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Abstract: With the increasing level of air pollution and fine dust, many countries are trying to prevent
further environmental damage, with various government legislations, such as the Kyoto Protocol
and the Paris Agreement. In the transportation field, a variety of environmental protection schemes
are also being considered (e.g., banning old diesel vehicles, alternate no-driving systems, electric
car subsidies, and environmental cost charging by tax). Imposing environmental constraints is a
good approach to reflect various environmental protections. The objective of this research was to
analyze the mode-choice and route-choice changes based on imposing environmental constraints. For
the objective, a combined modal split and traffic assignment (CMA) model with an environmental
constraint model was developed. For the environmental constraint, carbon monoxide (CO) was
adopted, because most of the CO emissions in the air are emitted by motorized vehicles. After a
detailed description of the model, the validity and some properties of the model and algorithm are
demonstrated with two numerical examples (e.g., a small and a real network in the city of Winnipeg,
Canada). From the numerical results, we can observe that imposing the small restriction (or strict)
value has more efficiency in mode change and reducing network emission.

Keywords: mode choice; environmental constraint; vehicle restriction; combined modal split and
traffic assignment

1. Introduction

It is well-known that the transportation system increases the level of air pollution.
As the number of motorized vehicles increases, the congestion level on a road network
is also increased. From the increased congestion level, the level of air pollution is in-
creased. As a result, environmental deterioration is accelerating. Based on the United
States Environmental Protection Agency [1,2], 35% of carbon dioxide (CO2) emissions
are contributed by transportation, and the greatest sources of carbon monoxide (CO) in
outdoor air are motorized vehicles (e.g., passenger car and truck). Kheirbek [3] estimates
the emissions contributed by motorized vehicles in New York City. According to their
research, motorized vehicles produced 1817 tons of particulate matter (PM2.5), 43,934 tons
of nitrogen oxides (NOx), 20,613 tons of total Volatile Organic Compounds (VOCs), and
336 tons of sulfur dioxide (SO2), and these values are 17.5%, 38.3%, 21.9%, and 4.6% of
emissions, respectively. Kim [4] analyzed the greenhouse gas emissions emitted from the
transportation sector in Korea and showed that the GHG growth rate emitted from the
transportation sector is higher than those emitted from other sectors. From the issues, many
countries are trying to prevent further environmental damage with various government
legislations (i.e., Kyoto Protocol [5] and the Paris Agreement [6]). For the alleviation of
the environmental deterioration, transportation authorities have an effort on the imple-
mentation of traffic management strategies and traffic-control policies. For example, old
diesel vehicles are banned on the road in Korea, German, India [7–9], etc., and an alternate
no-driving system [10] starts in Korea. However, most environmental protections only
focus on alleviating the environmental deterioration, without considering travel behaviors.
Hence, more systematic modeling is required for long-term transportation planning.
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Imposing environmental constraints is a good approach to reflect various environ-
mental protection [11]. When the environmental constraints are imposed in a certain area,
travelers should either give up their travel or change their mode. However, it is difficult
to estimate how many travelers give up their travel or change their mode. Hence, vehicle
restriction related to environmental protection strategies should be systematically modeled.

The objective of this research is to analyze the mode-choice changes based on impos-
ing environmental constraints. For the objective, the combined modal split and traffic
assignment problem with environmental constraints (CMA-EC) is proposed. The combined
modal split and traffic assignment problem (CMA) is considered to resolve the inconsis-
tency issue of the sequential travel-demand forecasting procedure between the modal
split and traffic assignment steps (e.g., see Refs. [12–16]). Imposing environmental con-
straints is considered as one of the side constraints, and Hearn and Ribera [17] suggested
that adding side constraints in the route-choice model is a good approach to estimate
traffic-flow patterns. In the urban transportation system, there are many different types
of side constraints that can be used to improve the reality of the resulting traffic forecast.
However, there are a few studies considering the side-constraints problem in the combined
model (e.g., see Refs. [18–21]), and these researches focus on the combined distribution and
assignment problem.

In the paper, the mode-choice changes by explicitly incorporating environmental con-
straints in the CMA model are explored. For the environmental constraints, CO emission is
considered. It is well-known that there are many emission pollutants from the motorized
vehicles (i.e., carbon monoxide (CO) and nitrogen oxide (NOx), and carbon dioxide (CO2)).
Among these emission pollutants, CO is typically considered an important measurement
because CO is the most critical pollutant and other pollutants have a similar pattern to CO
emission [22]. In addition, although the portion of carbon monoxide (CO) is very small in
greenhouse gas, it has important indirect effects on global warming [23].

The mode-choice and route-choice probability are obtained by the multinomial logit
probability function which is based on random utility theory. To model the CMA-EC,
mathematical programming (MP) formulation is first provided, and then the solution
algorithm is described. In the solution algorithm, an iterative balancing scheme is adopted
to solve the real size network. Figure 1 depicts an overall flowchart of the proposed model.
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Figure 1. Procedure for combined modal split and traffic assignment (CMA) model with environ-
mental constraints.

2. Environmental Constraint

Larsson and Patriksson [24] described that imposing traffic restraints as a side con-
straint is a good approach to reduce error generated in traffic assignment models. Among
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the varying side constraints models (e.g., modeling queuing delays [25–28] and restraining
traffic flows [28–30]), Chen et al. [28], Ferrari [29], Xu et al. [11], and Chen and Kim [31]
developed imposing the environmental constraints in the traffic assignment model.

For environmental constraints, a road network G = (N,A) is first considered, consisting
of a set of nodes N and a set of directed links A. A general form of side constraints can be
written as follows:

ga(xa) ≤ 0, ∀a ∈ A (1)

where xa is the vehicle volume on link a, A is a subset of links (A ⊆ A) in the network, and
ga(xa) is a function of link flows on link a.

If ga(xa) is the environmental constraint that restricts the emission emitted by a vehicle,
the emission constraint that restricts the amount of vehicular pollutants to be less than or
equal to the predetermined environmental threshold (ga) on link a can be written as follows.

ga(xa) · xa ≤ ga, ∀a ∈ A (2)

With Equation (2), different types of emission models can be modeled. As described
in the introduction, we adopt CO emission. For CO estimation, the nonlinear macroscopic
model proposed by Wallace et al. [32] is adopted.

ga(xa) = 0.2038 · ta(xa) · exp
(

0.7962 · la

ta(xa)

)
(3)

where ga(xa) is the amount of CO pollution in grams per vehicle (g/veh) on link a, ta(xa)
is the travel time (in minutes) of link a, and la is the length (in kilometers) of link a.

Note that the adopted CO measure in Equation (3) has also been used for the trans-
portation model related to air quality [11,28,31,33–40].

Yang et al. [38] verified the above emission function is monotonically increasing if the
free-flow travel speed is less than 201.96 km/h, using the Bureau of Public Roads (BPR)
function as a travel time function. Figure 2 shows the example when BPR function is
ta(xa) = 10 ·

(
1 + 0.15 · (xa/1000)4

)
and la = 5 km.
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With the property, which is monotonically increasing, Equation (2) can be rewritten
as follows.

xa ≤ va(ga), ∀a ∈ A (4)

where va(ga) is the threshold link flow based on the predetermined environmental thresh-
old (ga) on link a.

In the above example, if ga(xa) · xa ≤ (ga = 5000) in Equation (2), it is converted to
xa ≤ 1111 in Equation (4).

3. Combined Modal Split and Traffic Assignment Problem with the
Environmental Constraints

In this section, the combined travel demand model problem is briefly reviewed, and
then the CMA model with considerations of the environmental constraints is followed.

3.1. Review of the Combined Models

The combined travel model is considered to resolve the inconsistency issue in the
sequential travel demand model (e.g., four-step model) [41]. In the transportation literature,
various combined models have been developed, based on different assumptions:

• Combined distribution and assignment (CDA) model [42,43];
• Combined modal split and traffic assignment (CMSTA) problem [13–15,44–46];
• Combined trip distribution, modal split, and traffic assignment model [47–49];
• Combined trip generation, trip distribution, modal split, and traffic assignment

model [50,51].

In the CMA models, Florian [12], Florian and Nguyen [47], and Abdulaal and LeBlanc [13]
used a stochastic model in the mode choice and a deterministic model in the route choice.
Although they used a combined model between the mode choice and the route choice, an
inconstancy issue still exists (i.e., using a stochastic model in the mode choice and a determin-
istic model in the route choice). Later, García and Marín [15] and Cantarella [45] developed
the CMA model with the stochastic mode-choice model and with the user equilibrium model
or the stochastic user equilibrium (SUE) model in the route choice. Wu and Lam [44] and
Oppenheim [50] adopt the stochastic model, which is the multinomial logit (MNL) model for
modeling both mode choice and route choice. Recently, Kitthamkesorn et al. [46] used the
nested logit (NL) model in the mode choice and the cross nested logit (CNL) model in the
route choice.

3.2. Combined Mode and Route Choices

As mentioned above, the combined mode and route choices aim to determine con-
sistent level-of-service and flow values of the modal split and traffic assignment steps.
Figure 3 depicts the hierarchical structure of these two travel choices with explicit consid-
erations in the mode-choice step and route overlapping in the route-choice step.
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With the hierarchical structure of these two travel choices, the mode choice and the
route choice probabilities on the CMA model is as follows:

• Mode-choice probability

Pm|rs =
qrs

m
qrs =

exp(−τwrs
m)

∑
n∈M

exp(−τwrs
n )

, ∀rs ∈ RS, m ∈ M

∗wrs
m = − 1

θ ln ∑
k∈Krs

m

exp
(
−θcrs

km
)
, ∀rs ∈ RS, m ∈ M

(5)

where Pm|rs is the mode-choice probability of choosing mode m, given mode set M
between origin–destination pairs (O–D pair) rs; qrs

m is the demand of mode m between
O–D pair rs, qrs is the total demand between O–D pair rs; τ is the dispersion parameters
for mode choice; wrs

m is the expected received disutility of all routes between O–D pair
rs; RS is a set of O–D pairs; θ is the dispersion parameters for route choice; and crs

km is
the route cost on route k between O–D pair rs in mode m.

• Route choice probability

Pk|m =
f rs
km

qrs
m

=
exp

(
−θcrs

km
)

∑
k∈Krs

m

exp
(
−θcrs

km
) , ∀m ∈ M, k ∈ Krs

m (6)

where Pk|m is the route-choice probability of choosing route k, given route set Krs
m in

mode m; f rs
km is the flow on route k of mode m between O–D pair rs; and Krs

m is the
route set of O–D pairs in mode m.

To consider the perception error of mode choice and route choice, the hierarchical
logit choice problem based on the random utility theory is assumed. Note that the linkage
between the two travel choices is through wrs

m , which is a well-known log-sum term in the
random utility theory. Finally, the route flow can be calculated as follows:

f rs
km = qrs · Prs

k|m · Pm|rs = qrs ·
exp

(
−θcrs

km
)

∑
k∈Krs

m

exp
(
−θcrs

km
) · exp

(
τ
θ ln ∑

k∈Krs
m

exp
(
−θcrs

km
))

∑
n∈M

exp

(
τ
θ ln ∑

k∈Krs
m

exp
(
−θcrs

km
)) (7)

3.3. Mathematical Programming Formulation with Environmental Constraints

The mathematical programming (MP) formulation for the model is provided as follows:

min Z = Z1 + Z2 + Z3 + Z4

= ∑
m∈M

∑
a∈A

∫ xm
a

0 tm
a (w)dw + 1

θ ∑
m∈M

∑
rs∈RS

∑
k∈Krs

m

f rs
km
(
ln f rs

km − 1
)
+
(

1
τ −

1
θ

)
∑

m∈M
∑

rs∈RS
qrs

m(ln qrs
m − 1)

− ∑
m∈M

∑
rs∈RS

qrs
mψrs

m

(8)

subject to the following:

∑
k∈Krs

m

f rs
km = qrs

m , ∀rs ∈ RS, m ∈ M (9)

∑
m∈M

qrs
m = qrs, ∀rs ∈ RS (10)

gm
a (xm

a ) · xm
a ≤ gm

a , ∀a ∈ A⇒ xa ≤ va(ga), ∀a ∈ A (11)

f rs
km ≥ 0, ∀k ∈ Krs

m , rs ∈ RS, m ∈ M (12)

qrs
m ≥ 0, ∀rs ∈ RS, m ∈ M (13)
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where we get the following:

xm
a = ∑

rs∈RS
∑

k∈Krs
m

f rs
kmδrs

ka, ∀a ∈ A, m ∈ M (14)

where xm
a is the flow on link a of mode m, δrs

ka is equal to 1 if link a is on route k be-
tween O–D pair rs and 0; otherwise, ψrs

m is the exogenous utility of mode m between
O–D pair rs, and other variables are defined above. Note that the dispersion parame-
ter value of route choice (θ) has a larger value than the dispersion parameter of mode
choice (τ), (τ ≤ θ). Equation (8) is the objective function of CMA-EC model, which
consists of four terms. Each term has its own meaning and its contribution to the Karush–
Kuhn–Tucker conditions in deriving the mode choice and route choice. These four
terms are as follows: ∑

m∈M
∑

a∈A

∫ xm
a

0 tm
a (w)dw is the Beckmann’s transformation [52], cor-

responding to the additive route cost; 1
θ ∑

m∈M
∑

rs∈RS
∑

k∈Krs
m

f rs
km
(
ln f rs

km − 1
)

is the well-known

entropy term for the route choice [53], reflecting the stochastic effect of random percep-
tion;

(
1
τ −

1
θ

)
∑

m∈M
∑

rs∈RS
qrs

m(ln qrs
m − 1) represents choice users of the modal split function;

and ∑
m∈M

∑
rs∈RS

qrs
mψrs

m is the attractiveness term incorporated to model the exogenous modal

utility. Equations (9) and (10) are the conservation constraints for the mode-specific O–D
demand and total O–D demand between O–D pair rs, respectively. Equation (11) is the en-
vironmental constraint to restrict the assigned link flows to be less than the environmental
threshold (ga). The constraint can be replaced to xa ≤ va(ga) with a monotonically increas-
ing assumption as shown in Equation (4). Equations (12) and (13) are the non-negativity
constraints on the modal splits and path flows, and Equation (14) is the definitional con-
straint on the mode-specific link flow by summing up all path flows from all O–D pairs
passing through link a.

To show the equivalence between the MP formulation in Equations (8)–(14) and the
CMA-EC model, construct the Lagrangian as follows:

L = Z + ∑
rs∈RS

λrs

(
∑

m∈M
qrs

m − qrs

)
+ ∑

m∈M
∑

rs∈RS
ϕrs

m

(
∑

k∈Krs
m

f rs
km − qrs

m

)
+ ∑

a∈
A

ρa

(
∑

rs∈RS
∑

k∈Krs
m

f rs
kmδrs

ka − va(ga)

)
(15)

where λrs and ϕrs
m denote the dual variables for the flow conservation constraints in

Equations (9) and (10), and ρa is the dual variable for the environmental constraints in
Equation (11). Take the partial derivative of the Lagrangian L with respect to path flow
( f rs

km) and O–D demand (qrs
m), and then we have the following:

∂L
∂ f rs

km
= 0⇒ ∑

a∈A
tm
a (xm

a )δ
rs
ka +

1
θ ln f rs

km + ϕrs
m + ∑

a∈A
ρaδrs

ka = 0⇒ f rs
km = exp

(
−θ

(
crs

km + ∑
a∈A

ρaδrs
ka

))
exp(−θ(ϕrs

m))

⇒ Prs
k|m =

f rs
km

qrs
m

=
exp

(
−θ

(
crs

km+ ∑
a∈A

ρaδrs
ka

))

∑
k∈Krs

m

exp

(
−θ

(
crs

km+ ∑
a∈A

ρaδrs
ka

)) ∗ ∑
a∈A

tm
a (xm

a )δ
rs
ka = crs

km

(16)

∂L
∂qrs

m
= 0⇒ 1

τ ln qrs
m − 1

θ ln qrs
m + λrs − ϕrs

m − ψrs
m = 0⇒ qm

rs = exp
(
−
(

τθ
θ−τ

)
(λrs − ϕrs

m − ψrs
m)
)

⇒ Prs
m = qm

rs
qrs =

exp

(
−τ

(
−ψrs

m− 1
θ ln ∑

k∈Krs
m

exp

(
−θ

(
crs

km+ ∑
a∈A

ρaδrs
ka

))))

∑
n∈M

exp

(
−τ

(
−ψrs

n − 1
θ ln ∑

k∈Krs
n

exp

(
−θ

(
crs

kn+ ∑
a∈A

ρaδrs
ka

)))) (17)

Equations (16) and (17) give the corresponding MNL route choice and mode-choice
probabilities. In other words, the MP formulation in Equations (8)–(14) indeed provides
the logit mode choice and route choice for the CMA-EC model. For the uniqueness of
solutions (e.g., path flows and modal splits), the second-order conditions are performed.
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Differentiating Equations (16) and (17) by another path-flow variable and mode-demand
variable gives the following:

∂2L
∂ f rs

km∂ f od
lc

=


∂

(
crs

km+ ∑
a∈A

ρaδrs
ka

)
∂ f rs

km
+ 1

θ f rs
km

i f f rs
km = f od

lc

0 otherwise

,
∀m ∈ M, c ∈ M, k ∈ Km

rs,
l ∈ Kc

od, rs ∈ RS, od ∈ RS
(18)

∂2L
∂qrs

m∂qod
c

=

{(
1
τ −

1
θ

)
1

qrs
m

i f qrs
m = qod

c

0 otherwise
, ∀m ∈ M, c ∈ M, rs ∈ RS, od ∈ RS (19)

Since the diagonal elements are equal to
∂

(
crs

km+ ∑
a∈A

ρaδrs
ka

)
∂ f rs

km
+ 1

θ f rs
km

and
(

1
τ −

1
θ

)
1

qrs
m

, the

matrix ∇2
f and ∇2

q, respectively, are positive definite. Hence, the objective function (8) is
strictly convex, and the path-flow and mode-demand solutions are unique.

4. Solution Algorithm

In the literature, the penalty method is a well-known algorithm for solving convex
programs with side constraints. However, if the adequate penalty value is not selected,
convergence is not guaranteed. In this paper, an iterative balancing scheme [54] is used.
Basically, an iterative balancing scheme is to adjust the primal variables (i.e., f rs

km) to satisfy
the environmental constraints with the dual variable adjustment related to the constraints.

4.1. Dual Variable Adjustment

In an iteration, the algorithm is iterated with the adjustment equations until the con-
vergence criteria are satisfied. The purpose of the dual variable adjustment is to prevent
the primal variables from violating the constraints. In this section, the adjustment equa-
tions for the O–D demand conservation constraint (i.e., Equation (10)) and environmental
constraint (i.e., Equation (11)) are provided. Based on Equations (16) and (17), it needs to
find an adjustment factor for each dual variable (i.e., πrs for λrs and βa for ρa), such that
the derivatives vanish.

Consider the environmental constraints in Equation (11) and the definitional con-
straints in Equation (14). An adjustment factor (βa) for the dual variable (ρa) is used to
ensure the environmental constraints. The adjustment factor is derived by substituting
Equations (16) and (17) into Equation (11).

∑
rs∈RS

∑
k∈Krs

m

[
exp

(
−θ

(
crs

km +
(

1
τ −

1
θ

)
ln qrs

m + λrs + ∑
a∈A

ρm
a δrs

ka + βa

))]
· δrs

ka = vm
a (gm

a )

⇒ βa = − 1
θ ln
(

vm
a (gm

a )
xa

)
, ∀a ∈ A

(20)

For the demand conservation constraints in Equation (10), an adjustment factor (πrs)
associated with the dual variable (λrs) is created. Likewise, the adjustment factor is derived
by substituting Equations (16) and (17) into Equation (10).

∑
m∈M

[
exp

(
−τ

(
λrs − ψrs

m − 1
θ ln ∑

k∈Krs
m

exp

(
−θ

(
crs

km + ∑
a∈A

ρaδrs
ka

))
+ πrs

))]
= qrs

⇒ πrs = − 1
τ ln

(
qrs

∑
m∈M

qrs
m

)
, ∀rs ∈ RS

(21)

4.2. Solution Procedure

With the adjustment factors in Equations (20) and (21), the section shows the solution
procedure as follows.

Step 0. Initialization:
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Set n = 0,

• Initial primal variables: (f)n and (x)n = 0;
• Initial dual variables: (λ)n and (ρ)n = 0;
• Initial path set: (K)n = ∅;
• Compute: va(ga) with given ga, using Equation (4).

Step 1. Update cost:

(tm
a )

n+1 = tm
a (xm

a )
n + (ρa), crs

km = (tm
a )

n+1δrs
ka

Step 2. Iterative balancing scheme:
2-1. Set i = 0, (ρa)

i = 0 for all links in A and (λrs)i = 0 for all mode.
2-2. Compute initial primal variables (O–D flows, route flows, and link flows).

• (qrs
m)

i = exp

(
−τ

(
(λrs)i − ψrs

m − 1
θ ln ∑

k∈Krs
m

exp

(
−θ

(
crs

km + ∑
a∈A

(ρa)
iδrs

ka

))))
;

•
(

f rs
km
)i
= exp

(
−θ

(
crs

km +
(

1
τ −

1
θ

)
ln(qrs

m)
i + (λrs)i + ∑

a∈A
ρaδrs

ka

))
;

• (xm
a )

i = ∑
rs∈RS

∑
k∈Krs

m

(
f rs
km
)i

δrs
ka.

2-3. Determine adjustment factors:

• βa = − 1
θ ln
(

vm
a (gm

a )
xa

)
and πrs = − 1

τ ln

(
qrs

∑
m∈M

qrs
m

)
.

2-4. Update dual variables.

• (λrs)i+1 = (λrs)i + πrs and (ρa)
m+1 = Max

{
0,(ρa)

m + βa
}

.

2-5. Update primal variables (O–D flows, route flows, and link flows).

• (qrs
m)

i+1 = exp

(
−τ

(
(λrs)i+1 − ψrs

m − 1
θ ln ∑

k∈Krs
m

exp

(
−θ

(
crs

km + ∑
a∈A

(ρa)
i+1δrs

ka

))))
;

•
(

f rs
km
)i+1

= exp

(
−θ

(
crs

km +
(

1
τ −

1
θ

)
ln(qrs

m)
i+1 + (λrs)i+1 + ∑

a∈A
(ρa)

i+1δrs
ka

))
;

• (xm
a )

i+1 = ∑
rs∈RS

∑
k∈Krs

m

(
f rs
km
)i+1

δrs
ka.

2-6. Convergence test:

If max
{∣∣∣(λrs)i+1 − (λrs)i

∣∣∣, ∣∣∣(da)
i+1 − (da)

i
∣∣∣} ≥ η (e.g., an upper limit for detecting

divergence), terminate the iterative balancing scheme and go to Step 3. Otherwise, set
i = i + 1 and go to Step 2-3, until ε ≤ η (e.g., 10-8, a lower limit for stopping criteria).

Step 3. Convergence test:

Compute RMSE =

√
1
|K|‖

~
f

n
− fn‖

2
< ε

If RMSE > ε, set n = n + 1 and go to Step 1; otherwise, terminate.

5. Numerical Results

For the numerical experiments, two networks, which are a small network and a real-
size network, are used to demonstrate the features of the CMA-EC model and the efficiency
of the proposed solution algorithm.

5.1. Small Network

Figure 4 shows the network topology and characteristics of the small network. The
network consists of seven links, five nodes, and two O–D pairs (e.g., O–D pairs (1,4) and
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(1,5)). The standard Bureau of Public Road (BPR) link performance function (alpha = 0.15,
beta = 4.00) for link travel time function is used as follows.

ta = t0
a

(
1 + 0.15

(
va

Ca

)4
)

, ∀a ∈ A (22)
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The dispersion parameter value of route choice (θ) and the dispersion parameter
of mode choice (τ) are assumed to be 0.2 and 0.1, respectively. To simplify the model,
attractiveness (ψrs

m ) of all modes set as 0. To compute emission values, Equations (2) and (3)
for passenger cars are used, and it is assumed that the bus emission is not related to the
restriction of car flows, because the number of bus mode usually operates regardless of the
number of bus passengers.

First, the effect of imposing the environmental constraints on the CMA problem is
shown in Table 1 and Figure 5. Table 1 shows the assigned link flows and total emission
value (i.e., TCO = gm

a (xm
a ) · xm

a ) for a passenger car. To gain an idea of the effect of the
environmental constraints, it first runs the CMA model without the constraints, and then
the environmental constraints are imposed by reducing the emission restriction value from
70 to 20. Table 1 provides a summary of assigned link flows and computed total emission
value accordingly. From the table, we can observe that the emission value on Link 1 is
higher than other links. In addition, TCO values on Link 5, Link 6, and Link 7 have greater
than 30. When the imposed emission value is high (e.g., 70), the link-flow patterns are
similar to link flows resulting from without restriction case, because only Link 1 approaches
to the restricted value. In contrast, the link-flow patterns show more differences when the
emission restricted value is decreased. Specifically, Link 7 and Link 6 are approached to
the restricted values after emission-restricted values 60 and 50 are imposed, respectively.
Using the results from Table 1, Figure 5 presents the trajectories of total emissions (TCO).
When emission restricted values from 70 to 20 are imposed, the TCO pattern is decreased.
However, it can observe that TCO values on Link 6 and Link 7 are increased after restriction
values 70, 60, and 50 are imposed. When the environmental constraint is imposed on
Link 1, the excess flows are diverted to other under-utilized links (e.g., Links 6 and 7) via
routes that bypass Link 1. Hence, the flow and emission values on Link 6 and Link 7 are
increased. However, other links (e.g., Links 2, 3, 4, and 5) flows and emission values are
decreased because these links are directly related to Link 1 in Route 1 and Route 2.
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Table 1. Summary of assigned link flows.

Constraint Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 Link 7

Without constraint
Flow 43.20 23.75 19.45 17.65 25.55 8.00 11.52

TCO 71.18 7.29 11.87 29.01 41.99 38.01 54.76

TCO ≤ 70
Flow 42.50 23.36 19.13 17.37 25.13 8.17 11.76

TCO 70.00 7.16 11.67 28.53 41.30 38.82 55.89

TCO ≤ 60
Flow 36.47 20.05 16.42 14.45 22.02 9.94 12.62

TCO 60.00 6.12 9.99 23.75 36.18 47.23 60.00

TCO ≤ 50
Flow 30.41 16.72 13.69 11.31 19.10 10.52 10.52

TCO 50.00 5.09 8.32 18.59 31.38 50.00 50.00

TCO ≤ 40
Flow 24.34 13.38 10.96 9.23 15.11 8.42 8.42

TCO 40.00 4.07 6.65 15.17 24.82 40.00 40.00

TCO ≤ 30
Flow 18.26 10.04 8.22 7.05 11.21 6.32 6.32

TCO 30.00 3.05 4.99 11.59 18.41 30.00 30.00

TCO ≤ 20
Flow 12.17 6.69 5.48 4.78 7.39 4.21 4.21

TCO 20.00 2.03 3.33 7.86 12.14 20.00 20.00
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Figure 5. Trajectories of total emissions.

Figure 6 investigates the effects of the environmental constraints on modal splits. The
result shows that imposing restricted values 70 and 60 are not sensitive to the modal split
in the network (i.e., 1% and 4% increase in the bus mode choice, respectively). On the other
hand, the modal split is fairly sensitive when restriction values from 50 to 20 are imposed.
When the resection value 50 is imposed, Link 1, Link 6, and Link 7 are approached to the
constrained values, and the excess flows are diverted to bus mode, because there are no
other under-utilized links in the passenger-car links.

From the test network experiment, we can infer that the excess demand (or restricted
demand on vehicles) by the environmental constraints does not change directly to bus
demand, because they will find other under-utilized routes. In addition, even if the
restriction value is linear, mode-choice change follows a nonlinear pattern.
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Figure 6. Effect of environmental restriction on modal splits.

5.2. Winnipeg Network

In this section, numerical experiments, using a real-case study of the Winnipeg net-
work in Canada, are conducted. These experiments are used to examine (a) the convergence
characteristics of the proposed iterative balancing algorithm for solving the CMA-EC, (b)
link-flow changes with different restriction values, and (c) the mode choice and network
total emission change with different restriction values. Similar to the first experiment, the
effect of emission on bus demand is not considered, because the number of buses operates
regardless of the bus demand. The solution procedure is coded in Intel Visual FORTRAN
XE and runs on a 3.60 GHz processor and 64.00 GB of RAM (Santa Clara, CA, USA).

The network, as shown in Figure 7, consists of 154 zones, 2535 links, and 4345 O–D
pairs. The network and demand data were obtained from Emme software [55], and route
sets (i.e., 174,491 routes) of the network were obtained from Bekhor et al. [56].
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Figure 7. Effect of environmental restriction on modal splits.

First, it runs the CMA model, without the environmental constraints to analyze
the current environmental level. Figure 8 shows TCO distribution on all links (i.e.,
1932 link, excluding the centroid connectors). From the figure, it can be observed that
more than 750 links (40.8%) emitted 100 air pollutants (i.e., TCO > 100). In addition, more
than 60 links (3.6%) have a TCO greater than 400.
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Figure 8. Emitted air-pollutant distribution.

With Figure 8, the convergence characteristics of the proposed iterative balancing
algorithm are shown in Figure 9. From the figure, the proposed algorithm can promise
convergence with a Root Mean Square Error (RMSE) of 1 × 10−8. The total computational
effort to reach RMSE of 1 × 10−8 is less than 12 s (e.g., TCO < 200 case). As decreasing the
emission restriction values, computational time grows, because more links are approached
to the restricted values.
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Figure 10 depicts the TCO values pattern, depending on different imposed restriction
values. If no restriction values are applied, it can be observed that several links have
higher TCO values (greater than 1000), while the TCO values are gradually decreased
after imposing the restriction. Specially, the TCO values pattern is clearly different after
imposing 100 values, because passenger-car travelers are diverted to bus mode or other
links having lower emissions in their route choice.
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Figure 11 shows mode choice change and network total emission (NTCO) change as
imposing different restriction values. Based on the figure, we can observe the mode choice
is nonlinearly decreased when the imposed restriction values are linearly decreased. When
the restriction values from 1000 to 600 are imposed, mode choice is not affected significantly,
but after imposing 500 values, the mode-change pattern shows a nonlinearly decreasing
pattern. In terms of network total emission values (NTCO), it also shows a decreasing
pattern with a decrease of the passenger-car demand, and it is affected more after imposing
500 restriction values, as well. However, from the figure, the NTCO value does not show a
linear pattern as the decreasing pattern of passenger-car mode. After imposing 100 values,
the mode choice of the passenger car is decreased by about 18%, compared to no-restriction
case, while the NTCO values are decreased by about 67%, compared to no-restriction case.

From the real network experiment, it demonstrates that the proposed solution al-
gorithm converged in 30 s. It also showed that the effect of larger restricted values is
not significant in an NTCO decrease, but using smaller values has more of an effect (i.e.,
nonlinearly NTCO decrease).
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Figure 11. Mode choice and network total emission change with the environmental restriction values.

6. Conclusions

In this paper, an environmental constrained combined modal split and assignment
(CMA-EC) model is proposed. A logit-based mode-choice and route-choice model was
adopted. Specifically, the iterative balancing algorithm was used for solving CMA, with
considerations of the environmental constraints. Using a small and a real network in the
city of Winnipeg, Canada, we conducted numerical experiments, to examine the efficiency
of the iterative balancing algorithm and the effectiveness of how the environmental con-
straints affect mode choice and route choice in a multi-modal transportation network. The
numerical results revealed that (1) the excess flows are diverted to other under-utilized
routes when the environmental constants are imposed, because using passenger cars still
has better utility than using a transit. When a traveler chooses a transportation mode, they
would consider utilities or benefits (e.g., fare, travel time, and comfortableness). If other
routes (e.g., detoured route) have better utilities, the traveler still chooses the passenger
car in mode choice. (2) The small restriction value has more efficiency in mode change.
When small restriction values are imposed, the utility of the passenger car travelers is de-
creased, and travelers change their choices to transit modes. (3) The network total emission
is reduced in a nonlinear fashion as the number of passenger cars flows. Although the
restriction value is linearly decreased, transit travelers are nonlinearly increased. Hence,
the network emission is also nonlinearly decreased.

Sustainable transportation planning is receiving great attention. The proposed com-
bined modal split and traffic assignment problem with environmental constraints is useful
to determine various environmental protection requirements, such as the environmental
cost charging and inducing demand for transit based on air pollution level.

For future research, it would be of interest to (1) impose area-based environmental
constraints, (2) further expand public mode (e.g., bus, metro, and bicycle), and (3) con-
sider vehicle interactions with asymmetric cost functions for modes (e.g., passenger car
and truck) sharing the same highway network. In addition, the CO emission adopted
in this paper can be extendable to other pollutants. Specially, GHG-related emissions
(e.g., carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and ozone (O3)) can be
explored and combined into the proposed model.
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