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Abstract: This study validated the robust performances of the recently proposed comprehensive
landslide susceptibility index model (CLSI) for landslide susceptibility mapping (LSM) by comparing
it to the logistic regression (LR) and the analytical hierarchy process information value (AHPIV)
model. Zhushan County in China, with 373 landslides identified, was used as the study area. Eight
conditioning factors (lithology, slope structure, slope angle, altitude, distance to river, stream power
index, slope length, distance to road) were acquired from digital elevation models (DEMs), field
survey, remote sensing imagery, and government documentary data. Results indicate that the CLSI
model has the highest accuracy and the best classification ability, although all three models can
produce reasonable landslide susceptibility (LS) maps. The robust performance of the CLSI model is
due to its weight determination by a back-propagation neural network (BPNN), which successfully
captures the nonlinear relationship between landslide occurrence and the conditioning factors.

Keywords: landslide susceptibility; logistic regression; frequency ratio; information value; artificial
neural networks; analytic hierarchy process

1. Introduction

In terms of economic and death impact, landslides rank seventh globally [1]; they
cause damage to roads, railways, power lines, and even tourism and historical sites [2,3].
China is a mountainous country, with its development severely restricted by landslides.
Many efforts have been made to prevent and alleviate landslides. Landslide hazard is
characterized by two main components: the first is temporal, related to landslide frequency
in a particular area; the second one is spatial and is related to the spatial probability of
occurrence of landslides, so-called “susceptibility” [4]. Landslide susceptibility mapping
(LSM) is critical for landslide prevention [5,6]. Herein, the main points of landslide sus-
ceptibility mapping are simply summarized: first, the conditioning factors (CFs) and their
contributions are determined by analyzing the characteristics and distribution of the exist-
ing landslides; after that, through a linear or nonlinear way, the relationship between CFs
and landslide susceptibility is established; finally, using the relationship, LSM for unknown
areas can be completed [7]. LSM is the spatial assessment of landslide at initial stage. Its
accuracy directly affects the rationality of the site selection as well as the decision of the
disaster control. Therefore, LSM has vital practical significance.

The research techniques used for LSM can be roughly categorized into qualitative
and quantitative ones [8,9]. The qualitative methods are based on prior knowledge of
experts. The basic idea of the qualitative method is that experts identify the judgment rules
for conditioning factors and then perform a weighted summation of them to obtain the
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landslide susceptibility map [10]. The most representative and widely used qualitative
method is the analytical hierarchy process (AHP) [11–14].

The quantitative methods are based on field data. They involve deterministic and
statistical approaches. The deterministic model is to judge the stability of slope based on the
physical model. It only can be used in areas where the geomorphic and geologic properties
are fairly homogeneous [8,15]. The statistical approaches rely on the relationships (linear
or nonlinear) between conditioning factors and existing landslides. Lazzari and Danese [4]
summarized their scope of application: the qualitative methods are suited for regional
surveys at a small scale, the statistical quantitative methods are suited for a medium scale
survey, while the deterministic approach is suited for detailed studies at a large scale.
Around the 1990s, geographic information system (GIS) and digital terrain data were
popularized globally. Thanks to robust scientific advances, a significant boost has been
gained in the field of LSM. Nowadays, the combination of GIS and statistical methods is the
general way for LSM. Various statistical methods have been used for LSM, including: fre-
quency ratio (FR) [10,16–19], information value (IV) [20,21], logistic regression (LR) [22,23],
back-propagation artificial neural networks [5,24], support vector machine [15,25], extreme
learning machine [26,27], probabilistic approach [28], and deep learning algorithm [26,29].

In the past decade, scholars have tried to combine the advantages of different methods
to improve the performance of LSM in terms of accuracy and classification ability. The
integrated methods commonly seen in the literature are analytical hierarchy process in-
formation value (AHPIV) [8], analytical hierarchy process frequency ratio (AHPFR) [30],
and integration of the statistical index method and the analytic hierarchy process [31],
logistic regression frequency ratio (LRFR) [32,33], logistic regression information value
(LRIV) [8,34], the integration of convolutional neural network and conventional machine
learning classifiers [35], and integration of kernel density estimation and nearest neighbor
methods [4]. However, whether these methods are superior requires further verifications.

The variety of LSM models evokes comparative research between different models.
By comparing the three models, Kanungo et al. [36] confirmed that the LSM results using
the combined artificial neural networks (ANN) and fuzzy weighting were significantly
better than the independent use of the ANN model and fuzzy model. The very high
susceptibility zone, although with the least percentage, contained the highest percentage of
the existing landslide area. Chen et al. [37] compared the information value (IV) model and
LR model, and concluded that the IV model is better in the research area. To confirm that
different sampling methods can affect the accuracy of LSM, Nefeslioglu et al. [38] compared
the LR method and back-propagation neural network (BPNN) model. The results show
that the BPNN algorithms overreacted to the sampling strategy, but this result needed
further verification. Comparing three commonly used LSM models: frequency ratio (FR),
ANNs, and LR, Pradhan et al. [16] and Yilmaz et al. [39] both concluded that the results by
ANNs are better than those by the other two. Pradhan et al. [16] further confirmed that
there is no positive linear correlation between the number of CFs and the results’ quality.
More importantly, determining the CFs that play a control role is the key to improving the
accuracy of LSM [40]. Interestingly, in the same year, Poudyal et al. [17] also compared the
FR model and ANN model, and they concluded that the FR model is better than the ANN
model in terms of prediction accuracy. In addition to ANNs, other data-driven methods
have also attracted extensive attention. Bui et al. [15] found that the LSM results obtained
by a support vector machine (SVM) have the best performance, compared to the decision
tree and Naïve Bayes. They further explored some new sophisticated machine learning
techniques [41], such as multi-layer perceptron neural networks, kernel LR method, etc. In
terms of prediction capability, the multi-layer perceptron neural networks model performed
best. Nowadays, comparative research on landslide susceptibility mapping models has
never stopped [3,29,42–44].

The first author has proposed an integrated model for LSM [6], which is an integration
of the prior knowledge and the objective weighting method. The model integrates several
methods: frequency ratio (FR) method, cluster analysis (CA), and back-propagation neural
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networks (BPNNs). The FR method is used to determine the weighted value for each class
of the conditioning factors of landslide, the BPNN is utilized to determine the weighted
value for every factor, and the CA is used to optimize the non-landslide samples before the
BPNN process. For convenience, this model is denoted as the CLSI model, which is the
abbreviation of the comprehensive landslide susceptibility index [45] model.

To further verify the superiority and generalizability of this model, Zhushan County
was taken as a study region. It is a landslide-prone area in Hubei Province of China.

Two representative methods, namely, the LR and the analytic hierarchy process infor-
mation value (AHPIV) model, were used for comparison. Specifically, LR represents the
traditional statistical method, and AHPIV represents an integrated method that combines
prior knowledge and subjective weight determination. With these methods, the landslide
susceptibility (LS) maps of the study region were produced, respectively, and their per-
formances were evaluated in terms of prediction accuracy and classification ability. The
verification methods included the area under the receiver operating feature curve (AUC),
seed cell area index (SCAI), and the cumulative number of landslide points.

2. Methodology
2.1. LR Model

The LR is one of the most common statistical methods in earth sciences [39]. The
variables in the LR model can be either discrete or continuous. For continuous variables,
normal distributions are not required [18]. This feature is quite useful in LSM due to the
diversity and complexity of CFs [46].

In the LR model, the relationship between landslide occurrence and the CFs can be
described as [37]:

P =
1

1 + e−Z (1)

where P (0 ≤ P ≤ 1) is the probability of landslide occurrence, meanwhile, Z is linear
logistic parameter Logit (P) with the range of (−∞,+∞). Equation (2) shows the detailed
calculation of Z [2].

Z = Logit(P) = ln(
P

1− P
) = β0 + β1x1 + · · ·+ βnxn (2)

where n is the quantity of landslide CFs, β0 the constant coefficient, β1 . . . βn the partial
regression coefficients, and x1 . . . xn the independent variables (i.e., the CFs in this study).

2.2. AHPIV Model

The AHPIV model is an integrated model that can be expressed by a weighted sum
equation [8]:

In =
n

∑
i=1

wi Ii (3)

where wi is CF weights and Ii is the information value (IV) of the CF class. In the AHPIV,
the AHP is used to obtain the wi, and the information value method is used to obtain the Ii.
The two methods are briefly described as follows.

2.2.1. AHP Method

The AHP is a semi-qualitative multi-criteria decision-making technique, which is
widely used in many research fields including LS. It can consider both subjective and
objective factors while making the decision [31,43]. It can be used alone [43,47] or in
combination with other methods [8] in the LSM.

Using the AHP to determine the weights of CFs, the following steps are involved:
(i) build a hierarchy model of factors; (ii) establish a judgment matrix through pairwise
comparison (represent the importance from less to more using 1 to 9); (iii) calculate the
principal eigenvalue (λmax) and the corresponding eigenvector of the judgment matrix; (iv)
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test consistency using the consistency ratio (CR) (see Equation (4)) [48]. CR must be less
than 0.1; (v) normalize principal eigenvector to obtain factor weights. In Equation (4), RI is
the random consistency index see Table 1 [48,49], and n is the order of the judgment matrix.

CR =
CI
RI

=

(
λmax − n

n− 1

)
/RI (4)

Table 1. Random consistency index (RI) [48,49].

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.53 1.56 1.57 1.59

2.2.2. IV Method

Information value (IV) is an indirect conventional statistical method for LSM [37,43,50].
An information value Ii of a CF class can be defined as [43]:

Ii = log2
Lim/Tim

L/T
(5)

where Lim is the number of landslide grid cells in mth class of ith factor, Tim is the number
of the grid cells in mth class of ith factor, L is the total number of landslide grid cells, and T
is the total number of grid cells in the study area.

The existence of a CF class is adverse to landslide development when Ii is negative;
the existence of a CF class is conducive to landslide development when Ii is positive [51].

2.3. The Comprehensive Evaluating (CLSI) Model

Similar to the AHPIV model, the comprehensive evaluating (CLSI) model is also an
integrated model [6]. The main purpose of the CLSI model is to calculate the “LSI” of each
grid cell [46] see Equation (6).

LSI =
n

∑
i=1

wiRim (6)

where wi denotes CF weights and Rim denotes the frequency ratio (FR). In the CLSI, the
BPNN is applied to obtain wi, and the FR method is used to evaluate Rim. The two methods
are briefly described as follows.

2.4. BPNN Method

The BPNN model commonly includes three layers (input, hidden, and output lay-
ers) [43]. The quantized values of the CFs form the input layer, and the absence or presence
of landslide, represented by 0 or 1, respectively, is within the output layer. Neurons in these
layers are connected to each other by weight values [43]. During training, the networks
can adjust the weights between layers according to the importance of each input data [52].
Therefore, after the BPNN model is well trained, the weight of each CF can be calculated by
inversion. This study refers to the weight inversion process provided by Zhou (1999) [52].

To deal with the weight determination through BPNN, two types of samples are
needed to construct a BPNN model. One is landslide samples, and the other is non-
landslide samples [5]. Since regional landslide survey data are usually incomplete, the
non-landslide area identified by the traditional sampling method has a large sampling error;
this error greatly affects the prediction results due to the fact that sample preprocessing
can improve the accuracy of neural network models. This study optimized the selection of
a non-landslide data set, using the two-step cluster analysis (TSCA). A brief introduction
of TSCA is given in a previous study [6].
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2.5. FR Method

The contribution of different classes of each factor to landslide development is different.
To represent this distinction quantitatively, the frequency ratio (FR), which is a widely
used traditional probability method for LSM [6,16,18,53–56], is used. The FR is defined as
the ratio of landslide presence (aim) divided by the ratio of landslide absence (bim) as in
Equation (7) [6].

Rim =
aim
bim

=

(
Lim
L

)/(
Nim
N

)
(7)

where Rim is the frequency ratio of mth class of ith factor; the meanings of Lim and L are
consistent with Equation (5); Nim is the number of non-landslide grid cells that fall in mth
class of ith factor; and N is the total number of non-landslide grid cells.

3. Case Study Features
3.1. Description of Study Area

Zhushan County is located in the northwest of Hubei Province of China. It encom-
passes a total area of 3587.8 km2 between the coordinates 109◦32′ E and 110◦25′ E longitude
and 31◦30′ N to 32◦37′ N latitude Figure 1. The region has a subtropical monsoon climate
with abundant rainfall and four distinct seasons. There are a total of 646 rivers, with a
river network density of 0.76 km/km2. The major geomorphic types are mountainous,
hills, rift basins, and valley terraces. The study area includes seven geological age units,
which are Sinian, Cambrian, Ordovician, Silurian, Cretaceous, Tertiary, and Quaternary
formations. The main lithology of these formations is magmatic, clastic, and carbonate
rocks. The Quaternary covers are mainly distributed in the northern and northeastern
parts of the study region.

Figure 1. Geographical location of Zhushan County.

3.2. Landslide Inventory

The geological conditions of Zhushan County are complex, the terrain is undulating,
and the distribution density of landslides is high. Based on the long-term field investigation
and historical data provided by the Geological Environmental Center of Hubei Province,
this study locates 373 landslides.

The landslide inventory data set consists of 373 landslides, which are denoted as black
triangles Figure 2. After using the “feature to raster” function of ArcGIS software, the
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landslide inventory map was converted into raster data with a grid size of 50 m × 50 m.
These landslides cover 1010 grid cells on the 1:50,000 DEM map of the study area.

Figure 2. Landslide inventory map and some typical landslides.

3.3. Conditioning Factors

Landslide CFs are essential in LSM [19,57]. Due to the diversity of regional geological
backgrounds, there is no universal criterion for conditional factor selection [6,9]. The
occurrence of landslides is the result of multiple factors, mainly divided into two types:
external inducing factors and intrinsic background factors. The former includes human
engineering activities, rainfall, earthquakes, etc. The latter includes topography, geological
structure, lithology, etc. Based on the literature, data availability, and our experience, we
selected 8 CFs: lithology, slope structure, slope angle, altitude, distance to river, stream
power index (SPI), slope length, distance to road.
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In order to show the relationship between each CF and the occurrence of landslide,
three parameters are given in the form of polyline-histogram, respectively: (1) the per-
centage of each class of each CF, i.e., tim = Tim/T; (2) the percentage of landslides in each
class of each CF, i.e., aim = Lim/L; (3) the IV of each class of each CF Ii. See Section 2.2 for
specific calculations.

3.4. Lithology

Due to the difference in material strength, slopes with different lithologies have
different potentials to become landslides [36]. In this study, considering both mechanical
properties and structural integrity of rock and soil mass, the main lithology was reclassified
into four types, which are hardest rock, medium-hard rock, soft rock, and soil Figure 3a.
The histogram in Figure 4a shows that the soft rock group in the region has the widest
distribution range, accounting for 56.17% of the total number of grid cells, and the soil has
the smallest distribution range, accounting for only 1.02%. However, from the IV curve,
the landslide density in the soil group is the highest, with an IV of 1.76. Meanwhile, the
hardest rock group has the lowest IV of −1.09.

Figure 3. Cont.
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Figure 3. Landslide conditioning factor classes. (a) lithology;(b) slope structure; (c) slope angle; (d)
altitude; (e) distance to river; (f) stream power index; (g) slope length; (h) distance to road.

3.5. Slope Structure

Slope structure is an important property describing the type of slope and an important
indicator of slope stability. It reflects the positional relationship between rock layers and
the empty surface of the slope. Slope structure can usually be divided into forward slope,
diagonal slope, cross slope, and reverse slope. Different slope structure types have great
differences in the development characteristics and degree of landslides. For example, the
forward slope is prone to large-scale landslides, controlled by the lithological interface and
weak interlayer. Based on the raster calculation function of ArcGIS, this paper uses the angle
between the slope aspect and the rock layer inclination (range 0–180◦) to characterize the
slope structure of the study area [58] and divide the slope structure into 4 types according
to the calculation results: 0–45◦, 45–120◦, 120–160◦, and 160–180◦, as shown in Figure 3b.

The bar chart in Figure 4b shows that the slope structure of 45–120◦ has the widest
distribution range (43.27%). This is because, in the study area, most of the landslides are
cross slopes; the slope structure of 160–180◦ has the smallest distribution range (10.98%).
According to the IV curve, 0–45◦ is a forward slope, and this range has the maximum IV
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of 1.03, which is consistent with the conclusion that the forward slope is more prone to
landslide.

Figure 4. The relationship between conditioning factors (CFs) and existing landslides. (a) lithology; (b) slope structure; (c)
slope angle; (d) altitude; (e) distance to river; (f) stream power index; (g) slope length; (h) distance to road.
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3.6. Slope Angle

A large number of statistics have shown that the slope angle is closely related to
landslide activity [59–62]. For this reason, it has been considered an important CF in
LSM [24,36,53,63–65]. In this area, the slope angles are divided into 6 classes, as shown in
Figure 3c.

The histogram in Figure 4c shows that slopes with slope angles of 20–30◦ have the
widest distribution range (35.27%). The number of landslides that fall in this class is also
the largest (43.66%). The area with a slope angle greater than 50◦ accounts for the smallest
percentage of total area (1.98%), as well as the smallest percentage of existing landslide
(0.59%). In addition, according to the IV curve, in the study area, with increasing slope
angle, the IV of each class increases first and then decreases, reaching the maximum in the
20–30◦ class.

3.7. Altitude

Much literature selects the altitude as the CF of landslide [11,12,33,54,66]. It is related
to other geological and landform processes, such as weathering erosion, accumulation of
debris, and slope deformation, etc. The altitudes in the considered study region range from
230 m to 2600 m (Figure 3d). To facilitate summary, the altitudes are divided into 10 classes,
as shown in Figure 4d.

The histogram in Figure 4d shows that the number of grid cells in each class has small
differences. The largest number of landslides developed in the section with an altitude of
<500 m, accounting for 30.50% of the number of landslides. Besides, the IV of each class
decreases with the increase of altitude.

3.8. Distance to River

The water system in the study area mainly includes rivers, seasonal streams, and gul-
lies with low terrain. The distance to river can partially reflect the hydrological environment
of the slope, and its significance in landslide occurrence is widely recognized [36,40,43,63,66–68].
According to the hydrogeological map of Zhushan County, the distance to river was
obtained and divided into 6 classes (Figure 3e).

The histogram in Figure 4e shows that the number of grid cells in the range of >1000 m
is the largest (49.19%), and the remaining classes have small differences. The informa-
tion value curve shows an obvious decreasing trend, indicating that the development of
landslide is negatively correlated with the distance to river in Zhushan County. When
the distance is less than 200 m, the information value reaches the maximum of 0.89, while
when the distance is greater than 1000 m, the information value reaches the minimum of
−0.51.

3.9. Stream Power Index (SPI)

The SPI is used to characterize potential erosive power associated with flowing
stream [6,69]. It considers the slope geometry as well as the landscape at a given point.
Many studies on LSM have noticed the impact of SPI [33,40,70]. It can be calculated by
Equation (8) [39]:

SPI = A ∗ tan β (8)

where A (m2) is the specific catchment area and β (◦) is the local slope gradient [39]. The
distribution of SPI is shown in Figure 3f.

The histogram in Figure 4f shows that the class with the SPI value [0,1) accounts for
the largest percentage of the total grid cells (51.24%), as well as the largest percentage of
the landslide grid cells (68.47%), thus owning the maximum information value of 0.42. The
information value curve has an approximately normal distribution; with the increase of
SPI, the information value first increases and then decreases.
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3.10. Slope Length

The slope length is a parameter in the Universal Soil Loss Equation (USLE), which
has been taken into account in soil erosions and LSM [71–73]. Slope length refers to the
distance of uninterrupted overland flow along the slope [73]. Higher erosion rick usually
occurs on steeper and longer slopes, and vice versa [74]. The slope length is calculated
using Equation (9) [73,75,76]:

Ls = (λ/22.1)β(1+β) (9)

where λ is the slope length along the horizontal projection and β is the ratio of rill erosion
to interrill erosion. The distribution of slope length is shown in Figure 3g.

The histogram in Figure 4g shows that classes 20–40 (24.06%) and 40–60 (23.51%) have
the largest proportions of total grid cells, as well as the largest proportions of landslide
grid cells: 34.06% and 28.81%, respectively. According to the information value curve, in
the range where slope length is less than 160, as the slope length increases, the information
value increases steadily, reaching a maximum value of 0.38 in the class of 140–160. However,
when the slope length is greater than 180, the information value drops sharply to a negative
value of −0.93.

3.11. Distance to Road

Frequent human engineering activities will exacerbate landslide hazards. A large
number of landslides that occurred on embankments or cut slopes confirm this conclu-
sion [77,78]. Therefore, this study, like many others [12,21,54,63,68], regards the distance to
road as an important CF in LSM. According to the topographic map of Zhushan County,
the distance to road was obtained and divided into 6 classes (Figure 3h).

According to Figure 4h, the number of grid cells with a class >1000 m is far larger
than other classes, accounting for 57.72% of the total. The landslides it contains account
for 34.75%. In addition, from the IV curve, the development of landslide is negatively
correlated with the value of distance to road. When the distance is less than 200 m, the
information value reaches the maximum of 1.21, while as the distance is greater than
1000 m, the information value reaches the minimum of −0.73.

4. Landslide Susceptibility Mapping

The LS maps of Zhushan County are respectively produced by the LR model, AHPIV
model, and the CLSI model, as shown in Figure 5.

4.1. LSM Using LR Model

In our LR model, eight CFs are taken as independent variables: lithology (x1), slope
structure (x2), slope angle (x3), altitude (x4), distance to river (x5), SPI (x6), slope length (x7),
and distance to road (x8). The CF is normalized in advance. Select all landslide grid cells,
1010 in total, and mark them as 1. Subsequently, 1010 non-landslide grid cells are randomly
picked and marked as 0. These 2020 grid cells together form the prediction sample set of
the LR model. The data are exported to the statistical analysis software SPSS. The equation
of Z is obtained as follows:

Z = 2.340× x1 + 0.121× x2 + 0.214× x3 − 1.987× x4 − 0.017× x5
+0.032× x6 − 0.406× x7 − 3.340× x8 + 1.499

(10)

Subsequently, based on the raster calculation function of ArcGIS, through Equations
(1) and (2), the P value of each grid cell is calculated. According to the natural breakpoints
method, the LSM results are divided into 5 levels, which are very low (29.84%), low
(14.37%), moderate (15.42%), high (29.31%), and very high (11.06%). The LS map obtained
by the LR model is shown in Figure 5a.



Sustainability 2021, 13, 3803 12 of 25

Figure 5. Landslide susceptibility (LS) maps of the three models.(a) the LS map of the LR model; (b) the LS map of the
AHPIV model; (c) the LS map of the CLSI model.

4.2. LSM Using AHPIV Model

To calculate the In of each grid cell using Equation (3), the weight of each factor
needs to be determined first, using the AHP method. The key to this method is to build a
reasonable hierarchy. According to the landslide investigation data, this article believes
that the gestation and development of landslides are controlled by five aspects: structural
geology, topography and landforms, hydrological geology, environmental changes, and
external disturbances. From these aspects, an evaluation system containing 8 CFs is
established, and the hierarchical structure is shown in Figure 6.
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Figure 6. Hierarchy of landslide susceptibility to CFs.

According to the hierarchical structure in Figure 6, the first-level and second-level
judgment matrices are constructed, as shown in Tables 2 and 3, respectively. Since there
is only one secondary CF in the categories of environmental changes and external distur-
bances, there is no need to construct a second-level judgment matrix. Through calculation,
the CR values of four judgment matrices are respectively 0.09, 0, 0, and 0. All meet the
consistency test. The principal eigenvectors of the above matrix are respectively calculated,
and the weights of eight CFs are obtained through normalization see Table 4.

Table 2. First-level judgment matrix of landslide susceptibility.

First-Level Structural
Geology

Topography and
Landforms

Hydrological
Geology

Environmental
Changes

External
Disturbances

Structural geology 1 4 3 2 1
Topography and landforms 1/4 1 2 2 1/3
Hydrogeological geology 1/3 1/2 1 3 1/2
Environmental changes 1/2 1/2 1/3 1 1/2
External disturbances 1 3 2 2 1

Table 3. Second-level judgment matrix of landslide susceptibility.

Structural Geology Lithology Slope Structure

Lithology 1 3
Slope structure 1/3 1

Topography and Landforms Slope angle Altitude

Slope angle 1 2
Altitude 1/2 1

Hydrological Geology Distance to river SPI

Distance to river 1 1/2
SPI 2 1

Table 4. Conditioning factor weights determined based on the analytical hierarchy process (AHP) method.

Conditioning
Factor

Lithology Slope
Structure

Slope
Angle Altitude Distance to

River SPI Slope
Length

Distance to
Road

(W1) (W2) (W3) (W4) (W5) (W6) (W7) (W8)

Weight 0.2512 0.0837 0.0979 0.0490 0.0464 0.0929 0.0968 0.2821



Sustainability 2021, 13, 3803 14 of 25

In Equation (5), the Ii values correspond to each class for each CF see Table 5. Sub-
sequently, based on the raster calculation function of ArcGIS, through Equation (3), the
distribution range of In in Zhushan County is calculated. By the natural breakpoints
method, the LSM results are divided into 5 levels, which are very low (20.76%), low
(30.26%), moderate (26.37%), high (18.74%), and very high (3.88%). The LS map obtained
by the AHPIV model is shown in Figure 5b.

Table 5. Relation between landslide occurrence and each class of every conditional factor.

Conditioning
Factor Classes

Total Grid
Cells
(Tim)

Landslide
Grid Cells

(Lim)
aim (%) bim (%) FR

Rim
Ii

Lithology
(W1)

Hard rock 124,990 42 4.16 8.85 0.47 −1.09
Medium-hard rock 480,072 248 24.55 33.97 0.72 −0.47

Soft rock 794,086 685 67.82 56.17 1.21 0.27
Soil 14,460 35 3.47 1.02 3.39 1.76

Slope structure
(W2)

<45◦ 155,227 226 22.38 10.97 2.04 1.03
45–120◦ 582,184 437 43.27 41.18 1.05 0.07

120–160◦ 311,450 227 22.48 22.03 1.02 0.03
160–180◦ 364,747 120 11.88 25.81 0.46 −1.12

Slope angle
(W3)

<10◦ 156,748 90 8.91 11.09 0.80 −0.32
10–20◦ 412,342 328 32.48 29.17 1.11 0.15
20–30◦ 498,615 441 43.66 35.27 1.24 0.31
30–40◦ 272,172 130 12.87 19.26 0.67 −0.58
40–50◦ 45,756 15 1.49 3.24 0.46 −1.12
>50◦ 27,975 6 0.59 1.98 0.30 −1.74

Altitude
(W4)

<500 207,120 308 30.50 14.64 2.08 1.06
500–600 186,742 267 26.44 13.20 2.00 1.00
600–700 187,723 181 17.92 13.28 1.35 0.43
700–800 178,184 102 10.10 12.61 0.80 −0.32
800–900 159,811 95 9.41 11.31 0.83 −0.27
900–1000 135,327 40 3.96 9.58 0.41 −1.27

1000–1200 174,245 12 1.19 12.33 0.10 −3.37
>1200 184,456 5 0.50 13.06 0.04 −4.72

Distance to river
(W5)

<200 151,769 201 19.90 10.73 1.85 0.89
200–400 142,958 135 13.37 10.11 1.32 0.40
400–600 133,464 109 10.79 9.44 1.14 0.19
600–800 164,189 126 12.48 11.61 1.07 0.10
800–1000 124,826 89 8.81 8.83 1.00 0.00

>1000 696,402 350 34.65 49.27 0.70 −0.51

SPI
(W6)

<−4 64,980 1 0.10 4.60 0.02 −5.54
[−4,−3) 53,501 9 0.89 3.79 0.24 −2.09
[−3,−2) 114,181 43 4.26 8.08 0.53 −0.92
[−2,−1) 79,720 50 4.95 5.64 0.88 −0.19
[−1,0) 39,862 38 3.76 2.82 1.33 0.42
[0,1) 724,507 692 68.51 51.24 1.34 0.42
[1,2) 251,458 157 15.54 17.79 0.87 −0.19
[2,3) 60,901 18 1.78 4.31 0.41 −1.27
≥3 24,498 2 0.20 1.73 0.11 −3.13

Slope length
(W7)

<20 340,160 223 22.08 24.06 0.92 −0.12
20–40 332,350 228 22.57 23.51 0.96 −0.06
40–60 254,211 182 18.02 17.98 1.00 0.00
60–80 178,444 130 12.87 12.62 1.02 0.03
80–100 118,495 91 9.01 8.38 1.07 0.10

100–120 74,451 66 6.53 5.27 1.24 0.31
120–140 44,743 40 3.96 3.16 1.25 0.32
140–160 27,200 25 2.48 1.92 1.29 0.36
160–180 16,913 15 1.49 1.20 1.24 0.31

>180 26,641 10 0.99 1.89 0.53 −0.93

Distance to road
(W8)

<200 133,540 221 21.88 9.44 2.32 1.21
200–400 125,709 122 12.08 8.89 1.36 0.44
400–600 119,462 113 11.19 8.45 1.32 0.40
600–800 112,835 103 10.20 7.98 1.28 0.35
800–1000 106,124 100 9.90 7.51 1.32 0.40

>1000 815,938 351 34.75 57.74 0.60 −0.73
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4.3. LSM Using the CLSI Model
4.3.1. Non-Landslide Area Selection

Before the BPNN procedure, the two-step cluster analysis (TSCA) was used for sample
preprocessing. In order to determine a dataset that can better characterize the geological
environmental conditions of non-landslide, Figure 7 shows the difference between the
sampling process in this study and the traditional sampling process.

Figure 7. Comparison of the two sampling methods.

Due to their close relationship with the landslide occurrence, these eight CFs were
also used as evaluation indicators for TSCA. Data normalization is required before analysis.
The study region is divided into 5 clusters, and the results are shown in Figure 8.

The distribution of the clusters in Figure 8 shows that (1) only Clusters 1 and 2 have
an obvious band-like distribution trend, and the rest are distributed in the form of scattered
areas; (2) the clustering result is controlled by multiple evaluation factors such as lithology,
distance to river, etc.; and (3) the outer circle shows relatively small differences of total grid
cells in each cluster, meanwhile, the inner circle shows big differences of landslide grid
cells in each cluster.

The following conditions are used to filter the target clusters for non-landslide grid
cells sampling. Among them, condition 1 refers to [5].

Condition-1: C1 =
Nc

Nt
< 0.1 (11)

Condition-2: C2 = min
(

Pc

Pt

)
(12)

where Nc denotes the number of landslide grid cells for each cluster, Nt denotes the number
of landslide grid cells in the whole area (Nt = 1010), Pc equals to the number of landslide
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grid cells in each cluster divided by the number of total grid cells in each cluster, and Pt
denotes the percentage of landslides in Zhushan County (Pt = 1010/1, 413, 608).

Figure 8. Clustering result of the study area.

According to the clustering results and screening conditions see Table 6, the clusters
that meet condition 1 include Clusters 4 and 5. Based on the second condition, the cluster
with the minimum C2 value is the most suitable cluster for random sampling of non-
landslide, i.e., Cluster 5.

Table 6. Subdivision of the study area into five clusters by the two-step cluster analysis.

Cluster Number 1 2 3 4 5 Total in the
Study Area

Number of landslide grid cells 411 214 270 47 68 1010
Number of non-landslide grid cells 334,504 206,144 452,506 133,266 286,178 1,412,598

Total number of grid cells 334,915 206,358 452,776 133,313 286,246 1,413,608
Sampling condition 1 (Nc/Nt) 0.41 0.21 0.27 0.05 0.07
Sampling condition 2 (Pc/Pt) 1.72 1.45 0.83 0.49 0.33

4.3.2. Weight Determination for Each Factor

In this study, a three-layered BPNN model was applied for weight determination
using the MATLAB software package. The input nodes are the CFs, the number is 8 (Ni = 8).
The output node is the value of LSI (No = 1). For the number of hidden layer nodes (Nh),
the upper limit is (2Ni + 1) [79], and the lower limit is (Ni + No)/2 [80]; thus the best range
of hidden layer nodes is 5 ≤ Nh ≤ 17. After comparing 5, 10, 12, 15, and 17 as possible
hidden layer nodes, 15 nodes were identified as the best. Based on this, a BPNN model
with a structure of 8-15-1 is established.
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According to the literature [81], the training sample size (Nsample) for the three-layered
BPNN model can be determined by Equation (13).

W
ε
≤ Nsample ≤

W
ε
· log

N
ε

(13)

where N denotes the total number of nodes, W denotes the total number of weights, and
ε denotes the accuracy parameter. In this study, assume the model has an accuracy level
of 90%, and thus the ε equals to 0.1 and the range of training sample number is [1350,
3213]. Therefore, 2510 grid cells were selected, including all landslide grid cells (1010)
and 1500 non-landslide grid cells (selected from Cluster 5). Among them, 80% is used for
model training, and 20% is used for model validation. For transfer functions and other
parameters [82], please see Table 7.

Table 7. Parameter settings in back-propagation neural network (BPNN) analysis.

Table 1 Training
Method

Epochs Learning
Rate RMSE Goal

Hidden (f 1) Output (f 2)

Logsig Purelin LM 1000 0.01 0.01
Logsig: log-sigmoid transfer function; Purelin: linear transfer function; LM: Levenberg–Marquardt algorithm,
which has good generalization ability and has the capability of providing good predictions [82].

In order to make the results more rigorous, the calculation was repeated 10 times to
achieve the average value see Table 8. The covariance values (COVs) indicated that the
difference between the 10 calculations is small, and the overall result is reasonable and
reliable. In Table 7, the mean values represent the calculated average weights of CFs, and
the last column is the normalized weight of each CF. The SPI has the minimum weight
while the lithology has the maximum weight. The results show that lithology has the
greatest impact on the occurrence of landslides, which is very consistent with the actual
survey situation. Moreover, the weight value of distance to road is second only to lithology.
In the field investigation, part of the landslides in the study area were found distributed
along the roads. The slope angle also has a greater impact on landslide occurrence, which
is consistent with the situation shown in the CF analysis. Factors with a relatively small
degree of influence are SPI and slope length.

Table 8. Weight of each factor determined by BPNN.

Conditioning
Factor 1 2 3 4 5 6 7 8 9 10 COV Mean Weight

Lithology 1.653 1.655 1.661 1.687 1.618 1.646 1.871 1.875 1.715 1.744 0.0921 1.71 2.35
Slope structure 0.728 0.731 0.749 0.762 0.777 0.785 0.829 0.838 0.912 0.946 0.0749 0.81 1.10

Slope angle 1.110 1.018 1.087 1.119 1.121 1.130 1.246 1.264 1.297 1.198 0.0885 1.16 1.59
Altitude 0.774 0.778 0.854 0.895 0.928 0.939 0.948 0.977 0.983 0.998 0.0814 0.91 1.24

Distance to river 0.800 0.803 0.770 0.793 0.799 0.839 0.853 0.854 0.896 0.900 0.0446 0.83 1.14
SPI 0.650 0.683 0.688 0.695 0.719 0.740 0.749 0.749 0.805 0.826 0.0552 0.73 1.00

Slope length 0.647 0.662 0.678 0.709 0.723 0.731 0.782 0.798 0.813 0.826 0.0645 0.74 1.01
Distance to road 1.391 1.409 1.412 1.488 1.409 1.538 1.438 1.445 1.460 1.483 0.0455 1.45 1.98

4.3.3. Landslide Susceptibility Map

After the weights are determined, the FR of each class of the 8 CFs is obtained
according to Equation (7), as shown in Table 5.

After obtaining the weights and the frequency ratios, the LSI value of each grid cell
was calculated according to Equation (6). Based on the natural breakpoints method, the
LSM results are divided into 5 levels, which are very low (19.49%), low (20.42%), moderate
(23.29%), high (26.91%), and very high (9.89%). The LS map obtained by the CLSI model is
shown in Figure 5c.
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5. Validation and Analysis

The performance of the LSM model can be evaluated from two aspects. First, whether
the model can accurately predict the nonlinear relationship between CFs and the occurrence
of landslides based on the available data, i.e., explore the rules and use this to evaluate the
landslide susceptibility within unknown areas. The higher the accuracy of the evaluation,
the better the model performance. For practical application, the second criterion is the clas-
sification ability. The greater the difference between each zone, the higher the classification
ability. Considering these two aspects, we did the following verification work.

5.1. Validation Based on AUC Accuracy

Regarding the first aspect, the accuracy of the LSM results must be verified. For
this purpose, the receiver operating characteristic (ROC) curve and area under the curve
(AUC), which have been widely used in previous studies [3,19,42,83], were applied in this
study. The ROC curve reflects the corrections between the “Sensitivity” (Equation (14)) and
“1-Specificity” (Equation (15)) [6], which are:

Sensitivity =
TP

TP + FN
(14)

1− Speci f icity =
TN

FP + TN
(15)

where TP is the true positive rate, FN is false negative rate, TN is true negative rate, and
FP is false positive rate. The range of the AUC value is [0.5, 1], which reflects the overall
accuracy of the prediction. The larger the value, the higher the model accuracy. Note that
“false positive” means that a stable area is misjudged as a landslide-prone area. On the
contrary, “false negative” refers to the situation that the landslide-prone area is misjudged
as a stable area.

In this study, a total of 71,640 grid cells were used to complete three ROC curves using
SPSS software. All landslide grid cells were used to form a positive data set, and 5% of non-
landslide grid cells that had not participated in the previous calculations were randomly
selected to form a negative data set. The result is shown in Figure 9. The prediction accuracy
of the three models exceeds 80%, indicating a relatively good prediction performance. This
laterally confirms the rationality of the selected CFs.

Figure 9. Comparison of receiver operating characteristic (ROC) curves and area under the curve
(AUC) values.
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Figure 9 also suggests the CLSI model has the highest AUC value of 0.902, followed
by the LR model (0.851) and the AHPIV model (0.820). The bias in determining the weights
by the AHP method greatly reduces the accuracy of the AHPIV model. The CLSI model
adopts the more objective and rational BPNN in determining the weights, thus leading
to a better result. Benefiting from the rich historical survey data and the approximately
linear relationship between some CFs and the occurrence of landslides (e.g., distance to
river, distance to road), the performance of the LR model is also remarkable.

5.2. Validation Based on Seed Cell Area Index

Regarding the second aspect, the classification ability of the three LSM models must
be verified. A good classifier produces a large difference between the divided zones. In
this study, the seed cell area index (SCAI) [84] was used to quantify the difference. The
landslide grid cell is called a “seed cell”, and the SCAI can be obtained by

SCAI =
Parea

Pseed
(16)

where Parea suggests the percentage of grid cells in each susceptibility zone to total grid
cells in the whole area and Pseed suggests the percentage of landslide grid cells in each
susceptibility zone to grid cells of all landslides. The SCAI is a dimensionless parameter.
Generally, the high-proneness area should have a lower SCAI value, and vice versa. A
greater difference in SCAIs between the high-proneness area and the low-proneness area
indicates a better performance of the model.

The SCAI values are calculated and shown in Table 9. From very low area to very
high area, the SCAI values present a decreasing trend for the three models. These results
also demonstrate the rationality of the three models. In addition, the SCAI differences
between the very low and very high areas for the AHPIV and CLSI model are 12.08 and
11.98, respectively, and they both are far greater than that of the LR model (5.81). This is
because the LR model has a large number of landslide grid cells in the very low area, which
directly leads to poor interval division. The last column in Table 9 lists the difference value
(D-value) of SCAI between adjacent zones. It can be seen that all the minimum D-values
fall into the AHPIV and LR model, while there are two maximum D-values that fall into
the CLSI model. This result indicates that, in addition to the accuracy, the CLSI model
performs the best in classification ability. This is to be expected because the CLSI uses
the trained BPNN to calculate the weights, and this captures the nonlinear relationship
between the CFs and the occurrence of landslides, leading to more objective and scientific
LSM results.

5.3. Validation Based on Landslide Points

Verification of the three landslide susceptibility maps was also performed based on
existing landslide points. After LSM, the 373 existing landslides were marked on three
LS maps (Figure 10), most of which are located in the very high and high susceptibility
zones. From very low to very high susceptible zone, the number of landslide grid cells
increases. The AHPIV model showed the worst performance. The CLSI model and LR
model showed a better and similar performance. The LR model has a small value of the
line slope between the very low area and the low area, indicating that the LR model has a
weak ability to identify the low-proneness area. This is consistent with the results of the
SCAI verification. However, the LR model has the largest line slope between the moderate
area and high area. The CLSI model has a better resolution ability in identifying the very
low area and the very high area, but it is slightly inferior to the LR model in distinguishing
the moderate area and the high area. In summary, the LSM results show good consistency
with the historical landslides, especially the results of the CLSI and LR model.
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Table 9. Comparison results of seed cell area index (SCAI).

LSM
Model Class

Number of
Total Grid

Cells

Area
(%)

Number of
Landslide
Grid Cells

Seed (%) SCAI D-Value

LR model

Very high 156,409 11.06% 325 32.18% 0.34
0.31

High 414,279 29.31% 455 45.05% 0.65
0.62

Moderate 217,990 15.42% 123 12.18% 1.27
1.24

Low 203,160 14.37% 58 5.74% 2.50
3.65

Very low 421,770 29.84% 49 4.85% 6.15

AHPIV
model

Very high 54,789 3.88% 153 15.15% 0.26
0.24

High 264,874 18.74% 385 38.12% 0.49
0.36

Moderate 372,714 26.37% 313 30.99% 0.85
1.30

Low 427,744 30.26% 142 14.06% 2.15
10.18

Very low 293,487 20.76% 17 1.68% 12.33

CLSI
model

Very high 139,830 9.89% 306 30.30% 0.33
0.32

High 380,421 26.91% 418 41.39% 0.65
0.47

Moderate 329,194 23.29% 210 20.79% 1.12
2.32

Low 288,611 20.42% 60 5.94% 3.44
8.87

Very low 275,552 19.49% 16 1.58% 12.30

Figure 10. Cumulative distribution of the LS maps for the three models.

6. Discussion and Conclusions

In the past few decades, regional LSM has become a frontier research topic due to
its complexity and nonlinear characteristics. A variety of methods have been used to
establish the evaluating models. The authors have established a comprehensive landslide
susceptibility index model (CLSI) [6], which is an integration of prior knowledge and an
objective weighting method. To further verify the superiority and generalizability of this
model, Zhushan County was taken as the study region. It is a landslide-prone area in Hubei
Province of China. Two representative methods, namely, the LR and the analytic hierarchy
process information value (AHPIV) model, were used for comparison. Specifically, LR
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represents the traditional statistical method, and AHPIV represents an integrated method
that combines prior knowledge and subjective weight determination.

The LS maps (Figure 5) generated by the three models were well coincident with
each other. Specifically, the very high and high susceptibility areas are located along the
roads and rivers within a distance of 200m. In addition, lithology also plays a vital role,
especially for the soil distribution area. For example, the weights obtained by both the
AHP method and BPNN method are highly correlated with the lithology and the distance
to road. Moreover, because there are many shallow landslides in Zhushan County, a slope
angle less than 30◦ significantly contributes to the development of landslides.

On the other hand, the very low and low susceptibility areas are far from the river
network and road network. These areas have a strong correlation with altitude, with most
landslides distributed in zones with altitudes higher than 800 m. This phenomenon can be
explained as follows. First, these areas are less affected by human engineering activities;
hence the slope stability is higher. Second, due to the strong denudation in high altitude
areas, few Quaternary deposits and strong weathering soft rocks accumulate in this area,
which provide little material source for shallow landslides.

Generally, a good LSM model performs well in both result accuracy and susceptibility
zone classification. Therefore, the performances of these three LSM models were validated
in terms of these two aspects. The ROC curve and the value of SCAI were used as the
indicators for these two aspects. The ROC results show that LSM in Zhushan County using
the three models is viable, and the CLSI model has the highest AUC value of 0.902, followed
by the LR (0.851) and AHPIV (0.820). The validation based on SCAI values indicate that
these three models generate reasonable LSM partitions, and the CLSI model has the best
classification ability. Subsequently, the existing landslide grid cell accumulation curves
were used for further verification. A good agreement was obtained between the LS maps
and existing landslides. The CLSI model has a better ability in identifying the very low
area and the very high area. Through these comparisons, this study clearly reveals that the
robust performance of the CLSI lies in the weight determination, that is, the determined
weights by the BPNN successfully captures the nonlinear relationship between the CFs
and the occurrence of landslides.

There are some literature regarding the comparison of the LR model and other existing
methods in LSM [2,10,36,37,39,46]. Du et al. [34] compared the LR model, IV model, and
LRIV model. The success rates were 69.2%, 68.8%, and 81.7%, respectively. The prediction
rates were 78.5%, 71.6%, and 84.6%, respectively. This study showed that the performance
of the LR model is in the middle position. Akgun [63] compared the LR model, likelihood
ratio, and multi-criteria decision analysis. The LR was determined to be the most accurate
method compared to the other two. Merghadi et al. [85] did a lot of work to compare
the application of machine learning methods including the LR model. They believed that
although the AUC value of the LR model is greater than 0.82, it has no accuracy advantage
compared to other machine learning methods.

In addition, a few documents discuss the performance of the AHPIV model in land-
slide susceptibility mapping. Zhang et al. [31] elaborated on the process and prediction
performance of the AHPIV model. The AUC value of this model was 0.694 for the pre-
diction rate. Du et al. [8] compared two integrated models (the AHPIV and the LRIV) in
LSM. The performances of the methods were also validated and compared using ROC
curves. The AUC values obtained using the AHPIV and LRIV methods were 0.884 and
0.906, respectively. Results show that the LRIV method performs better than the AHPIV
method. Banerjee et al. [86] also applied the AHPIV method to the field of LSM. The
evaluation accuracy analysis result of this model was 85%.

Although scholars are committed to the comparison of different methods, it is hard to
reach a consensus. Due to different prior knowledge of each study (i.e., different geological
backgrounds, different types of occurrence landslides, and different conditioning factors),
it is not possible to make a horizontal comparison. However, is the CLSI model superior
to other methods besides the LR and AHPIV model or not? Can the selection of more
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conditioning factors give better LSM results or not? These problems need to be addressed
and solved in our future study.

In summary, the main contributions of this research are (1) the LSM processes using
the LR model, the AHPIV model, and the CLSI model was explored and summarized;
(2) eight CFs of lithology, slope structure, slope angle, altitude, distance to river, SPI, and
distance to road are reasonable CFs for LSM in Zhushan County; (3) reasonable LS maps
of Zhushan County were produced in ArcGIS software; (4) the CLSI model was found to
be more appropriate for LSM than the LR model and AHPIV model, in terms of result
accuracy and classification ability; and (5) the CLSI model can be used as a robust predictor
for the County-level area.
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Nomenclature

Acronyms
CA cluster analysis
CF conditioning factor
CR consistency ratio
FR frequency ratio
IV information value
LR logistic regression
LS landslide susceptibility
RI random consistency index
AHP analytic hierarchy process
ANN artificial neural network
AUC area under receiver operating feature curve
DEM digital elevation model
GIS geographic information system
LSI landslide susceptibility index
LSM landslide susceptibility mapping
ROC receiver operating feature curve
SPI stream power index
SVM support vector machine
BPNN back-propagation neural network
CLSI comprehensive landslide susceptibility index
SCAI seed cell area index
TSCA two-step cluster analysis
USLE revised universal soil loss equation
AHPIV analytic hierarchy process information value
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