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Abstract: We present a meta-analysis of energy-consumption and environmental-emissions patterns
in Iranian cropping systems using data collected from articles published between 2008 and 2018 for
21 different crops. The results show that the crops consuming the most energy per hectare are tomato,
sugarcane, cucumber and alfalfa, while sunflower consumed the least. The average total energy input
for all crops in Iran during the study period was 48,029 MJ ha−1. Our analysis revealed that potato has
the highest potential to reduce energy consumption and that electricity and fertilizer inputs have the
most potential for energy savings in cropping systems. Not all studies reviewed addressed the factors
that create energy consumption patterns and environmental emissions. Therefore, eight indicators
were modeled in this meta-analysis, which include Total Energy Input, Energy Productivity, Energy
Use Efficiency, Net Energy, Greenhouse Gas Emissions, Technical Efficiency, Pure Technical Efficiency
and Scale Efficiency. The effects of region (which was analyzed in terms of climate), year and crop or
product type on these eight indicators were modeled using meta-regression and the nonparametric
Kruskal–Wallis test. To create a comprehensive picture and roadmap for future research, the process
of the agricultural-systems analysis cycle is discussed. This review and meta-analysis can be used as
a guide to provide useful information to researchers working on the energy dynamics of agricultural
systems, especially in Iran, and in making their choices of crop types and regions in need of study.

Keywords: energy indicators; environmental assessment; greenhouse gas emissions; cropping
systems; climate; sustainability

1. Introduction

In recent years, the number of publications on energy and environmental aspects of
agricultural systems has increased in Iran, particularly on energy consumption patterns
and environmental emissions [1]. The considerable number of publications in this field of
research has necessitated a comprehensive and analytical study of the various dimensions
of such studies. The method of conducting studies in this field has evolved in recent years.
However, there are challenges facing researchers in this field. The first question of the
present study is: Despite the wide range of indicators and methods used by previous
researchers, have all aspects of cropping systems been examined or are there still issues
in the systems analysis process that have been neglected? Given the great variety of
production systems in the agricultural sector, have the necessary standards been met by
researchers in sampling and data collection? In terms of the system analysis process,
it is incomplete to study the current state of a system without intervening to improve
a system. Therefore, the next question is whether, in the studies, interventions in the
energy consumption pattern have been done by researchers and whether the effect of those
interventions on improving the energy consumption pattern, economic model and reducing
environmental emissions has been studied? Another important question is whether a
hypothesis has been made about the reason for the formation of energy consumption
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patterns in the products under study. Are solutions proposed to improve the current state
of a system in the studies? Have social indicators been studied in studies in this field?
Has the selection of the region and the product under study been based on regional and
national needs and necessities? In response to the above questions, and in order to provide
better directions for future research and prevent duplicate studies that have sometimes
been observed in this area, it is necessary to provide researchers with sufficient information
about the background of the studies. Therefore, using a systematic method, the present
article provides readers with a comprehensive picture of the research background and
energy consumption status in Iranian cropping systems. The sections that have been
neglected in previous research are also mentioned in this article, which can be used as
a basis for future research by researchers to improve the quality of studies in this field.
A new procedure to supplement the shortcomings of previous studies is introduced in
this article. Moreover, understanding the energy-use patterns of cropping systems is
essential to addressing the sustainability challenges of agriculture. Thus, a systematic
review of the relevant literature is necessary for assessing what is known and establishing
future research agendas, particularly where the results of published empirical studies have
generated apparently conflicting findings. A preliminary review of these studies shows
that in some cases, research on the same product in different parts of the country has
generated notably different results. For example, the energy efficiency index of a barley
crop in Hamadan province was reported to be 2.86 [2], while in Isfahan province, it was
1.43 [3]. The existence of such differences is the rationale for this meta-analysis, which is
aimed at interpreting, understanding and generalizing wherever possible based on studies
published from 2008 to 2018.

Meta-analysis can be used to combine evidence from different studies into a single
statistical framework, explain differences arising from conflicting findings, and identify
necessary areas for future research. Iran’s relatively large geographic area and climatic
diversity results in a range of practices and systems for crop cultivation and leads to
differences in reported values for energy and environmental indicators. The objective of
study is to provide an overview of current understanding and analyze the impacts of crop
type, region and year on energy and environmental indicators of cropping systems of Iran.

2. Methods
2.1. Review Protocol

This study follows PRISMA guidelines and is a companion article to one published
recently on trends in methodologies and future research directions in crop energy analy-
ses [1]. In this study, a meta-analysis was performed using published studies of energy-use
patterns in cropping systems of Iran. We independently selected papers, extracted data,
and assessed the results using the review process illustrated in Figure 1. Essentially, we
began with the question of why the results of energy and environmental indicators for the
same products differed between similar studies.
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Figure 1. Schematic structure of the systematic review process.

2.2. Article Selection

The selection process included several steps described in detail in [1]. Potentially
relevant titles were identified with keyword searches on SCOPUS and Google Scholar. The
searches were restricted to crop studies performed in Iran, and all papers from reputable
journals were given consideration. Then, abstracts and keywords were reviewed, and some
inappropriate papers omitted.

2.3. Data Collection

To collect data needed for the meta-analysis, the full texts of articles were carefully
reviewed, and the published results were recorded and categorized by crop or product
type, study location, and year of research. Then, the values for indicators related to energy
consumption patterns were extracted from the articles, including total energy input (TEI),
energy use efficiency (EUE), energy productivity (EP) and net energy (NE). The type and
share of each input as an amount of energy consumed were recorded. The highest t-ratio
and highest marginal physical productivity (MPP) were collected as well. This initial
data-extraction step was applied to all the articles reviewed.

The second step applied only to studies of cropping systems using Data Envelopment
Analysis (DEA). The methodology of DEA and its application in energy analysis of cropping
systems is described well by Banaeian et al. [4]. In this part, total energy savings (TES),
technical efficiency (TE), pure technical efficiency (PTE) and scale efficiency (SE) were
collected, as well as the shares of all inputs in the energy-saving target ratio (ESTR). The
third step pertained to studies analyzing greenhouse gas (GHG) emissions and included
the quantity of GHG emitted in form of CO2 equivalents (both land-based and mass-
based). In cases with more than one study of a product, the average value of an indicator
was determined. For example, there were eight studies found on watermelon energy
consumption [5–12], so the reported indicator values are derived from the average from all
these papers.
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Energy and GHG Conversion Factors

Indices used in this meta-analysis were calculated using two series of coefficients
(Tables 1 and 2). Energy equivalents (energy conversion factors) are numerical values
that reflect the state of energy for each input. These equivalents are used to estimate the
energy indicators using collected sample data. When the amount of a consumed input is
multiplied by the conversion factor, the result is equal to the energy of the input. There
are some highly relevant inputs common in agricultural systems, but the energy system
boundary for each is not the same in all energy studies. Table 1 shows the most relevant
inputs and energy equivalents applied in energy-use-pattern studies of Iranian agricultural
systems.

Table 1. Main inputs and energy equivalents used in agricultural energy systems.

Inputs (Unit) Energy Equivalent (MJ per Unit) References

Labor (h) 1.96 [13]
Machinery (h) 62.7 [14]
Diesel fuel (L) 56.3 [15]

Fertilizers (kg)

Nitrogen 66.14 [16]
Phosphate 12.44 [16]
Potassium 11.15 [3]

Micro 120 [3]
Farmyard Manure (kg) 0.3 [17]

Chemicals (kg)

Herbicide 356.29 [18]
Pesticide 280.44 [18]
Fungicide 181.9 [18]
Insecticide 101.9 [19]

Water (m3) 1.02 [20]
Electricity (kWh) 11.93 [21]

The CO2-eq emissions coefficients shown in Table 2 were used to calculate the amounts
of the GHG emissions from crop-production inputs in Iran. The application rates of
machinery, diesel fuel, farmyard manure, electricity, chemical fertilizers and biocides per
hectare or per unit of product were multiplied by their corresponding emissions coefficients
from Table 2.

Table 2. Greenhouse gas (GHG) emission coefficient of inputs [22].

Inputs (Unit) GHG Coefficient (kg CO2-eq Unit−1)

Machinery (MJ) 0.071
Diesel fuel (L) 2.760

Fertilizers (kg)
Nitrogen (N) 1.300

Phosphorus (P2O5) 0.200
Potassium (K2O) 0.200

Farmyard Manure (kg) 0.126

Biocide (kg)
Herbicide 6.300
Fungicide 5.100
Insecticide 3.900

Electricity (kWh) 0.780

2.4. Risk of Bias in Individual Studies

A risk in studies like this one is the inability to generalize the selected sample to the
entire statistical population. Researchers have often used Cochran and Neyman methods to
determine the number of statistical samples. However, an important issue that researchers
should consider when sampling agricultural systems is the diversity of these systems. It is
preferable to select samples from all types of agricultural systems in a given area. Thus, it is
necessary to first introduce the characteristics of agricultural systems in the study area and
perform sampling operations based on the variety of existing systems. Failure to provide
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enough information about agricultural systems and non-compliance with the proportion
between the number of samples and the statistical population poses a risk to the accuracy
and precision of the data as well as the values of the indicators calculated in such studies.
In this regard, steps to reduce such risk in the individual studies included in this review
are not possible.

2.5. Summary Measures and Synthesis

The results of this article are summarized in two sections: bibliometric analysis and
meta-analysis. In the bibliometric section, the co-occurrence of keywords and co-authorship
was examined using the title, abstract and keywords of the studied articles and visualized
using VOSviewer software [23]. Several assumptions were made: (1) the keywords used
in these texts were carefully selected by the authors; (2) the use of different keywords
within a text requires some relationship between those words and; (3) the co-occurrence of
keywords in the texts by different authors means that the relationships between these words
are important. The meta-analysis section identifies patterns in the results of the studies
included, sources of disagreement among those results, or other interesting relationships.
Reasons for observed heterogeneity among the results of similar studies were interpreted
using the nonparametric Kruskal–Wallis test and meta-regression. After collecting the
necessary data, the results were summarized graphically. Then, for the meta-analysis, the
data were analyzed using three factors: crop (product), year and regional climate.

Iran’s total geographic area is 1,648,195 km2, and the diversity of climates has made
it possible to cultivate a variety of agricultural products across different provinces. To
account for the influence of climate on cropping systems, the country was divided into 12
climate regions based on [24] (Figure 2) and each study was assigned to the appropriate
climate. Table 3 lists the main climates and provinces allocated to them. It was possible
for an individual province to be found within more than one climate. In such cases, the
climate that occupied the largest area of a province was considered the main climate of that
province and served as the basis for further analyses. Regression modeling was performed
to examine the effects of crop, year and climate in each of the indicators. The relationships
between each of these three factors and each of the eight indicators, which included EUE,
TEI, NE, EP, GHG, TE, PTE and SE (see abbreviations), were analyzed individually using
the Kruskal–Wallis test.

Table 3. Classification of Iran’s provinces into different climates.

Climate Provinces

Cold Semi Dry East Azerbaijan, West Azerbaijan, Zanjan, Qazvin, Alborz
Very Wet and Mild Ardabil, Guilan

Wet and Mild Mazandaran, Golestan
Semi Dry Hot North Khorasan, Razavi Khorasan, South Khorasan

Extreme Desert and Very Hot Sistan and Baluchistan, Kerman
Semi Warm Desert Isfahan, Semnan, Yazd

Very Hot Coastal Desert Hormozgan
Warm Semi Mountains Fars
Warm Coastal Desert Bushehr, Khuzestan

Cold Mountains Kohgiluyeh and Buyerahmad, Chaharmahal and
Bakhtiati, Markazi, Lorestan, Kurdistan

Moderately Semi Wet Kermanshah, Hamedan, Ilam
Temperate Desert Qom, Tehran
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Figure 2. Climates and provinces of Iran [24].

2.6. Risk of Bias across Studies

Typically, when collecting data on input consumption in crop studies, other conditions
influencing the production system are assumed to be constant. However, factors such as soil
conditions, climate, available technology, knowledge of producers, land-use systems, social
factors, input prices, market prices, market freedom status and the extent of government
intervention in market regulations (especially in Iran), among other factors, affect input
consumption as well as crop production. Lack of attention to these factors has resulted in
large differences in indicator values reported in different studies. The intent of this review
is to interpret the heterogeneity of results in such studies based on available data.
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Statistical Analysis

Regression using the General Linear Model (GLM) was performed to identify variables
responsible for variations in all dependent variables, namely energy and environmental
indicators. GLM usually refers to conventional linear regression models for a continuous
response variable given continuous and/or categorical predictors. To determine whether
the association between the response and each term in the model was statistically significant,
the p-value for the term is compared to the significance level to assess the null hypothesis.
The null hypothesis is that there is no association between the term and the response.
Due to the nominal nature of the variables related to the cropping systems (year, climate
and crop), the non-parametric Kruskal–Wallis test was used as an alternative to one-way
ANOVA. Statistical significance at 0.05 and 0.01 levels was determined.

3. Results
3.1. Article Selection

A total of 131 articles were ultimately selected and used for bibliometric analysis and
104 of these were included in meta-analysis. The journals with the most published articles
analyzing energy consumption patterns in Iranian agricultural systems were Energy, Journal
of Cleaner Production, Renewable and Sustainable Energy Reviews, and Energy Reports, which
each contained more than four articles from 2008–2018.

3.2. Study Characteristics

Quantitative and graphical summaries of word co-occurrences in the keywords, titles
and abstracts among the 131 articles using VOSViewer software are shown in Table 4 and
Figure 3, respectively. A threshold limit was used to plot the co-occurrence network. The
minimum number of occurrences for keywords was 4 times. Accordingly, 15 keywords
were found at least 4 times in articles to be related to other keywords used by researchers.
For the terms used in the titles and abstracts, the threshold was set at 5 times. There were
25 terms found to meet this condition. Out of 233 authors who participated in 131 reviewed
articles, 18 of them contributed more than 5 times to articles. How these terms relate to
each other is shown in Figure 3.

The following terms were the most common in the articles: energy, greenhouse gas
emissions, data envelopment analysis, sensitivity analysis, economic analysis, energy
efficiency and technical efficiency. Shahin Rafiee, a faculty member at the University of
Tehran, has the most joint publications, co-authoring 43 papers between 2008 and 2018.
There were 18 authors found to have published more than 5 articles.

Table 4. Bibliometric analysis of the selected articles.

Description
Categories of Co-Occurrences

Keywords Titles and Abstracts Authors

Total items 142 553 233
Minimum number of occurrences 4 5 5

Number of items meet the threshold 15 25 18
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Figure 3. Graphical display of the co-occurrence analysis.

3.3. Synthesis of Results

To create a useful overview of energy consumption in Iran’s cropping systems, we
first present a summary of the most important results published on input consumption,
environmental impacts, and data envelopment analysis. Then, the effects of the inde-
pendent variables of year, climate and crop on the dependent variables of energy and
environmental indicators are analyzed and modeled. Finally, the relationship between
each of the independent and dependent variables is analyzed using the non-parametric
Kruskal–Wallis test.

3.3.1. Share of Inputs

A percentage breakdown of the TEI into input categories for each crop is illustrated in
Figure 4. For crops in which there was more than one article, averages are used. Fertilizer
and fuel are the main consumers of energy in many crop systems. Authors often report
the share of important energy-consuming inputs and make recommendations for improve-
ments to reduce the TEI. For example, Hosseinzadeh-Bandbafha et al. [25] recommended
that to benefit from a balanced use of fertilizers, emphasis should be placed on using high-
quality seeds, optimal timing, precisely timed irrigations and better agronomic practices in
farm operations (e.g., reduce field passes and using shallow tillage) for peanut farms at the
north of Iran.
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Figure 4. Share of inputs (%) in total energy input (TEI).

3.3.2. Environmental Impact

In addition to examining energy and economic indices, many of the articles we found
addressed environmental issues of cropping systems. Here, we focus first on the 54 studies
that investigated the environmental impacts associated with energy use. Production,
transportation, storage, input distribution and machinery use consume fossil fuels and
other energy sources that emit GHGs into the atmosphere. The most common method
of calculating environmental impacts uses emission factors (Table 2) that are multiplied
by the corresponding input inventory, such as diesel fuel, chemical fertilizer, biocides
and irrigation water. The emissions are presented in kilograms of carbon equivalent for
different farming activities and can be compared to alternatives, such as biofuels and
renewable energy sources [26].

Among the reviewed papers, GHG emissions and global warming potential (GWP)
are sometimes calculated manually using emission factors (CO2 equivalents) or determined
using a life cycle inventory (LCI) and software analysis. The latter allows a wide range of
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environmental impacts to be assessed. Khoshnevisan et al. [27], for example, used Ecoin-
vent LCI and SimaPro Software for life cycle assessment (LCA) of rice production systems
in northern Iran. Several authors have subsequently performed comprehensive studies
of individual cropping systems with LCA [28,29]. Further, the energy and environmental
impacts of different cropping systems have been compared using LCA [30,31].

Table 5 summarizes GHG emissions reported for crops studied in Iran. Researchers
have applied emission factors to report GHG emissions of crops, including potato [26],
cotton [32], wheat [33] and barley [34]. As indicated in Table 5, GHG emissions of some
crops have been determined and reported in multiple studies. In such cases, the average is
presented and is likely more reliable. It is notable that there is a wide range of CO2 emissions
reported across these crop production systems. For example, 181,190 and 558 kg CO2-eq
were produced per ha of alfalfa [35] and potato [36] production, respectively. In most
cases, reported values for GHG emission in Iranian studies are similar to those of other
studies around the world. For instance, Yousefi et al. [37] reported 2994.66 kg CO2-eq
per ha for corn production, while Camargo et al. [38] reported that the GHG emissions
associated with corn production ranged from 2441 to 4201 kg CO2-eq per ha per year in
several publications. However, there are some papers with results differing significantly
with those reported for GHG emissions for agricultural systems outside of Iran in crops
like alfalfa and corn [39,40].

Table 5. The amounts of GHG emissions reported for farm crops of Iran.

Crop GHG Emission
Referenceskg CO2 t−1

(Mass Base)
kg CO2 ha−1

(Land Base)

Alfalfa 52.09 181,190 [35,41]
Barley - 628 [34,42]
Canola - 836.6 [28,42,43]

Chickpea 3032.6 6884.14 [44]
Corn - 2994.66 [37]

Cotton - 1195.25 [32]
Lentil 3593.2 7259.31 [45]
Peanut 311.19 697 [25,46,47]
Potato 116.4 558 [26,36,48]
Rice 1101 3197.00 [27,42,49–51]

Saffron - 6545.8 [52]
Soybean 455,515 1197 [42,53,54]

Sugar beet - 9847.77 [55]
Sugarcane - 8249.12 [56]

Tomato 200 - [29]
Watermelon - 5299 [6,7,9,11,12]

Wheat 1600 2155 [6,31,33,42,57–64]
Grape 508.63 - [65]

Tobacco 1883.90 3638.98 [66]

3.3.3. Data Envelopment Analysis

A summary of findings from DEA studies is presented in Figure 5, including estimated
TE, PTE, and SE of crops, TES, and the share of each input in the total energy-saving ratio.
As shown in the share of agricultural inputs in the total energy-saving ratio, electricity and
fertilizer inputs have the most potential for energy reductions across the various crops.
Potato has the highest potential to reduce energy consumption. By contrast, there is much
less potential for peanut. TES in peanut farms of Guilan province were reported to be
9.15%, with machinery accounting for the largest fraction at 13.93% of the total, followed
by biocides (10.23%) and chemical fertilizers (9.79%) [25].

Examples of complementary analysis with the DEA method include super-efficiency
analysis by Mohammadi, Rafiee, Jafari, Dalgaard, Knudsen, Keyhani, Mousavi-Avval and
Hermansen [55] and fractional regression model by Raheli et al. [67]. Mohammadi, Rafiee,
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Jafari, Dalgaard, Knudsen, Keyhani, Mousavi-Avval and Hermansen [55] first applied LCA
and DEA methodologies to soybean farming to benchmark the level of operational input
efficiency and potential GHG emissions reductions by farmers. In addition, DEA has been
widely used in combination with CO2-eq emissions data to determine the potential of GHG
emissions reductions in agricultural systems [8,25,68].

Figure 5. Summary of results from data envelopment analyses (DEA).

3.3.4. Economic Indicators

As the field of energy studies flourished in Iran, some researchers began adding
economic indicators to their studies. Some studies reported costs of inputs in detail [69],
while others only reported economic indicators. Various scales and units have been applied
in reporting economic indices. For example, Ghorbani et al. [70] reported Total Production
Cost, Gross Return and Net Return in $ ha−1, $ kg−1 and $ MJ−1, respectively. Such
economic analyses were common in studies from 2010 to 2012. Then, research interest
gradually shifted to other techniques. Just two papers in 2013 and 2014 applied economic
analysis [71,72], and none did in 2015. In 2016, Sahabi, Feizi and Karbasi [20] compared
energy and economic aspects of saffron and wheat in northern Iran. In 2017, Mousavi-Avval
et al. [73] used the same economic indicators to analyze canola production in northern Iran.
In recent years, studies have become more varied, and new analyses have been added with
environmental impacts highlighted.

3.3.5. GLM Results

In our review, we identified 21 different product types or crops among the articles to
be used for modeling. We created eight linear regression models with the following energy
and environmental indicators as dependent variables: GHG, SE, PTE, TE, NE, TEI, EP and
EUE. The results of these models are presented in Table 6. We used three independent
variables for regression modeling including region, year and crop. The “region” represents
the climates of Iran, which includes 12 climates (Table 3). Four of the eight models predicted
the dependent variable using the terms provided.

Of course, differences among regions in energy consumption and environmental
emissions for the same product are not simply due to climate differences. There are other
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differences, such as the level of technology used, planting methods, harvesting and storing,
farmer knowledge, access to farming inputs, etc. However, because the articles reviewed
did not always report the specific characteristics of cropping systems, we are limited
in explaining the differences in energy and environmental indicators between different
regions. The “year” refers to when the study was performed as reported in the article. The
“crop” factor was influential in the regression models, which seems obvious because the
amounts and types of inputs consumed and the production outputs of various products
are fundamentally different from one to another. Thus, crop type would be expected to be
a very important factor.

Table 6. General linear model results.

Dependent Variables

Source

Corrected
Model Intercept Year 1 Region Crop Region *

Crop R Squared

GHG
F 5.668 ** 2.233 2.256 9.003 ** 5.433 ** 8.257 **

0.886Sig. 0.000 0.155 0.153 0.000 0.001 0.003

SE
F 3.143 3.882 3.865 0.751 3.995 .

0.962Sig. 0.268 0.188 0.188 0.571 0.216 .

PTE
F 5.535 0.067 0.113 12.696 4.948 .

0.978Sig. 0.164 0.820 0.769 0.073 0.179 .

TE
F 3.838 0.707 0.579 1.118 4.847 .

0.953Sig. 0.147 0.462 0.502 0.434 0.111 .

NE
F 23.618 ** 2.568 2.526 5.375 ** 47.819 ** 7.735 **

0.955Sig. 0.000 0.114 0.117 0.000 0.000 0.000

TEI
F 3.997 ** 0.064 0.073 1.56 5.355 ** 1.556

0.766Sig. 0.000 0.801 0.787 0.137 0.000 0.071

EP
F 0.284 0.394 0.396 0.329 0.237 0.232

0.201Sig. 1.000 0.532 0.531 0.97 1.000 1.000

EUE
F 13.797 ** 0.917 0.872 4.099 ** 31.49 ** 2.612 **

0.923Sig. 0.000 0.342 0.354 0.000 0.000 0.001

** Significant at the 0.01 level (2-tailed). * Significant at the 0.05 level (2-tailed). 1 Year is covariate for all dependent variables.

In the model developed for GHG, the variables of region, crop and their interaction
(crop*region) have significant effects. Therefore, there are significant differences between
crops. Applications of different inputs, including chemicals and diesel fuel in field opera-
tions, can cause differences in GHG emissions. Agricultural activities inevitably result in
emissions of all three greenhouse gases: carbon dioxide (CO2), methane (CH4) and nitrous
oxide (N2O). Methane is mainly released through farm manure; nitrous oxide is produced
from the combustion of fossil fuels, manure, soil cultivation and decomposition of crop
residue; and carbon dioxide is generated and released into the atmosphere through fossil
fuels and the decomposition of crop residue.

The regression analysis indicates that GHG emissions differ across the regions of
Iran, meaning that different climates can cause different GHG emissions. Climate is
shaped by short- and long-term characters, including temperature, average rainfall, floods,
drought, etc. All these climate characteristics impact food quality, distribution and access
patterns [74]. Alboghdady and El-Hendawy Salah [75] used panel data from 20 countries
in the Middle East and North Africa from 1961 to 2009 to assess the impact of climate
change and variability on agricultural production. The results showed that a 1% increase
in winter temperature results in a 1.12% decrease in agricultural production. Our analysis
indicates that warmer and drier climates have more emissions. This may be due to the
lack of optimal conditions for production and a resulting need to consume more inputs to
compensate.

A more detailed comparison of wheat production across four climates is shown in
Figures 6 and 7. In the semi-warm climate, where Isfahan province is located, five studies
have been performed on GHG emissions from wheat production [33,58,59,76,77]. They
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show that the consumption of livestock manure, chemical fertilizers and electricity is much
higher than in other climates of Iran. It seems that the dry climate of Isfahan province
increases the need to pump water from agricultural wells using electricity. Thus, emissions
from electrical inputs are higher than in other climates.

On the other hand, Golestan province, which has a wet and mild climate, has the
lowest electricity consumption. Data show that the amount of fuel consumed in Ker-
manshah province, located in a semi-arid climate, is much higher than other climates.
Kermanshah farms also need irrigation from well sources, mainly due to drought. If the
wells in this province are not electrified, higher fuel consumption results from pumping
water. In Khuzestan province electricity consumption has not been reported, likely due to
the abundance of surface water to irrigate farms.

Figure 6. GHG emissions quantity for wheat in different climates.

Figure 7. GHG quantity of inputs in different climates for wheat.

Examination of the NE regression model shows that, like the model for GHG emissions,
the variables of region, crop and interactions of these two factors have significant effects.
The same is true for the EUE model. However, for the input energy indicator, only the
crop variable has a significant effect. Our four regression models show that climate
factors, product type and which products are produced in which climate can predict GHG
emissions, NE and EUE.

Our review revealed that from 2008 to 2018, ten studies were conducted on the energy
consumption patterns of potatoes in Iran. Most of these studies took place in the main
centers of potato production, namely Ardabil, Hamedan and Isfahan provinces. Comparing
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the EUE in these areas indicates that Ardabil province has the best conditions (Figure 8).
After Ardabil are Isfahan, Hamedan and Tehran provinces.

Figure 8. Energy use efficiency of potato production in different climates of Iran.

3.3.6. Production Function and Sensitivity Analysis

After calculating energy inputs, some researchers have sought to analyze relation-
ships between energy inputs and crop output using the Cobb–Douglass production func-
tion [78,79]. The results of these studies are summarized in Table 7. Here, the highest
t-ratio belongs to the most effective input influencing crop yield. A sensitivity analysis
identifies how different values of an independent variable (energy input) can affect a
specific dependent variable (crop yield). Sensitivity analyses were first used by Rafiee
et al. [80] and Mobtaker, Keyhani, Mohammadi, Rafiee and Akram [2]. Mousavi-Avval
et al. [81] reported the highest MPP index for fertilizer, water and machinery energy inputs
on canola production. They showed that a 1 MJ overuse of each of these energy inputs will
increase the canola production by 0.61, 0.24 and 0.93 kg, respectively. Generally, as can be
seen from the results of sensitivity analyses, fuels, machines and chemical fertilizers had
the greatest impact on crop yield.

Table 7. Highest t-ratio and MPP of crops produced in Iran.

Crop Highest t-Ratio Highest MPP References

Alfalfa Diesel fuel Diesel fuel [82]
Alfalfa Machinery Machinery [83]

Bean (red) Machinery Machinery [84]
Canola Nitrogen - [43]
Canola Seed - [73]

Corn (silage) Water Seed [40]
Corn (silage) Biocide Biocide [3]

Cucumber Chemicals and diesel fuel Human labor [85]
Cucumber Machinery - [86]

Potato Seed - [87]
Potato Water Seed [88]
Potato - Fertilizer [26]
Rice Fuel Fuel [89]
Rice Chemicals - [90]
Rice Fertilizers Fertilizers [51]
Rice Manure - [91]
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Table 7. Cont.

Crop Highest t-Ratio Highest MPP References

Soybean Fertilizers Machinery [92]
Soybean Seed Seed [93]
Soybean Human labor - [54]

Sunflower Diesel fuel Chemicals [21]
Watermelon Human labor Human labor [11]
Watermelon Chemicals - [12]

Wheat Machinery Machinery [18]
Wheat - Fertilizers [59]

Wheat (dryland) - Water [94]

3.4. Risk of Bias across Studies
Non-Parametric Test Results

Relationships between the three factors (region, year and crop) and each of the eight
indicators (EUE, TEI, NE, EP, GHG, TE, PTE and SE) were tested using the Kruskal–Wallis
test, the non-parametric equivalent of a one-way ANOVA. The results are summarized
in Table 8. We can conclude that the regions have different NE, TEI and EUE. The crops
also differ in terms of NE, TEI, EUE and EP (Figure 9). No significant relationship was
found between the year variable and any of the energy and environmental indicators. This
suggests that over the 10-year period, cropping systems were stable in terms of energy
consumption patterns and environmental emissions. For comparison, Han and Wu [95]
explored the impacts of changes in China’s agricultural structure on factors such as energy
intensity of agricultural production. Their results showed that the results of six vegetable
production regions show great regional heterogeneity, which is mainly due to the scale
economy effects and incremental increases in mechanization.

Figure 9. Average of energy indicators for different crops.
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Table 8. Kruskal–Wallis test results.

Test Variables

Grouping Variables

Region Year Crop

Chi-Square Asymp. Sig. Chi-Square Asymp. Sig. Chi-Square Asymp. Sig.

GHG 7.254 0.403 3.595 0.731 16.340 0.231
SE 5.003 0.543 5.523 0.479 16.463 0.225

PTE 8.849 0.182 5.995 0.420 11.937 0.533
TE 2.322 0.888 3.107 0.795 13.216 0.431
NE 27.836 ** 0.002 15.461 0.079 54.399 ** 0.000
TEI 29.619 ** 0.001 13.084 0.219 75.437 ** 0.000
EP 13.292 0.208 7.453 0.682 59.404 ** 0.000

EUE 30.082 ** 0.001 11.793 0.299 61.791 ** 0.000

** Significant at the 0.01 level (2-tailed).

4. Discussion

Agricultural systems are often described in terms of their diversity, or different types
of systems, and their heterogeneity, or variation in the physical, biological, and human
components within each type of system. The diversity and complexity of agricultural
systems throughout the world can be tracked and evaluated with a variety of economic,
environmental, and social performance indicators [96]. Our review revealed that in some
published papers, values for energy and environmental indicators are reported, but no
explanations are given for the causes or reasons for the status in these indicators such
as Amanloo and Mobtaker [39,97,98]. In some cases, results have been compared with
similar studies. For example, Mohammadi-Barsari, Firouzi and Aminpanah [12] stated that
calculated energy productivity is higher for watermelon farms with advanced technology
(0.66 kg MJ−1) than for farms with less advanced technology (0.59 kg MJ−1) in the semi-arid
region of Hamadan province. Agricultural systems can vary in many aspects, such as
farm size, seed type, date of cultivation, irrigation, tillage, harvest methods, etc., and some
researchers have investigated these factors from the viewpoint of energy use, economics
and other indicators, as shown in Table 9. Most of these studies occurred in the years
2011 and 2012 and often applied ANOVA and the Duncan multiple range test to compare
means of classified groups. Statistical design has also been implemented to audit energy
consumption and identify the share of energy inputs for different tillage systems [99].

Table 9. Energy indices in different cropping systems of Iran.

Crop Region Classification IE (MJ ha−1) EUE Reference

Potato Ardabil Farm size

0.1–2 ha 39,677.9 2.72

[13]2.1–5 ha 37,908.7 3.08

5 < ha 37,482.5 3.62

Red bean Kurdistan Farm size

0.1 105,540.2 0.18

[84]0.2 47,571 0.42

0.5 43,725.4 0.44

Lentil Lorestan Production method
Organic 5062 2.12

[100]
Conventional 6196.5 2.05

Soybean Golestan Irrigation system
Canal irrigation 17,255.96 4.6

[101]
Pump irrigation 38,266.71 2.15
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Table 9. Cont.

Crop Region Classification IE (MJ ha−1) EUE Reference

Potato Hamedan Technology level
High level 153,071.4 1.14

[87]
Low level 157,151.12 0.95

Rice Mazandaran Mechanization status
Traditional 67,356.28 3

[102]
Semi-mechanized 67,217.95 3.08

Alfalfa Hamedan Irrigation system
Traditional 821,615.19 1.82

[103]
Modern 723,254.38 2.06

Wheat North
Khorasan

Irrigation method
Irrigated 45,367.63 1.44

[70]
Dryland 9354.2 3.38

Corn silage Alborz Farm size

5 > ha 86,679 1.72

[40,104]5–10 ha 65,845 2.29

>10 ha 54,499 2.8

Rice Guilan Seed type

Hashemi 37,155.213 1.582

[89]Khazar 41,332.513 1.956

Hybrid 44,848.813 2.458

Rice Guilan Farm size

0.5 > ha 41,140 1.44

[105]0.5–1 ha 40,433 1.47

>1 ha 36,428 1.69

Corn Fars Region

Seyedan 41,631.97 2.6

[106]Houmeh 44,730.15 2.38

Pasargad 38,866.64 2.88

Rice Mazandaran
and Isfahan

Production method
Organic 134,851.6 2.43

[107]
Conventional 155,762.7 1.11

Canola Khuzestan Irrigation system
Irrigated 28,944.65 1.28

[108]
Dryland 18,557.72 0.81

Potato Isfahan Farm size

<1 ha 51,460 1.3

[26]1–5 ha 45,710 1.75

>5 ha 43,874 2.08

Corn Alborz Harvesting system

Combine
harvesting 49,303 5.15

[104]Plot harvester 49,448 4.4

Two stage
harvesting 54,471 4.78

Corn silage Tehran Farm size

<10 ha 38,841.5 3.11

[109]
10–20 ha 36,140.3 3.47

20–30 ha 35,861.1 3.56

>30 ha 35,211.6 3.82

Rice Mazandaran
Traditional

production method

Average 71,092.26 1.72

[110]
Native 60,187.41 1.33

High yield 73,220.42 1.74

Hybrid 79,908.94 2.01
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Table 9. Cont.

Crop Region Classification IE (MJ ha−1) EUE Reference

Rice Mazandaran
Mechanized

production method

Average 79,460.33 1.63

[110]
Native 69,181.23 1.26

High yield 82,005.42 1.63

Hybrid 87,186.06 1.94

Wheat Isfahan Farm size

Small 80,400 0.38

[57]Medium 79,290 0.5

Large 81,110 0.56

Rice Guilan Land management
Traditional 74,200 0.9

[27]
Consolidate 57,000 1.6

Rice Khuzestan Planting method
Transplanting 50,022 2.305

[111]
Direct seeding 34,543 2.844

Watermelon Khorasan and
Semnan

Irrigation system
Full irrigation 25,626 1.17

[7]
Reduced irrigation 3129.3 4.08

Soybean Golestan Mechanization status

Modern
mechanized 29,532 1.53

[54]Mechanized 29,599 1.98

Conventional
(more tillage) 15,369 3.03

Conventional 14,657 3.18

Some researchers reported that larger-scale farms perform better according to energy
indicators [40,105]. To investigate the effect of farm size and crop type on EUE, a regression
model was developed using meta-data (Table 10). The regression model indicates that the
size of the farm has no significant effect on energy efficiency, but the crop type does affect
the EUE.

Table 10. General linear model result for energy use efficiency (EUE).

Dependent Variables Corrected
Model Intercept Crop Type Farm Size Crop Type

Farm Size R Squared

EUE
F 1.827 49.828 5.941 ** 0.417 0.052

0.81Sig. 0.236 0.000 0.028 0.677 1.000

** Significant at the 0.01 level (2-tailed).

For comparison, Ito [112] measured regional differences in agricultural productivity
in China to test the validity of a hypothesis related to agricultural technology. Qiang
et al. [113] compared the agricultural disasters in the north and south of China, and the
results showed that the losses in the north increased by about 0.6% every ten years, close
to twice that in the south of China. In addition, agriculture in northern China was more
sensitive to precipitation change, while agriculture in southern China was more sensitive to
temperature change. Other papers have investigated the effects of production parameters
on the energy-use patterns. For example, Banaeian and Namdari [5] investigated how
farming technology and ownership of machinery, tractors and land can affect energy-use
patterns in watermelon. In analyzing the heterogeneity of agricultural technology, Fei and
Lin [114] used meta-frontier DEA to measure agricultural energy efficiency. The results
showed that energy efficiency in the eastern region of China was significantly higher than
that of the western region. Based on the provincial panel data of 1995–2014, Diao et al. [115]
analyzed the agricultural productivity and its regional differences in China.
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Expanding cropland onto areas under natural ecosystems reduces carbon stocks in
natural vegetation and soils, with the amount of carbon released and crop yields differing
markedly between temperate regions and the tropics [116]. Cassman [117] indicates that
precise management and improvements in soil quality are needed to achieve high yields
without causing environmental damage. No-tillage has revolutionized agricultural systems
because it allows individual producers to manage larger amounts of land with fewer
inputs of energy, labor and machinery [118]. Lal [119] points out that not all conservation
agriculture practices, and other resource conservation technologies are applicable across
all farming systems. Sustainable land management practices such as crop diversification
and chemical management are potentially efficient measures that lead to environmental
and economic benefits [120]. In addition, synthetic N fertilizer is the major source of
GHG emissions from crop production [121]. Better management in the use of chemical
fertilizers on farms can be effective in improving productivity as well as protecting water
resources and minimizing greenhouse gas emissions. Therefore, creating GHG profiles of
different crops in Iran can greatly help in developing and improving national mitigation
plans/policies that currently lack details pertaining to the agricultural sector.

In our analysis, as the results of the Kruskal–Wallis test showed, Iran’s cropping
systems have been almost constant over the 10-year period in terms of energy consumption
patterns and environmental emissions based on the 21 crops evaluated. This apparent lack
of improvement points to the need for researchers to identify methods to improve energy
consumption patterns. Closer examinations of the characteristics of cropping systems
should help researchers to identify and better understand energy consumption patterns.
Differences in the indices for energy consumption and environmental emissions for similar
products in different regions and years are not easily explained and will therefore require
access to more precise information about the characteristics of agricultural systems.

As researchers continue in their efforts, they should pay attention to the following three
points: (1) it is essential to understand the reasons for the current situation in order to devise
reasonable, practical strategies for improvement; (2) farmers must be intimately involved
in diagnosis of the problems and in devising improvement strategies; and (3) agricultural
technologies and policies (and support systems) are complementary means of improving
agricultural productivity and sustainability. If researchers can implement solutions to
improve patterns of energy consumption on sample farms, they can serve as models
for farmers. Agricultural systems, like any other system, need continuous analysis and
improvement, so researchers must identify inputs with non-optimal consumption, design
solutions to address the issues, and implement pilot projects to demonstrate improved
performance.

Jones et al. [122] studied and summarized the history of agricultural systems modeling
and identified lessons learned that can help guide the design and development of tools
and methods for the next generation of agricultural systems. They emphasized that
there are two broad categories that motivate agricultural model development: scientific
understanding and decision/policy support. The complex and interacting dimensions of
modeling agricultural systems are illustrated in Figure 10.

Agricultural systems are affected by many external drivers, which can be divided into
four groups: technical, economic, environmental and social. These systems can also be
classified and studied at various scales, such as field, farm, regional, national and global.
Users include farmers, suppliers, agencies, governments and international companies, and
they pursue different goals. At the field level, input consumption management is key, while
at the farm level it is production optimization and business management. Shifting to the
regional level, natural resource conservation, economic planning, and environmental and
landscape management become the focus. At the national level, the priorities become trade
policies, poverty alleviation and strategic planning, and globally, they are global business,
climate change adaptation and food security to reliably feed more than 9 billion people. To
improve the performance of agricultural systems, modeling and analysis at different scales
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is necessary. The results of our review show that studies conducted in Iranian agricultural
systems have been focused on field and farm scales.

Figure 10. Dimensions and requirements of modeling and analysis of agricultural systems.

Analysis and modeling of agricultural systems should exist within a continuous cycle
of at least three main phases: system analysis, system redesign and system assessment.
System analysis consists of two steps: (1) yield gap analysis for sustainable intensification
and (2) analysis of and modeling indicators of sustainability. Since many different factors
affect these systems, it is necessary to shift the analysis and modeling from a single criterion
to multiple criteria. At the field or farm level, biophysical models are used to analyze
responses similar to the way that experiments on the real systems would be analyzed.
Biophysical environment indicators include available arable land, soil fertility, access to
water, climatic conditions, etc. Crop management indicators are also used at field and farm
scales and consist of: crop varieties, fertilizers, chemicals, fuels, labor, machinery, electricity
and water. Indicator categories for farm and farmer characteristics include location, farm
size, family composition, knowledge level, etc. Socio-economic indicators that have not
generally been considered in the articles reviewed but have important effects on output are
government policies and international markets, access to technology, employment capacity,
etc. Other indicators mainly used to model sustainability include the following energy,
environmental, economic and social indicators: EUE, EP, NE, energy intensiveness, GHG
emissions, GWP, benefit-to-cost ratio, gross return, productivity, net return, unemployment
rate, poverty, health and safety.

Jones, Antle, Basso, Boote, Conant, Foster, Godfray, Herrero, Howitt, Janssen, Keating,
Munoz-Carpena, Porter, Rosenzweig and Wheeler [122] demonstrated that a minimum set
of components is needed to develop agricultural-system models that are common across
various applications. These include crop models that combine weather, soil, genetic and
management components to simulate yield, resource use and outputs of nutrients and
chemicals to surrounding water, air and ecological systems. These crop models need to
account for weed, pest and disease pressures and predict performance resulting from a
range of inputs and practices that represent subsistence to highly controlled, intensive
production practices.
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The second phase of the analysis cycle is redesigning the system. Redesign of farming
systems must: (1) prepare a diversity of solutions for different futures and leave the choices
to farmers and other stakeholders and (2) support farmers and other stakeholders in
building their own systems, adapting them to their own situation, and deciding on their
own compromises as they rely on their knowledge and experiences along with scientific
knowledge [123].

Two methods for redesigning agricultural systems have been proposed: rule-based
design and innovative design. Most attention has been paid to the latter. A step-by-
step approach organized in a progressive transition towards more innovative systems is
best [123]. System redesign begins with diagnosis followed by a determination of what
steps in the system are challenging and what technical or managerial measures are needed
to address them. Accordingly, evolutionary measures are designed and implemented. Then,
new diagnoses are performed, and the redesign continues in the same way. These actions
benefit from progress made in recent years in agricultural systemic analysis methods in
situ, which make it easier to carry out precise and reliable diagnoses.

The third phase of the agricultural-systems analysis cycle is to evaluate the perfor-
mance of the new system. In general, the new system is evaluated in terms of the same
energy, economic, environmental and social indicators. After ensuring the desired effects
of the redesign measures, the whole system is analyzed again. This cycle will continuously
improve the system and move towards a more sustainable agricultural system.

4.1. Summary of Evidence
Energy Indicators Status

Our analysis revealed that tomato is the most demanding energy consumer per
hectare among the crops of Iran, and sugarcane, cucumber and alfalfa follow. By contrast,
sunflower is the least energy-demanding crop in Iran. The overall average TEI in farm crops
of Iran during the study period was 48,029 MJ ha−1. Sugar beet has the highest energy-use
efficiency due to its output energy equivalent of 16.80 MJ kg−1 [124]. Some crops have a
negative NE, including cucumber, garlic, saffron,] and tomato. The lowest EUE belongs
to saffron, due to traditional production methods in Iran, in which most operations other
than land preparation and fertilizer spraying are performed by human labor [52]. Further,
saffron yields only about 3.7 kg ha−1 under the best conditions. Although the cultivation of
saffron is not efficient from the viewpoint of energy balance, it is significant economically.
Khanali, Movahedi, Yousefi, Jahangiri and Khoshnevisan [52] stated that to create a better
balance between the energy inputs and saffron yield, efforts should focus on increasing
saffron yield and subsequently its energy productivity.

The heterogeneity in energy and environmental emissions indicators for the same
product in different regions and different years is not easy to explain. Identifying reasons
for these differences requires access to more information about the characteristics of agri-
cultural systems and ecosystems. Since the studies performed in different products have
usually been in different climates, the average values calculated in this article for the eight
indicators can only be used in general.

4.2. Limitations

Calculating energy indicators using local rather than national or international energy
equivalents would be more precise. There is a critical need to estimate local energy
equivalents for inputs in each country, including Iran. Thus, energy conversion factors
for food, not just agricultural products, should be developed and used at a wide range of
geographic scales, from local to regional to national levels [125].

Systems analysis requires data collection that reflects a specific system’s actual behav-
ior. However, due to the vastness and complexity of agricultural systems on the ground
and their geographical dispersion, collecting data from agricultural systems is challenging
and costly. To overcome this difficulty, some researchers have identified innovative data
collection approaches, including crowd-sourcing and remote- and close-sensing [126]. Such
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innovative approaches are particularly relevant and promising for collecting data on the
variability in crop management among different farms and farmers.

5. Conclusions

In this review, we examined all published papers on crop energy dynamics in Iran
over a decade (2008–2018). Although many papers were published on the topic, there
had been no systematic review that comprehensively collected and analyzed all results to
suggest directions for future research. Energy production and consumption is costly and
leads to negative environmental impacts; thus, researchers have investigated economic
and environmental aspects alongside energy. In this paper, we summarized the shares of
different energies across different products and regions and used DEA as an approach to
find opportunities to improve the energy consumption patterns. Comparison of results
of reviewed papers showed that the tomato is the most demanding energy consumer
per hectare among the crops of Iran, and sugarcane, cucumber and alfalfa follow. By
contrast, sunflower is the least energy-demanding crop in Iran. Our review revealed that
in some published papers, values for energy and environmental indicators are reported
but no explanations are given for the causes or reasons for the status in these indicators.
Closer examinations of the characteristics of cropping systems should help researchers to
identify and better understand energy consumption patterns. Differences in the indices
for energy consumption and environmental emissions for similar products in different
regions and years are not easily explained and will therefore require access to more precise
information about the characteristics of agricultural systems. The meta-analysis section
identifies patterns in the results of the studies included, sources of disagreement among
those results, and other interesting relationships. Reasons for observed heterogeneity
among the results of similar studies were interpreted using the nonparametric Kruskal–
Wallis test and meta-regression. We created eight linear regression models with GHG, SE,
PTE, TE, NE, TEI, EP and EUE. For meta-analysis, the data were analyzed using three
factors: crop (product), year and regional climate. We can conclude that the regions have
different NE, TEI and EUE. The crops also differ in terms of NE, TEI, EUE, as well as EP.
No significant relationship was found between the year variable and any of the energy
and environmental indicators. This result showed that over the 10-year period, cropping
systems were stable in terms of energy consumption patterns and environmental emissions.

The overarching general lessons from our comprehensive review are as follows: (1)
cropping systems in iran are very diverse; (2) cropping systems are affected by a wide
variety of drivers; (3) modeling and analysis of cropping systems should give comprehen-
sive attention to factors affecting the system, and it is essential to understand the reasons
for the current situation in order to devise reasonable, practical strategies for improve-
ment; (5) cropping systems can be modeled and analyzed at different levels from field to
global scales and farmers must be intimately involved in diagnosis of the problems and
in devising improvement strategies; (6) analyzing cropping systems at multiple scales is
recommended; (7) indicators of cropping systems can be classified into four groups, which
are energy, environmental, economic and social; (8) all four groups of indicators should be
used to analyze and understand cropping systems; (9) systems analysis should be done
cyclically and in a step-by-step process to design corrective actions and solve problems; (10)
agricultural technologies and policies (and support systems) are complementary means of
improving agricultural productivity and sustainability
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Abbreviations

IE Input Energy
EUE Energy Use Efficiency
NE Net Energy
FYM Farm Yard Manure
IDE In-Direct Energy
NRE Non-Renewable Energy
ANOVA Analysis of Variance
TE Technical Efficiency
SE Scale Efficiency
GHG Greenhouse Gas
DE Direct Energy
RE Renewable Energy
TEI Total Energy Input
PTE Pure Technical Efficiency
EP Energy Productivity
MPP Marginal Physical Productivity
DEA Data Envelopment Analysis
GLM General Linear Model
CSA Climate Smart Agriculture
LCA Life Cycle Assessment
TES Total Energy Savings
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
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