same, and we see this phenomenon on travelers’ risk-averse
attitude. Similarly, there is almost no difference between the expected flow, and the BaSUE
flow when travelers’ are risk-seeking, and we can present similar explanation as those
in Case 1. (4) In this test, there is no corner equilibrium for both principles, and one can
modify the travel utility functions and travel costs to show the corner equilibrium.

Next, we fix the travel cost on the risky option (τ1 = 25) and non-risky option (τ2 = 20),
and change the values of salience bias δ. We also choose four different value for δ, which
are 0.1, 0.3, 0.5 and 0.7. The final equilibrium results are shown in Figures 18–21. From
these figures, we see the similar behavioral insights as the tests shown from Figures 10–13.
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Figure 18. δ = 0.1.

Figure 19. δ = 0.3.

Figure 20. δ = 0.5.

Figure 21. δ = 0.7.
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7. Conclusions

In this paper, we discussed travelers’ bi-attribute (travel time and travel cost) risky
mode choice behavior with one risky option (e.g., the highway) and one non-risky option
(e.g., the transit), and provided new insights to this kind of behavior. We proposed to use
the flow-dependent salience theory to support this research aim, and developed the bi-
attribute salient travel utility model. Furthermore, we examined the long-run effect of this
model and developed the bi-attribute salient user equilibrium model, which can partially
remedy the unrealistic behavioral assumptions used in the classical Wardropian user
equilibrium principle. We theoretically proved the existence and unique of the equilibrium,
and based on the equilibrium results, we analyzed the travelers’ risk attitudes on the
bi-attribute mode choice problem. Finally, we run the numerical examples to show the
sensitivity of the equilibrium results to the input parameters, which are cost difference and
salience bias.

The novelty of our paper is to study the effect of travelers’ salience characteristic on
the bi-attribute mode choice behavior. Salience here is context-dependent, and travelers’
attention is drawn to the bi-attribute salient travel utility. The main findings of this paper
are summarized as follows. (1) Travelers’ attitude can be risk-averse, risk seeking or
risk-neutral in the bi-attribute mode choice problem. If the objective probability of bad
state p is relatively small, travelers are risk-averse, and if p is relatively large, travelers
are risk-seeking. Only in the special situation, where the solution to the flow-dependent
mode choice function and the solution to the equation σ1(nR) = σ2(nR) coincide, travelers
are risk-neutral. This condition can also be used to figure out the p of the bad state when
travelers are risk-neutral, which can further be used to figure out the ps for risk-averse
attitude and the ps for risk-seeking attitude. (2) The extent of travelers’ risk-averse and
risk-seeking attitudes can be affected by their salience bias and the cost difference, while
their risk-neutral attitude is only affected by the cost difference. (3) If the travel cost on
the risky option is smaller than that on the non-risky option, we see that the extent of
travelers’ risk-averse attitude becomes stronger with the increase of the cost difference,
while if the travel cost on the non-risky is smaller, we see that the extent of travelers’
risk-averse attitude almost remains the same with the change of cost difference. In both
cases, we find that the effect of travelers’ risk-seeking attitude can be ignored, which is
identical to the effect of their risk-neutral attitude almost, even though travelers’ salience
bias is very strong. (4) The cost difference is closely related to the corner equilibrium,
and travelers’ salience characteristic can affect the occurrence of the corner equilibrium.
(5) The relationship between the salience functions can be affected by the travel cost, and
we identify the sufficient conditions for this (see the sufficient condition (17)).

Our findings can provide implications for the policy design and implementation, es-
pecially on the congestion tolling and transit fare design, which are summarized as follows.
(1) The salience characteristic can cause non-intuitive risk attitudes for travelers, which
needs to be considered in the policy design and implementation. (2) The policy makers can
use the congestion tolling and transit fare design (focusing on the cost difference) to change
travelers’ risk attitudes, and further change the distribution of the traffic flow. Especially,
the change on travelers’ risk-averse attitude is effective. (3) If the policy makers focus
on the corner equilibrium, the effect of travelers’ salience characteristic is notable, which
can change the effect of cost difference. (4) The policy makers can also use the congestion
tolling and transit fare design to change the relationship between the salience functions,
focusing on our sufficient conditions.

There are several directions which merit further study. Firstly, in this paper, we only
focus on the effect of travel cost on the equilibrium, and, in the future, we will discuss
the optimal congestion tolling and transit fare design problem considering the salience
characteristic, where the results of our paper can serve as the basis. Secondly, there is
perception error for travelers, and in further research we will discuss the effect of perceived
objective probability. Thirdly, our method can also be used for the two-route equilibrium
analysis, but an extension to the multiple options is needed for the analysis on the general
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traffic network. Finally, a behavioral experiment can be conducted to estimate the key
parameters in our method, i.e., the salience bias, as discussed in the introduction.
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Notations
The following notations are used in this manuscript:
N The number of travelers
R The risky option
NR The non-risky option
S The set of states of the world
p The probability of bad state
uNR The travel utility functions on NR for both states
u+ The travel utility function on the risky option in good state
u− The travel utility function on the risky option in bad state
nR The traffic flows on the risky option
τ1 Travel cost on risky option
τ2 Travel cost on non-risky option
β Value of travel cost
t−(·) Travel time functions on the risky option
tNR(·) Travel time functions on the non-risky option
t0 Travel time of the free flow
umax

s The largest utilities for each state s
umin

s The smallest utilities for each state s
δ Travelers’ susceptibility to the salience
nt The temporary value of nR
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