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Abstract: Even though the contribution of the aviation sector to the global economy is very notable,
it also has an adverse impact on climate change. Improvements have been made in different areas
(i.e., technology, sustainable aviation fuel, and design) to mitigate these adverse effects. However, the
rate of improvement is small compared to the increase in the demand for air transportation. Hence,
greenhouse gas emissions in the aviation sector are steadily increasing and this trend is expected
to continue unless adequately addressed. In this context, this study examined the following: (i)
the factors that affect the growth of aviation, (ii) trends in greenhouse gas emissions in the sector,
(iii) trends in energy demand, (iv) mitigation pathways of emissions, (v) mitigation challenges
for the International Civil Aviation Organization, (vi) achievements in mitigating emissions, (vii)
barriers against mitigating emissions, and (viii) approaches of overcoming barriers against emissions
mitigation. This study finds that continued research and development efforts targeting aircraft fuel
burn efficiency are crucial in reducing greenhouse gas emissions. Although biofuels are promising for
the reduction of aviation emissions, techniques to reduce NOx emissions could enhance large-scale
deployment. Pragmatic market-based mechanisms, such as the Emissions Trading Scheme (ETS)
and/or carbon tax must be enforced on a global scale to capitalize on a collective stakeholder effort
to curb CO2 emissions. The findings of this study will help in understanding the emissions and
energy consumption scenarios, which will provide a comprehensive package of mitigation pathways
to overcome future emissions reduction challenges in the aviation sector.

Keywords: aviation sector; greenhouse gas emissions; energy consumption; mitigation; sustainable
aviation fuel; ICAO

1. Introduction

Air transportation, providing vital economic benefits through transporting humans
and goods, is an important mode of transportation in the modern era. Air transportation
plays a vital role in the pull effect of service activities and has a long-term relationship with
economic growth [1,2]. According to the Air Transport Action Group (ATAG), the number
of global air travel passengers was 4.5 billion in 2019, and the contribution of the aviation
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sector in the global GDP was USD 691.3 billion [3]. However, in 2020, the aviation industry
observed an overall reduction of around 2.7 billion passengers due to COVID-19, which is
a reduction of around 60% from the 2019 levels. The reduction in international passenger
travel was around 74%, while it was around 50% for domestic passenger travel [4]. The net
financial loss of global commercial airlines in 2020 was USD 118.5 billion [5].

Although COVID-19 has impacted the aviation industry severely in recent days,
in the pre-COVID era, the rapid economic growth coupled with the increased demand
for air transportation has impacted anthropogenic climate change, which has also led
to global warming [6,7]. Increased demand for air transportation due to the growth of
the tourism industry has increased energy consumption and, consequently, resulted in a
higher emission of pollutants [8]. The emission of pollutants from the aviation industry
is a continuous process from the manufacture of aircraft through their landing to takeoff
(LTO) [9].

While the global energy-related CO2 emissions decreased by over 5% between the
first quarter of 2019 and 2020 due to COVID-19 [10], the aviation sector was responsible
for 915 million tonnes of CO2 emissions (Mt CO2) in 2019, which was 2% of the global
human-induced CO2 emissions and 12% of global transport-related CO2 emissions [3].
The United States of America (USA) was the top emitter of GHGs from aviation bunkers
(energy consumption from aircrafts) in the world in 2019 (Figure 1). As of 2019, GHGs
released from aviation bunkers in the USA amounted to 179 MtCO2, which accounts for
19.5% of the world’s emissions of GHGs from aviation bunkers. The top five countries (USA
followed by China, United Kingdom, Japan, and Germany) account for 40% the world’s
total emissions of GHGs from aviation bunkers, estimated at around 363 MtCO2 equivalent
in 2019 (Figure 1) [11]. Considering that the aviation sector is one of the fastest-growing
sources of GHGs emissions, the emissions are expected to increase rapidly in the future.
Hence, strategies for mitigating environmental pollution are critical to the economies, and
during the process of trade and economic integration, the implementation of prudent
energy policies can play a vital role in reducing CO2 emissions [12].
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The concerned organizations are implementing a range of measures to reduce aviation
emissions. The emission of GHGs from the aviation sector has been addressed through
different technical and organizational approaches. In 2010, the International Air Transport
Association (IATA) envisaged low-carbon aviation growth starting in 2020 and a reduction
of 50% in the CO2 emissions by 2050 with respect to the 2005 levels [13]. The International
Civil Aviation Organization (ICAO) required the industrialized countries under the global
climate regulation regime—the Paris Agreement—to reduce emissions from international
transport through the United Nations Framework Convention on Climate Change (UN-
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FCCC) [14]. The Federal Aviation Administration (FAA) has also established different
goals for effective mitigation measures and to reduce GHG emissions, based on the current
scientific advances of the environmental impacts of the aviation industry, namely improved
scientific knowledge. Unfortunately, the lack of synchronization among the policies of
various organizations results in a diminishment of the overall benefits of these measures.
Thus, it is crucial to move towards a more integrated approach to develop both mitigation
and adaptation actions and plans.

Considering the above, this study outlines a roadmap to establish an integrated
approach to mitigate emissions of GHGs from the aviation sector. The paper discusses
estimates of GHG emissions from aviation operations on a global scale and the GHG
mitigation measures implemented by the aviation authorities around the world, explores
the challenges against mitigation, and finally proposes a feasible roadmap to mitigate
GHG emissions. To conclude, the paper sheds light on several crucial issues pertaining to
GHG emissions, mitigation measures, the role of global communities, and initiatives for
achieving emissions reduction targets.

2. Analysis of Aviation Emissions

Aircrafts emit different types of pollutants, including gases and particles, and this
paper discusses the emitted gases contributing to the greenhouse effect. An analysis of the
factors of aviation emissions and an overview of different GHGs from the aviation sector
are provided in the following sub-sections.

2.1. Factors of Aviation Emissions

One of the major factors of increased aviation emissions is the increased demand
for air travel worldwide. In 1960, the total number of passengers who traveled by air
was only 100 million, which increased to 4.5 billion in 2019 [3,15]. This rapid growth of
the aviation sector was due to the increased economic growth both in developing and
developed countries. Given that air travel demand largely depends on the global economic
situation [16], the aviation sector was impacted by global recessions, oil crises and the
COVID-19 coronavirus. It is expected that in the post-COVID-19 era, there will be an
increased demand for air travel again. Thereby, emissions from this sector are expected to
increase in the future.

The increased use of carbon-intensive petroleum fuels such as kerosene, kerosene–
gasoline mixture or aviation gasoline in the aviation industry is another major factor for
aviation emissions. Given that the propulsion system for most aircrafts is gas-turbine
engines, the penetration rate of low-carbon alternative fuels such as biofuels, hydrogen
fuels, solar cells and renewable electro-fuels is negligible [17]. Moreover, the technology
for most of the low-carbon options is under development. For instance, the technology for
electric aircrafts is not mature, and these aircrafts have potential for only short-range flights.
The potential for cryogenic hydrogen use is still in the research and development (R&D)
process. The use of alcohols as an alternative fuel source is limited as they have low energy
density and are incompatible with use in modern gas-turbine engines [17]. Therefore, the
increased use of carbon-intensive fuels is likely to continue and hence emissions seem to
increase without a pause in the near future.

The manufacturers of aircrafts are delivering small efficiency gains compared to the
increasing demand for air travel. Given that the operational lifetime of an aircraft is around
25–30 years and the average age of a fleet is now 11.3 years (it is predicted to be 10.7 years
by 2029), ATAG’s target is to improve fuel efficiency for fleets by only 1.5% per year [3].
Therefore, the opportunity to reduce aviation emissions through improved fuel efficiency
is very limited, and emissions from this sector are likely to increase in the future.

The lack of an efficient carbon price mechanism is another important reason for
burgeoning aviation emissions worldwide. The European Union Emissions Trading Scheme
(EU ETS) used to cover aviation emissions from flights to, from, and within the European
economic area (EEA), but from 2017 onwards, the geographic scope was limited to only
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intra-EEA flights. Scheelhaase et al. [18] note that the emissions reduction potential of
the current EU ETS from the aviation sector is only 4% by 2036 from the present level.
Carbon offsetting and reduction scheme for international aviation (CORSIA) is another
offset scheme that has an emissions reduction potential of 18% by 2039, but this scheme
is expected to start in 2021, and the potential for emissions reduction for that year is only
1.4% [17].

2.2. Emissions from Aircrafts

About 0.8 million cubic meters of oil are being used by the global aviation industry,
resulting in the release of large amounts of CO2 from aircraft engines. Modern aircraft
engines emit 3160 ± 60 g of CO2 due to the combustion of each 1000 g of fuel [6]. While
CO2 plays a substantial role in global warming [19], the other GHGs CO and NOx are also
important constituents of aviation emissions and are associated with the combustion of
conventional as well as alternative jet fuels [20].

NOx emissions from aircraft engines are likely to alter the atmospheric composition
and have impacts on radiative forces [21]. Emissions of NOx generate ozone (O3) (warming)
on a time scale of weeks to months [22,23]. Holmes, Tang and Prather [22] noted that an
increased NOx also depletes methane and causes a reduction in ozone production, but on a
decadal time scale. Therefore, the net radiative forces from NOx emissions vary depending
on the time and location of emissions along with background concentrations, emissions
scenarios, and chemical rates of co-efficients [22].

Besides CO2 and NOx emissions, aircraft engines emit water vapor and particles
including sulfate and soot (black and organic carbon). Cziczo and Froyd [24] claimed
that soot particles do not seem to contribute much to forming natural cirrus. However,
the model of Zhou and Penner [25] predicted that soot particles emitted from aircrafts
have substantial effects on natural cirrus once preconditioned in contrails. The view of
Kärcher [26] is that the prediction of Zhou and Penner [25] partly relies on the assumption
of how ice forms in the background cirrus. Kärcher [27] acknowledged that there are
still challenges in reducing uncertainties related to the effects of particle emissions from
aircrafts due to the limited observational evidence.

With regard to climate impacts, the emissions of water vapor and particles from
aircraft engines produce contrails, which contribute to human-made climate change [7,27].
Contrails can also be formed due to adiabatic cooling near curbed surfaces of an aircraft [28].
According to Schumann [29], contrails can be either short-lived or long-lived, depending
on the conditions of the surrounding environment. Contrails that remain for 10 minutes or
more are considered as long-lived contrails. Based on the shape of contrails, they can be
termed as persistent contrails or contrail cirrus, where persistent contrails mostly retain
their linear shape but contrail cirrus does not [27]. A recent assessment shows that contrail
cirrus has the greatest warming effects (57.4 milliWatts per meter square) followed by CO2
emissions (34.3 milliWatts per meter square) and NOx emissions (17.5 milliWatts per meter
square) [7].

2.3. Oil Demand and Emissions

The aviation sector emits a large amount of GHGs each year. However, the emission
of GHGs depends largely on the type of fuel used [30]. The two most frequently used main
grades of kerosene-type fuels are Jet A-1 and Jet A, while Jet B is another cut kerosene (mixer
of kerosene and gasoline) [31]. Jet A (also known as Synjet) can be used as a substitute
for Jet A-1 and is generally available in North America with a freeze point maximum of
40 ◦C [32]. The distinctive characteristics of kerosene, such as the composition and viscosity
control, have increased its use in the aviation sector.

Petroleum fuels provide about 99% of jet fuel [33], and the aviation sector consumed
around 0.86 million cubic meters of oil equivalent per day (MCMOED) in 2014 [34]. The
countries belonging to the Organization for Economic Co-operation and Development
(OECD) accounted for 3.1 MCMOED, and the demand in developing countries and Eurasia
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was 1.9 MCMOED and 0.3 MCMOED, respectively. According to forecasts, the oil demand
of this sector under the business as usual (BAU) scenario will grow by 3 MCMOED, from
5.4 MCMOED in 2014 to 8.4 MCMOED in 2040 (Figure 2). The projections under the low
aircraft technology scenario place the oil demand at 9.1 MCMOED and 17.4 MCMOED in
2030 and 2050, respectively [35]. The 1.39% fuel efficiency scenario will see oil demand at
7.3 MCMOED in 2030 and 14.2 MCMOED in 2050. If the ICAO’s 2% annual fuel efficiency
aspirational goal is achieved, oil demand is predicted to reach 6.1 MCMOED in 2030. The
oil demand is projected to reach 11 MCMOED in 2050 under this scenario (Figure 2). Based
on the data presented by the International Energy Agency (IEA) for 2015, the global CO2
emissions from aviation bunker fuels are predicted to reach 600 million tonnes of CO2
(MtCO2) in 2020 (Figure 3).
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2.4. National and Regional Mitigation Measures

National policies and measures enacted by individual countries can play a crucial role
in managing and reducing overall emissions from the aviation sector. The government of
the United States, for example, aims to reduce 115 million tons of CO2 (MtCO2) emissions
by 2020 and an additional 60 MtCO2 by 2026 to achieve a low-carbon growth for commercial
aviation in the post-2020 period. Several action plans and programs have been identified
and implemented to support the ICAO’s goal and the national target of emissions reduction
of the United States aviation sector. These plans and programs include research and
development (R&D) efforts to improve aircraft and engine technology; the implementation
of the NextGen program in Houston, Texas, by the FAA to improve airport operational
efficiency; the deployment and commercialization of sustainable aviation fuels (SAFs)
with a maximum of 80% lower lifecycle GHG emissions; the introduction of a cleaner
emissions standard for aircrafts; the development and implementation of the Continuous
Lower Energy, Emissions, and Noise program for commercial aircrafts beginning after
2015; the subsonic fixed-wing program by NASA for improved aerodynamic and structural
efficiency of aircrafts; etc. [36].

The government of Australia has undertaken diverse initiatives focusing on infras-
tructure development, governance, and implementation of legal instruments to contribute
to the ICAO’s aspirational goal of achieving low-carbon growth by 2020. Measures taken
by the Australian airlines to reduce GHG emissions in international aviation include the
following: (i) a 2.5 billion Australian Dollar fleet renewal program by Virgin Australia to
ensure better fuel efficiency; (ii) the replacement of the turbofan engine with more efficient
General Electric Next-Generation turbofan engine by Qantas to save energy consumption
by 20%; (iii) reduction of aircraft weight by removing unnecessary cabin items and introduc-
ing lighter bottles, cutlery, and fittings; (iv) the fuel optimization program by Qantas and
Virgin Australia through the optimization of the flight paths, flight schedules, and aircraft
speed; (v) the R&D initiatives to promote SAFs derived from different biomass types such
as plants, trees, wastes, and other organic matter; (vi) the procurement of 200 million litres
of alternative fuel between 2020 and 2030 by Virgin Australia and Air New Zealand to
foster the development of SAF industries in this region; (vii) the carbon offset scheme by
Qantas and Virgin Australia to offer low-carbon passenger flight services; etc. [37].

The European Union (EU) has implemented a comprehensive set of measures to reduce
GHG emissions from the European aviation sector and guide future aviation growth in
an environmentally sustainable manner. These include the introduction of a new CO2
emissions standard for aircrafts, the establishment of the European Advanced Biofuels
Flightpath to produce 2 million tons of biofuels annually by 2020 for commercial aviation,
the development of the Single European Sky legislative framework to modernize the air
traffic management (ATM) system in Europe, the establishment of the Airport Carbon
Accreditation program at 92 airports of Europe, the deployment of emissions charging
schemes at more than 100 European airports, the incorporation of the European aviation
sector under the European Union Emissions Trading Scheme (ETS) to internalize the
external costs of aviation emissions, etc. [37]. The inclusion of the aviation sector in the
ETS is projected to result in a reduction of 3.8% CO2 emissions by 2020 [38]. The EU also
intends to regulate the capturing of all relevant species (CO2, NOx, H2O, etc.) responsible
for climate change to mitigate the full impact of aviation in the EU ETS [39].

2.5. Achievements in Mitigation

Some of the achievements, measures, and policy interventions that were undertaken
by respective organizations and agencies to reduce GHG emissions are as follows.

The ICAO established a Committee on Aviation Environmental Protection (CAEP),
which aims to limit the exposure of noise, maintain the local air quality, and reduce
GHG emissions [40]. The long-term aspirational goal of the ICAO was to continue the
improvement rate of 2% in global fuel efficiency between the years 2021 and 2050 [41].
In order to achieve those goals, the ICAO took some initiatives such as the development
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of fuel-efficient technologies, the introduction of state-of-the-art engine technologies, the
use of lightweight materials, efficiency in operation through the deployment of modern
infrastructure facilities, the promotion of less carbon-intensive alternative fuels, etc. [41].
Besides the ICAO, the IATA, realizing the importance of mitigating GHG emissions from
air transportation, also adopted a set of targets. These include the following: (i) an annual
average improvement of 1.5% in the fuel efficiency between the year 2009 and 2020, (ii) low-
carbon growth in aviation from the year 2020, and (iii) a 50% reduction in CO2 emissions
from aviation by the year 2050 with respect to the level in 2005 [42].

Recently, new standards for the emission of CO2, NOx, and particulate matters (PM)
were set by the ICAO, and the aircraft are obliged to meet these standards to address issues
associated with local air quality. In 2012, the ICAO developed a CO2 metric system to
measure an aircraft’s fuel-burning performance and quantify CO2 emissions. Measures
that were identified were helpful when inefficient fuel burning was involved, including
the reduction of the weight of aircraft, improvement in aerodynamics, optimization of an
aircraft system, and improvement in engine fuel efficiency. A follow-on review workshop
on efficient fuel-burning techniques was conducted in the following year (i.e., in 2010) to
emphasize the importance of those measures and techniques in reducing GHG emissions
due to fuel consumption [35]. The improvement in the design of engines, such as the use of
three-dimensional compressor blades, was found effective in reducing GHG emissions from
the aviation industry [43]. Improvement in the aerodynamics through the introduction of
non-planar wings, laminar flow wing profiles, and active wings are some of the effective
technical measures that have an impact on the reduction of GHG emissions. The use of
lightweight composite materials to reduce aircraft weight and reconfiguration of the interior
of airplanes is suggested by the CAEP to reduce GHG emissions due to fuel consumption.

Achieving operational efficiency through changes in the operation of an airline or air
traffic control is another measure of reducing GHG emissions from the aviation industry.
According to Poll [16], operational efficiency improvement may not require new technology
and could deliver emission reduction benefits immediately. The selection of the best-suited
aircraft, along with improved load factor, flexible and efficient ATM system, and the
use of prevailing winds could contribute to fuel consumption reduction and thereby
emissions. The ICAO published some guiding materials as a circular in 2004 to minimize
fuel consumption and reduce GHG emissions from aircraft engines. Information on best
practices of ground-level operations and services of aircrafts, auxiliary power units, and
in-flight operations were included in that circular. The CAEP is updating the information
on that circular and developing an operation guideline manual [44]. According to a study
by the ICAO, implementing new communications, surveillance, navigation, and ATM
systems are some of the effective measures for reducing fuel consumption resulting in
GHG emissions. Therefore, the ICAO is placing a high emphasis for states or nations to
introduce those measures. The ICAO is also emphasizing the enablement of direct routes
through ATM. The ICAO member states have also begun implementing the Carbon Offset
and the CORSIA [45]. The IATA is planning to incorporate new fuel-efficient vehicles into
the fleets [46].

In recent times, researchers note that promoting alternative fuels such as biofuels
instead of jet fuels could contribute to aviation emissions reduction [7,27,47]. Biofuels
derived from organic matter and live plants are more compatible with modern jet engines
than fossil fuels. A Boeing 747 flew from London Heathrow to Amsterdam in 2008 with
one of its four engines running on biofuels. A mix of coconut oils and babassu was used to
produce that fuel. A 50:50 blend of conventional kerosene and synthetic jet fuel is another
alternative fuel widely used by the US air force since 2007. As synthetic jet fuel burns
cleaner than conventional jet fuels, this alternative fuel emits less pollutants [48].

The above discussion indicates that a range of measures that can play an important role
in offsetting the effects of emissions of GHGs is available. However, most of these seemingly
successful measures have been implemented focusing exclusively on discrete applications,
and an integrated solution to reduce GHGs emissions has not been implemented.
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3. Integrated Mitigation Pathways in the Aviation Sector

In the following sections, an integrated mitigation approach based on some of the
successful discrete measures, combined with other methods that can pave the way to
sustainable mitigation of GHGs from the aviation sector, is addressed.

3.1. Alternate Fuels and Fuel Switching

The use of alternate fuels in the aviation sector is very important for the future
fueling of aircraft due to two requirements: diminishing the dependence on fossil fuels
and reducing GHG emissions. Researchers in the field of aviation are also trying to
find alternatives to traditional jet fuel [49,50]. Several studies have demonstrated the
advantageous use of biofuels and synthetic fuels in replacing the traditional oil-derivate
jet fuels to reduce the emission of pollutants [51,52]. Among other potential fuels [53],
the effect of applying Fischer-Tropsch (FT) fuel on gaseous and particulate emissions was
also investigated [30]. It was also concluded that the sulfur-less FT fuel with less aromatic
ingredients can minimize the particulate matter and the emissions of their precursors from
jet engines [54].

The aviation sector has committed to converting its fuel supply to alternative fuels [55].
The American Society for Testing Materials has approved three alternative jet fuels for
blending with jet fuel according to their D7566 specification. However, liquid hydrogen, FT
kerosene-type jet fuels, and synthetic bio-based fuels are considered to be the only feasible
options [56]. In particular, liquid hydrogen, which can be produced by the electrolysis of
water using any renewable energy source, can reduce the use of crude oil resources as well
as its consequences of anthropogenic GHG emissions [57]. Ponater, et al. [58] investigated
the climate impact reduction potential of liquid hydrogen and found that switching from
kerosene to liquid hydrogen could reduce radiative forces by 15% to 50% (best estimate
around 30% for a swift transition). In terms of the reduction in surface temperature, their
study estimated between 5% and 15%, and the best estimate is about 10%. The IATA
launched the SAF initiative and expressed the sector’s commitment to low-carbon growth
from 2020, and net emissions reduction to half of 2005 levels by 2050 [59]. SAF generates
about 80% less CO2 over its lifecycle, compared to conventional jet fuel. Thus, sustainable
biofuel can potentially lessen CO2 emissions from the aviation sector by 50% to 80%,
compared to fossil fuels [60].

Currently, biofuel blends are identified to be the most economically viable option.
Within the 2 ◦C scenario, biofuels are projected to displace about 130 Mtoe of conventional
fuels by 2050 [61]. One of the salient features of biomass-derived jet fuels is their blending
capacity with conventional kerosene, ensuring the availability of sufficient quantities of this
biofuel as well as not having to change the vehicles or infrastructure to achieve low GHG
impacts at low costs [62]. Although the IATA aimed to use 10% biofuel as an alternate fuel
in the aviation sector by 2017, the most recent update indicates that it has not been able to
achieve the goal due to the independence of GHG-emitting coal-to-liquids or gas-to-liquids
fuel [62]. Additionally, the aviation industry is expected to supply a substantial amount of
sustainable biofuel in the jet fuel mix by 2020 [60].

Not only have fourth-generation biofuels (FGBs) have shown promising potential to
power aero-gas turbine engines, but their production process is also not in competition with
conventional crops for land use [63]. FGBs are mostly derived from genetically modified
(GM) algae, while third-generation biofuels are sourced from algae. First- and second-
generation biofuels are often produced from oil-based plants and agriculture residues,
respectively [64]. As FGBs are sourced from GM algae and such algae can be cultivated
under harsh climatic conditions (high PH, high light intensities, and high salinity), non-
arable areas, including wastewater, seawater, marginal farmlands, and unproductive
drylands, can be utilized for large scale production of FGBs. This eliminates the concern
about competition with crops for arable lands for producing biofuels [64]. The successful
production of biofuels with low-lifecycle GHG emissions will also decrease the overall
GHG emissions from the aviation sector, although there are still uncertainties [65]. The
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IEA’s Sustainable Development Scenario (SDS) is anticipating that biofuels will supply
nearly 10% of aviation fuel by 2030, and about 20% by 2040 [66].

The ICAO Resolution A38-fi8 includes a strong mandate for the ICAO in the area
of alternate fuels. The Resolution has requested that states to consider, evaluate, and
implement initiatives regarding SAFs for aviation. Some of the examples of successful
implementation of alternate fuels are listed in Table 1 [59].

Table 1. Use of alternate fuels in aviation [59].

Fuel Stock Airline Aircraft Route

Used cooking oil

Jetstar Airways A320 Melbourne–Hobart
KLM Royal Dutch Airlines B737 Amsterdam–Paris
KLM Royal Dutch Airlines B777 Amsterdam–Rio de Janeiro

LAN Airlines A320 Santiago–Concepcion
Qantas Airways A320 Sydney–Adelaide

Thai Airways International B777 Bangkok–Chiang Mai
Thomson Airways B757 Birmingham–Arrecife

Air Canada A319 Toronto Pearson–Mexico City
Air France A321 Toulouse–Paris

Alaska Airlines B737 Seattle–Washington
Alaska Airlines Q400 Seattle–Portland

Camelina

Iberia A320 Madrid–Barcelona
Porter Airlines Q400 Toronto–Ottawa
Porter Airlines Q400 Montreal–Toronto

Aeroméxico B737 Mexico City–San Jose

Jatropha
Finnair A319 Amsterdam–Helsinki
Interjet A320 Mexico City–Tuxtla Gutierrez

Aeroméxico B777 Mexico City–Madrid

Jatropha, camelina, and used
cooking oil

Aeroméxico B777 Mexico City–São Paulo
Lufthansa A321 Hamburg–Frankfurt
Lufthansa B747 Frankfurt–Washington

However, the use of alternate fuels poses many challenges, including the uncertainty
about the availability of sufficient quantities of the alternate fuel, or the extent of GHG
reduction. Hence, these fuels are being scrutinized as a substitute [67,68].

3.2. Fuel Cells

Hydrogen has been proposed as an alternate fuel for future aircraft because hydrogen-
fueled engines emit zero CO2 at the point of use, and have also substantially reduced
NOx emissions and minimized the emissions of PM [69]. However, the use of hydrogen
has to be evaluated thoroughly for the current aircraft platform due to uncertainties over
whether radiative forcing will increase [70]. In 2008, Airbus, German Aerospace Center
(DLR), and Michelin have studied the use of a Multifunctional Fuel Cell (MFFC) system
and concluded that the use of a fuel cell engine can improve efficiencies over fossil fuels
up to three times, with water vapor as the only emission. Even though hydrogen would
require pressurized cryogenic tanks with onboard storage that would add about 10% to
the weight of the aircraft [71], this approach will improve the overall energy efficiency by
minimizing the total gross take-off weight by approximately 20% [72]. Furthermore, these
hydrogen-fueled and electric engines are potential candidates for fueling short-distance
flights, such as domestic flights [61]. However, fuel-cell aircraft would be economically
feasible only when the price of hydrogen fuel is highly competitive against conventional
fuels such as kerosene [73].

3.3. Solar Power

Even though solar energy is a highly promising renewable source of environmentally
friendly energy, its use on aircraft has not been promoted due to limitations pertaining to
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its generation and storage procedures [74]. The Swiss Solar Impulse team, in collaboration
with several organizations, has developed Solar Impulse, which is a long-range solar-
powered aircraft with day and night flying capability. In March 2015, Solar Impulse 2,
a solar-powered airplane with 17,000 solar cells on its wings, began a circumnavigation
journey around-the-world aimed at showcasing the potential of renewable energy and
spent 23 days in the air without using fossil fuel. Although solar energy can be used as a
source of a zero-emission driving force for the aviation industry, so far, the feasibility has
been demonstrated only for small aircraft, and more research is underway to determine
the feasibility of using it for the larger commercial airliners. Currently, solar energy can
provide the required electrical power to operate different services, including loading and
unloading, internal heating, ventilation, air conditioning of aircraft obtained through the
auxiliary power unit (APU), or receiving power and pre-conditioned air either from a
ground power unit or directly from the gate. Research is currently underway to find
novel ways of harvesting and storing solar power as well as reducing the cost of operating
solar-powered aircrafts [75]. The use of solar energy can save an average of 5.6 kg of CO2
by replacing the APU for a parked aircraft [35].

3.4. Efficiency Measures

Improved fuel efficiency and non-engine-based efficiency improvement are the major
contributors to reducing emissions in the aviation industry. The deployment of fuel-efficient
next-generation aircrafts, improved ATM, re-engining, and technically improved flight pat-
terns represent effective efficiency improvement measures [61]. Operational measures such
as improved flight scheduling, aircraft-path assignment, and gate assignments can reduce
emissions by 11% and improve passenger service level by 31% from the BAU levels [76].
Fuel efficiency in the aviation sector has been improved over the years due to the advent of
innovative aircraft designs. According to Boeing, in 2017, fuel accounted for 20% to 30%
of the total operating cost of single-aisle and wide-body airplanes. According to Boeing,
29,500 airplanes are expected to be replaced by new ones between 2017 and 2036 [77]. The
ICAO’s projections for oil demand in international aviation operations predict a decline
in future demand (Table 2). The aspirational 2% annual fuel efficiency scenario offers the
highest reductions, with approximately 10 MCMOED reductions expected in 2050.

Table 2. Reduction in oil demand in international aviation bunkers (MCMOED) [35].

Year Low Aircraft
Technology

1.39% Per Year Fuel
Efficiency Goal

2% Per Year Fuel
Efficiency Goal

2020 0 0 1.2
2030 0.2 2 3.2
2040 0.7 3.2 4.9
2050 3.4 6.6 9.8

A change in the global demand for oil is foreseen because of the various mitigation
measures that have been already implemented and those measures that are intended to
be implemented but have yet to be fully defined. The initiatives of the introduction of
improved deployment of low-carbon fuels led the IATA to achieve the target of reducing
emissions from aviation [59]. The reduction in energy consumption in the aviation sector
has been truly impressive: energy consumption per passenger mile in 1970 was three
times higher than the corresponding value today [78]. Researchers from the Massachusetts
Institute of Technology (MIT) have determined that the combustion of fuel per unit of
the thrust of a new aircraft can be reduced from 15% to 25% by 2025 [79]. The European
Commission’s Advisory Council on aeronautics research in Europe intends to minimize
fuel usage by 50% by 2020 [80].
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3.5. Market-Based Policy

In 2010, different states joined the 37th ICAO assembly and agreed to initiate a cost-
effective and coordinated skeleton of market-based measures (MBMs) around the world,
avoiding any hindrance to the efficiency of international air transportation. Assembly
Resolution A35-5 has also encouraged the study of MBMs. In 2016, the ICAO introduced
a global MBM scheme for international aviation. This scheme is expected to play a com-
plementary role as a part of the basket of measures to fill the emissions gap and stabilize
the net CO2 emissions or achieve a low-carbon growth of international aviation by 2020.
The Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA) would
be the first global MBM scheme for the entire sector [45]. Carbon offsetting is a scheme
for airline passengers and corporate customers to reduce their proportion of an aircraft’s
CO2 emissions on a particular journey by investing in carbon reduction projects [81]. Over
30 IATA-member airlines have introduced an offset program either integrated into their
web sales engines or to a third-party offset provider [82]. The CORSIA and the EU ETS
operating in parallel would ensure that international flights, as well as flights within the
EU, are subject to CO2 reduction schemes [18]. Under the carbon allowance allocation
scheme, airlines can achieve a reduction in emissions of about 20% [83]. ICAO estimates an
offset target of about 2.5 billion tonnes of CO2 between 2021 and 2035 [84]. The expected
mitigation due to the CORSIA scheme is plotted in Figure 4.
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3.6. Improved Intermodal Transportation Planning

The emissions resulting from aviation can be reduced by shifting the demand to other
modes of transportation with lower emissions. In the sense of energy and total emission,
marine transportation outperforms aviation, and it is expected that a flourishing marine
transportation sector can reduce short-term emissions within one or two decades [85].
As air freight is approximately 20 times more CO2-intensive than marine-based shipping,
shifting to marine-based shipping can substantially reduce CO2 emissions. Another feasible
solution to reduce GHG emissions is to reduce the demand for short-haul air travel by
shifting to high-speed rail. However, the growth of individual income may lead to a modal
shift from land-based and sea-based transportation to aviation [86], which can be observed
according to the trends in most of the member nations of the OECD [87].
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3.7. Fleet Modernization and Operational Approach

New aircraft with improved airframes and efficient engine technologies are effective
in the reduction of GHG emissions in this sector [88]. Aircrafts with hybrid power sys-
tems (i.e., battery-conventional fuel) have also exhibited promising potential in reducing
emissions in the surroundings of airports. Furthermore, modeling results suggest greater
fuel savings and potential for reduced emissions by hybrid aircrafts over the existing
fleet [89]. Dahlmann et al. [90] have emphasized that replacing the A330-200 fleet with
redesigned aircrafts could decrease the climate change impact potential of the existing
fleet by 32% without additional operating costs. Besides developing new aircraft, the new
geared turbofan engines can be retrofitted to old aircraft to reduce fuel consumption and
emissions. The total number of A320 aircraft that are currently in operation is around
7000 [91]. Therefore, the re-engining program could contribute to fuel and emissions reduc-
tion [92]. Additionally, modernization of the fleet by retrofitting fuel-efficient airframes and
modern blended winglets on existing aircraft have been found to be effective in fuel and
emissions reduction [93]. The angled extensions installed at the wingtips of an aircraft are
known as blended winglets, which reduce airflow drag and thereby improve fuel efficiency
and reduce GHG emissions. Although the installation of blended winglets increases the air-
craft’s structural weight, it improves aerodynamics and reduces net fuel consumption. For
instance, blended winglets help the B737-800 aircrafts to save fuel consumption between
2% and 4%, depending on their stage length [77]. Similarly, blended winglets (which are
often known as “Sharklets” for Airbus) reduce fuel consumption of A320ceo by 1% and
3.5% for the stage lengths of 1000 km and 6500 km, respectively [94].

New aircraft with reduced weight can also reduce fuel consumption and thereby GHG
emissions (Table 3). Previous studies have revealed that aircraft with improved body shape
and tail-less design reduce aircraft weights and improve aerodynamics, which increases
the fuel efficiency and reduces GHG emissions [95]. Aircraft weight can also be reduced
by introducing different light-weighting components, such as lightweight seats, trolleys,
paints, and entertainment materials in the cabin.

Table 3. Expected reduction in CO2 due to operational changes [96].

Measure Marginal Abatement Costs in
EUR/tCO2 by the Year 2020

Possible Abated CO2 Emissions in Mto
by the Year 2020

New aircraft: early retirement of aircraft 1556.8 12.2
Rfit: Engine replacement 964.3 0.5
Refit: Engine upgrades 789.4 0.1

New aircraft: light weighting 415.9 6.6
Refit: winglets 203.8 1.3

Current fleet: light weighting 81.1 1.8
Polishing instead of painting 19.8 0.2
Taxi-in/out: Ground towing 405 0.2

Reduction of Auxiliary Power Unit used 223.7 0.9
Taxi-in/out: Single Engine Taxi 162.4 0.7

ATM improvement: SESAR system 109.2 21.9
Reduction of contingency fuel −5.9 1.9

Cyclic engine Wash −18.4 0.8
Improve load factor −105.6 7.3

3.8. Integrated Mitigation Pathways

Although the aviation industry set an aspirational target of reducing emissions to 50%
from the 2005 level by 2050, global emissions from this sector have been increasing over the
past two decades [97]. Between 1990 and 2014, global aviation emissions increased at an
annual average rate of 2.6% [98]. Under the BAU scenario, emissions from this sector may
increase to 2019 MtCO2e. Therefore, a future roadmap to reduce emissions from this sector
is crucial to achieve the aspirational emissions reduction target. The emissions reduction
potential of the aviation sector in 2030 is estimated to be 0.37 GtCO2e/year (range 0.32 to
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0.42 GtCO2e/year) under the current policy scenario, which is around 18% of the 2030′s
BAU emissions level [99,100].

The proposed roadmap for achieving 2050 mitigation targets for the aviation sector is
listed in Table 4 and graphically presented in Figure 5. In order to develop the mitigation
roadmap, firstly, all possible emissions reduction options are identified based on studying
past literature (see Table 4). Then, all mitigation options are categorized under five broad
mitigation pathways. While deciding on the share of emissions reduction for each category,
relevant past literature is thoroughly examined [101,102], and the feasibility of each mitiga-
tion pathway is considered. Finally, the costs and benefits for each mitigation pathway are
discussed. The details of each mitigation pathway are as follows.

The role of Power to Liquid (PtL) in achieving future emissions reduction targets is
crucial as about 66.6% of the emissions reduction target will be achieved through PtL. An
example of PtL could be drop-in electrofuels, where hydrogen (produced from electrolysis)
will be combined with CO2 (captured from the atmosphere) to produce a drop-in electrofuel
or hydrocarbon fuel (Transportation and Environment) [103]. One of the advantages of PtL
is that it requires minimal or no modifications to existing aircrafts, engines, and ground
refueling infrastructure. Thus, the emissions reduction through PtL is expected to be
moderate during its transition period, i.e., 2015–2025. However, increasing uptake of PtL
will be observed between 2026 and 2050. The cost of reducing emissions through PtL
is USD 120 per tonne of CO2 [103]. Given that the cost for PtL to reduce emissions is
much lower than the social cost of carbon for 2050 (i.e., USD 250) [104] and PtL adapts
with existing aircraft engines, the proposed road map presented in Figure 5 considers
reducing over 1000 MtCO2 by 2050 through using this mitigation pathway. Therefore, the
estimated cost for this pathway is likely to be USD 120 billion. However, it is important
to note that the price of PtL varies considerably based on the types of fuel used (gasoline,
diesel, kerosene), the price of fuels, the process used (hydrogenation, co-electrolysis), the
geographic location, the size and efficiency of aircrafts, etc.

The contribution of biofuels in the 2050 mitigation pathway is considered to be about
11%. This means around 165 MtCO2 of emissions will be reduced by increasing the uptake
of biofuels in the aviation industry. Wastes could be a major source of biofuels [105]
along with other non-crop options such as third-generation biofuels (from algae) or fourth-
generation biofuels (from genetically modified algae) [64]. In terms of the cost of reducing
emissions through biofuels, Hong, et al. [106] predicted that the cost of emissions reduction
for 2050 through biofuels is around USD 300 per tonne of CO2 emissions. It is important
to note that the price of biofuel is assumed to be twice of the jet kerosene, while the price
of biofuels could vary with the price of raw materials (algae, wastes, crops), geographical
location, labor and land costs, agricultural subsidies, and oil prices. Given that 165 MtCO2
of emissions are expected to be reduced through biofuels, the total costs of reduction for
2050 would be around USD 50 billion.

In the mitigation pathway, it is assumed that 12% of the total emissions reduction
(i.e., 180 MtCO2 of emissions) would be possible by putting a high price on carbon. The
social cost of carbon for 2050 is used to determine the price of carbon [107]. The estimate
of Nordhaus [108] for the social cost of carbon for 2050 was USD 135 per tonne of CO2
emissions, while IEA [109] estimated it to be around USD 250 per tonne of CO2 emissions.
Therefore, USD 190 per tonne of CO2 emissions is considered as the social cost of carbon
for 2050 for this study. The cost of reducing 180 MtCO2 is therefore USD 34 billion.

Generation II (Gen II) aircrafts and fleet efficiency are the other two mitigation path-
ways that are considered in this study. Generation II aircrafts are still in the development
phase and require evolutionary technologies in the area of aerodynamics, propulsions,
aircraft equipment systems, structures, and materials to deliver emissions reduction bene-
fits [101]. The large-scale deployment of Gen II aircrafts is expected to be after 2040. These
next-generation aircrafts are assumed to be 30% more fuel-efficient compared to present
aircrafts, while the target for annual fuel efficiency improvement is 1.5%. The mitigation
roadmap considers that Gen II aircrafts will deliver 4.2% emissions reduction benefits
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(around 63 MtCO2), while annual targeted fleet efficiency will deliver 6.3% emissions
reduction benefits (95 MtCO2). Kharina, et al. [110] found in their research that the financial
benefits of purchasing a modern aircraft are 3 times its costs over a 17-year ownership
period. Benefits outweigh the costs through fuel savings and lower maintenance require-
ments. They note that US airlines could save 200 million tonnes of oil equivalent (Mtoe) by
a 19% fleet fuel efficiency, which could lower the ticket price for short-haul by up to USD
20 and USD 105 for international long-haul flights. The emissions reduction benefits could
be around 630 MtCO2.
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Table 4. Roadmap for achieving 2050 emissions reduction targets in the aviation sector (adapted from Transportation and
Environment) [102].

Measures Policy Assumptions Impact by 2050

Fleet efficiency

Improve fleet efficiency by
0.5% per year on top of the

current fleet fuel efficiency of
1% per year

There will be no rebound effect (i.e.,
fuel efficiency might reduce ticket

prices and lead passengers to
travel more)

Around 6.3% of the 2050
emissions reduction target is

expected to be achieved
(Figure 6).

Gen II aircrafts from
2040

By 2050, 1% of air travel
demand will be met through

Gen II aircrafts

Gen II aircrafts are expected to be in
operation on a large scale from 2040

and assumed to be 30% more efficient
than conventional aircrafts.

It is expected to contribute to
achieving 4.2% of the 2050
emissions reduction target.

Carbon price
Introduction of a high carbon

price equivalent to USD
190/tCO2 for 2050

The price elasticity of demand for fuel
is adjusted by income elasticities and

assumed to be −0.48. It indicates that a
10% increase in price will reduce

demand by 4.8%.

Around 12% of the 2050
emissions reduction target is

expected to be achieved.

Biofuels uptake
Increase the share of biofuels
in the aviation energy mix to

11.4% by 2050

Biofuels will be produced from general
wastes and residues, and not

from crops.

It is expected to contribute to
achieving 11% of the 2050

emissions reduction target.

Renewable power to
liquid (PtL)

Increase the share of PtL in the
aviation energy mix to 44%

by 2050

The primary source for PtL will be
renewables and the PtL is expected to

be 66% more efficient than regular
aviation fuels.

It might help to achieve 66.5%
of the required emissions
reduction target by 2050.

Mitigation pathways presented in Figure 6 have some advantages as well as challenges.
For instance, biofuels have some emissions reduction potential, and many airline companies
have already started using them as alternative fuels, but there are limited arable lands
for producing biofuels. In addition, land-based biofuels production has impacts on food
security and carbon sequestration. Putting a price on carbon is another option to reduce
emissions [107], and aviation emissions in Europe are covered by European Emissions
Trading Scheme (EU ETS). Although EU ETS has been contributing to aviation emissions
reduction, the amount of emissions reduction so far has been very low. The oversupply of
emissions permits resulted in a poor price signal to reduce a large amount of emissions from
the sector. Among various mitigation pathways, power-to-liquid (PtL) from renewable
sources has high emissions reduction potential [111]. However, like biofuels and jet fuel,
PtL produces water vapor, and the climate impacts of water vapor and contrail changes are
still uncertain and under investigation [58]. In addition, this type of electrofuel is currently
expensive and needs policy support for large-scale production and use. Carbon pricing (an
ETS or a carbon tax) or blending mandates are some of the key policy instruments that can
help promote PtL [111]. Carbon pricing instruments are also found effective to promote
biofuels [112]. Therefore, instead of looking into various mitigation measures individually,
it is imperative to consider them as a package policy [113].
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4. The Feasibility of Proposed Mitigation Pathways

This section presents the barriers of various mitigation options and discusses chal-
lenges for ICAO and possible solutions.

4.1. Barriers to Mitigation Options

The assessment of cost-effectiveness in reducing GHG emissions from air transporta-
tion shows that a high cost is involved in reducing GHG emissions in this sector. The high
demand for air transportation for passenger travel and goods transport, low fuel price
elasticity, and dependency on carbon-intense fossil fuels are some of the major challenges in
reducing GHG emissions in the aviation industry [114]. Moreover, the lack of improvement
in marginal fuel efficiency is expected to contribute to future GHG emissions in the aviation
sector. Emissions trading schemes may lack stringent measures to encourage airlines to
improve their fuel efficiency. For example, in the EU emissions trading scheme, changing
the carbon prices from 10 Euros to 30 Euros was found to have a less profound effect on
the efficiency of reduction of emissions by most airlines [115]. Other challenges are the
over-allocation of emissions allowances causing price drops as well as the potential for
airlines to pass the costs to customers [116].

The growth in air transportation across the world is one of the barriers to reducing
GHG emissions from this sector. Over the last 20 years, the annual average increase in
air transportation activity in North America and Europe was 5.7% and 5%, respectively.
Likewise, the traffic level of the Asia-Pacific region exhibited rapid growth of 8.8% annually,
while an annual average growth rate of 13% was observed in the Middle East [43]. The
growing air transportation activity is anticipated to increase energy demand, though low
carbon fuels are expected to reduce the aviation carbon footprint. The increasing air
transportation and the accompanying surge in fuel demand are likely to offset emission
reductions realized from the implementation of national standards and technological
improvements [117].

The time constraints to develop and introduce new technologically advanced airplanes
into fleets is yet another challenge facing the reduction of GHG emissions. As the life
expectancy of an aircraft is very high and this industry is a capital-intensive industry,
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the rate of adoption of new technology in aircrafts to mitigate GHG emissions is very
small [118].

The competitiveness of SAFs must be equal to or above the conventional sources to
spur its widespread adoption by the aviation industry. Unfortunately, there is a sheer
lack of governmental support to introduce ample quantities of affordable SAFs to the
market. Another intense argument often leveled against the introduction of SAFs is that the
production of biofuels from plants, timbers, food, agricultural wastes, sugars, oils, starches,
fats, or other types of biomass can affect the environment negatively due to deforestation.
The utilization of crops to produce biofuels for the growing aviation industry will also
require the monoculture of crops in large areas. A study has shown that the human food
chain may be affected if large-scale fertile lands are used for cultivating plants to produce
biofuel [119]. Moreover, new land areas have to be cleared for the production of biofuels
and a large amount of water, fertilizer, and manpower will be required to meet the large-
scale demand. Clearing forests for growing plants to produce biofuels may also destroy
the natural CO2 sequestering process. Biofuels may produce substantial amounts of NOx
during combustion [20]. The emission of CO and NOx from biofuels (fuel mixed with
Jatropha Methyl Ester) has been shown to be similar to the emissions from conventional
Jet-A fuels [120]. Another study has provided further evidence to indicate that higher
NOx emissions are produced from the combustion of biofuels [121]. This could raise great
concerns for widespread deployment of biofuels given that NOx has a profound influence
on the formation of tropospheric ozone, which is an essential GHG. However, a recent
study shows that NOx emissions from biodiesel engines can be reduced by 37% to 50% by
adopting water injection and emulsification technologies [122].

Additionally, the benefits of the reduction of emissions may not be justified by the
energy efficiency of the production processes of all alternate biofuels [123]. Furthermore,
on the supply side, there is growing skepticism on biofuel price volatility and the capability
of current production methods of producing one or two biofuels to satisfy the increasing
demand for biofuel [124,125]. Moreover, presenting biofuels to overcome the increasing
GHG emissions in the aviation industry is complicated by societal perceptions of the
sustainability of biofuels and the lack of policies and material support for affordable,
sustainable, large-scale supply of biofuel [126–128]. Large-scale deployment of SAFs
requires investment in new production facilities, an appreciable reduction in production
costs, and substantial investments in ASTM certification [129]. Low carbon innovations
in general require profound governmental policy support to be effective in reducing the
global emissions gap [100]. In addition, investor uncertainty, coupled with poor policy
awareness, militate against progress and large-scale production of biojet fuel [130].

Climate financing to address climate change in the medium- and long-term is very
inadequate. A study by UNFCCC shows available funds currently will be insufficient to
implement required future adaptation and mitigation measures of climate change. The
amount of funds that the developing countries are receiving currently to implement climate
change mitigation and adaptation measures is only 20% to 25% of the required amount.
Though some states and nations have their own financial support to combat climate change,
many developing nations do not have the required resources. Nonetheless, developing
nations are expected to contribute to meeting about 68% of the total global emission
reduction target by 2030, while the contributions of the developed nations are expected to
be 32% [35].

4.2. Challenges for the ICAO

A critical examination reveals that the ICAO standards and recommended practices
(SARP) provisions are inadequate for addressing reductions in aviation-related emissions
because the SARP is mostly concerned with engine certification rather than the whole
aircraft [52]. Fuel efficient engine and aircraft design are essential and need to be considered
in tandem to effectively control emissions [52]. Evidence shows that the ICAO and its
member states have not implemented the introductory mandatory policy interventions
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to stabilize or reduce GHG emissions from the aviation sector. For example, the first
implementation phase, 2021–2026, of CORSIA is considered voluntary [131]. In addition,
this organization and its member states have interrupted most of the conceivable policy
measures for GHG emission reduction. They prefer aspirational goals for emissions
reduction targets rather than binding mitigation measures and did not set a mitigation
target before 2020 [132]. Moreover, to date, there is no definite scheme for the distribution
of offset responsibilities among participating airlines [133]. Notable advancements were
not achieved in the production and use of alternative fuels, and measures that could affect
the growth of the aviation industry were avoided.

Under the Chicago Convention and the UNFCCC, the ICAO has some oversight
powers over aviation emissions, yet lacks exclusive stewardship, leaving states free to work
with or without the Organization to develop an emission reduction scheme [134]. A typical
example is the EU ETS initiative [116]. Thus, the application of the Chicago Convention
and the UNFCCC either enables or disables any state action to reduce aviation-related
emissions. This indicates that the ICAO’s explicit authority to regulate aviation pollution
may be characterized as weak or nonexistent. For instance, Annex 16 to the Chicago
Convention outlines limited standards for aircraft engines with respect to the discharges
of hydrocarbons, carbon monoxide, and nitrogen oxides, while excluding CO2, which
profoundly contributes to global warming. Furthermore, states failing to comply with
any SARP provisions are only expected to notify the ICAO, but are not penalized for such
failures [134].

Although the ICAO organizes triennial assemblies to analyze the sector’s role in
climate change, the progress towards emission reduction initiatives is very slow. This
necessitates the EU’s unilateral adoption of the EU ETS, a variant of CORSIA to reduce
emissions [135,136]. Political disagreement over reduction initiatives between developed
and developing nations is one of the major causes behind this scenario. Even though some
developed countries are in favor of introducing ambitious emission reduction initiatives,
most fast-growing developing nations are concerned with the implications of such initia-
tives. The UNFCCC’s principle of common but differentiated responsibilities (CBDR) often
insists that developing nations rule out specific obligations proposed by the ICAO since
they believe that such targets might constrain their growth [132].

The only action proposed by the ICAO in 23 years after the introduction of the Kyoto
Protocol in 1997 is the target of low-carbon growth from 2020, i.e., to offset GHG emissions
above the level of 2020. A study on a sample of twenty-eight airlines suggests that airlines
may not be able to meet the target set under the low-carbon growth mechanism due to the
nature of emissions limit set by ICAO [137]. Even this emission reduction concept of the
ICAO is often highly criticized, as it allows GHG emissions for the sake of growth initiatives
and then sets the target to offset emission at a certain point. As the ICAO is obliged by
Paris Agreement to limit and reduce GHG emissions from aviation and offsetting does not
limit or reduce emissions, the target of carbon offsetting is often treated as a questionable
action [132].

Despite MBMs’ potential as effective tools for the reduction of GHG emissions from
aviation, the ICAO has been slow in devising an appropriate MBM. In 2004, the ICAO
first endorsed the trade of emissions in existing emission trading schemes for aviation.
However, the insistence of mutual agreement on the proposed MBM methodologies by
Canada, the USA, and Mexico has delayed the process. Then, at the ICAO’s 38th session
in 2013, the member states of the ICAO were again unsuccessful in coming up with a
market-based proposal for reducing emissions from the aviation sector. However, in this
session, the member states of the ICAO agreed to come up with their proposal for a global
MBM in the 2016 assembly. The 39th assembly of the ICAO was held in 2016 with the
goal that the member states finalize the global market-based scheme and thus enable the
aviation sector to achieve low-carbon growth from 2020 [138], yet progress on it is not
equal in all member states. MBMs are generally not immune to carbon leakage; in this
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regard, airlines’ behavior holds the potential to result in a substantial increase in emissions
outside any given policy scope [139].

Ensuring an annual improvement in fuel efficiency by 2% is another aspirational
target set by the ICAO in response to global climate change. Between the years 1960 and
2008, the aviation sector experienced an annual average fuel efficiency of 1.5% due to the
incorporation of new fleets in the industry [132]. A recent study further suggests that US
air-carriers met IATA’s 1.5% annual fuel efficiency improvements target between 2010 and
2018 [140]. However, the improvement in the overall fuel efficiency of the entire global fleet
has remained constant since 2000. Studies show that achieving fuel efficiency is a measure
of performance improvement and not a measure of emission reduction. Therefore, this
aspiration target of an annual 2% improvement in fuel efficiency may not make a difference
in terms of global emissions reduction. Additionally, the ICAO agreed not to impose
any obligations on its member countries to ensure fuel efficiency. Hence, achieving such
unenforceable goals of efficiency improvement is mostly questioned by all involved [132].

New and updated emission standards for aircraft engines are another effective tool
of GHG emissions reduction in the aviation industry. However, even a couple of decades
after the introduction of the Kyoto Protocol in 1997, the ICAO has failed to establish new
standards for the emissions of CO2 and particulate matter (PM) by aircrafts. In 2001, an
attempt made by the ICAO to establish GHG emissions standards was ruled out by the
member states of the ICAO at that time. Later in 2013, the member states of the ICAO again
failed to reach a consensus regarding global standards for aircraft engine emissions. The
only emissions standard that has been established so far is the emissions standard for NOx.
However, other emissions standards such as the emissions standard for CO2 and PM were
expected to be established at the 39th session of the ICAO in 2016 [138].

The development and deployment of biofuels for the aviation industry is another
challenge for the ICAO and its member states. The sustainability of biofuels is often
questioned by researchers, as there are environmental, financial, and regulatory issues
associated with it. Although the aviation industry is trying to put its efforts into the
production of second- and third-generation biofuels, these activities might cause land use
change and will not reduce emissions from this sector.

The standards set by the ICAO are supposed to be legally binding, as the member
states of the ICAO are expected to adopt them as national laws. However, standards
associated with climate change are seldom incorporated in the national laws of the member
states, and they are often considered as guidance and resolutions, which are not legally
binding on the member states. As the Kyoto Protocol or the Paris Agreement did not make
individual countries responsible for their international aviation emissions and made the
ICAO responsible for their emissions, achieving mutual agreement among member states
regarding climate change policy issues and guidance has now become most challenging
for the ICAO. Considering this fact, the ICAO formed the GIACC (Group on International
Aviation Climate Change), a group of 15 experts from each region, to develop non-binding
aspirational goals that member states may adopt [132]. On top of this is the fact that
progress in meeting the ICAO resolution standards for emissions reduction is not always
uniform across the member states. For example, as of 2016, 46.8% of the 188 ICAO members
met the 2014 Performance-Based Navigation (PNB) resolution target, while only 35.1% met
the full 2016 target [141].

4.3. Approach to Overcome Mitigation Barriers

Financing for the mitigation of climate change, including adopting comprehensive
GHG mitigation measures in their aviation industries, is one of the biggest challenges
that most countries are facing. The situation in developing countries is worse than that in
developed countries. There are several mechanisms for financing climate change mitigation
measures, such as the Global Environment Facility, Special Climate Change Fund, Least
Developed Countries Fund, Clean Development Mechanisms, Climate Investment Fund,
and Community Development Carbon Fund. However, the international aviation industry
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does not have any access to those funds [35]. If these funds coordinate with the international
aviation industry to access these financial instruments and benefit from some of the climate
funds, the aviation industry can implement their climate change programs and actions.
Most importantly, ensuring adequate support for developing countries, not only in terms
of financial resources but also in terms of capacity building and technology transfer, is
important.

An appropriate market-based measure is another instrument for financing climate
change interventions in the aviation industry. The necessity of a single global MBM is
recognized by all stakeholders in the aviation industry, and some general principles were
established in this regard. These principles include preserving fair competition in the
market; ensuring uniformity in the standards, procedures, and regulations; taking account
of all types and levels of operator activities; and avoiding duplication of existing measures.
There are three possible policy mechanisms for global MBMs that the ICAO has proposed
to adopt. These are (i) carbon offsetting, (ii) carbon offsetting with a revenue-generating
component, and (iii) a global emission trading system (ETS). Among the three possible
MBMs, carbon offsetting is often regarded as the most cost-effective, quickest, and easiest
to implement. The key criteria that any aircraft operator must fulfill under a single global
MBM are to maximize environmental integrity, minimize competitive distortions, and
reduce administrative complexity [41]. Proper emissions allocation schemes that consider
various indicators of airlines, such as the income and the number and age of aircrafts,
are also fundamentally important for yielding dividends from the reduction efficiency
of airlines emissions [83]. Setting benchmark emission intensities while offering airlines
options to sell and/or purchase permits is also proven to incentivize airlines to reduce
emissions [142]. Additionally, it is shown that some air trips lack importance, e.g., leisure
flights [143]. Therefore, introducing a harmonized air passenger tax system that increases
ticket prices based on distance can potentially reduce demand for air travel and thus
emissions. Educating passengers to improve their knowledge on the impacts of aviation
on climate change and the potential rewards from carbon offsetting is likely to encourage
them to embrace carbon offsetting while reducing the number of flights taken [144–146].

Improving operational efficiency does not require any new equipment or technology,
and it can contribute to minimizing GHG emissions due to fuel consumption. Hence,
improving the efficiency in flight management is often viewed as a win–win solution for
the mitigation of GHG emissions [35]. Optimization of ground operations by introducing
single-engine taxis, optimizing ground paths, using tow-tugs in lieu of engine-powered
taxis, and minimizing queues are some of the measures effective in reducing energy-related
GHG emissions. Reducing cruise speeds, optimizing climb or descent paths, operating at
optimum cruise level, optimizing flight routes, and using a descent approach are some of
the flight-operation-related optimization techniques that can improve operational efficiency
and reduce GHG emissions from this sector. Wells, et al. [147] investigated the minimum
time routes for flights between London and New York using optimal control theory and
revealed that travel distance for flights could be saved between 0.7% and 7.8% when flying
to the west, while the distance saving could be between 0.7% and 16.4% when flying to
the east. Since a reduction in travel distance also reduces fuel consumption, emissions
could be reduced by bringing this operational efficiency. Furthermore, reducing aircraft
weight through operational practices, such as minimizing fuel ferrying, or limiting weight
and number of baggage is an effective operational measure in reducing GHG emissions.
The aviation system block upgrades (ASBU) are a potentially effective CO2 emissions
reduction initiative. The CAEP modeled the reduction potential of CO2 emissions by the
implementation the ASBU modules and concluded that apart from the direct fuel savings,
additional fuel can be saved and CO2 emissions can be further reduced when aircraft can
carry less fuel on-board owing to the improved system efficiency [44].

The introduction of new technologies to manage traffic is very important to mitigate
GHG emissions from the aviation sector. The implementation of Reduced Vertical Sepa-
ration Minimums (RVSM) is one of those technologies that can potentially reduce GHG
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emissions due to fuel consumption. A study has shown that the introduction of the RVSM
as a standard in US airspace in 2005 has reduced annual fuel consumption by around
1.9 million cubic meters [40]. Required Navigation Performance is another measure that
was found to be effective in reducing fuel consumption in the aviation sector in the US.
Ensuring an efficient aviation network through improved meteorological information and
management of yield tools are also crucial in this regard. The deployment of low-emission
measures, such as the use of low-emission airport vehicles for airport operations, is one
of the techniques that were found to be effective in reducing GHG emissions from the
aviation industry.

Switching from conventional jet fuels to alternate fuels such as biofuels is very effective
in reducing GHG emissions in the aviation industry. Biofuels can be produced from a
wide variety of sources, such as starches, oils, fats, sugar, forest residues, domestic wastes,
industrial wastes, etc. [148]. However, the production of biofuels from foods can affect the
human food chain as a large amount of land will be used to cultivate plants to produce
biofuels. Therefore, algae, jatropha, halophytes, and switch grass are some of the examples
of sustainable nonfood biomass that can be used to produce biofuels for the aviation
industry [48]. The current production cost of hydro-processed esters and fatty acids
(HEFA) may be between three and four times that of the production cost of fossil jet
fuels [149]. Hence, continued R&D efforts in advanced technologies that can potentially
reduce the production cost of SAFs is essential for improving the competitiveness of SAFs
and commercializing and scaling up of production to meet the demand [150]. Given
that NOx are key components in biofuel emissions, novel approaches to reduce their
levels could speed up the widespread adoption of biofuels. For example, exhaust gas
recirculation and retarding fuel injection timing are proven to be effective techniques to
reduce NOx [121]. Furthermore, to accelerate commercial and wider-scale deployment of
sustainable biofuels, governmental incentives, financial and MBMs, and applied research
partnerships are crucial [151]. Carbon pricing can be of substantial help in shifting from
energy consumption based on traditional fossil fuels to biofuels.

Short-flight induced emissions are only a small fraction of total aviation emissions,
but short-haul flights produce the highest emissions per passenger compared to long-haul
flights. Thus, replacing such flights with land-based transportation modes can cut some
emissions [152]. Substituting short aviation trips by rail, buses or car-pool is an effective
measure in reducing GHG emissions from the aviation industry [153,154]. Incentives
for building infrastructure for electric vehicles with low emissions, such as trolley buses,
tramway, monorail, or metro-rail can help to shift demand from aviation for short-distance
travel. It would also help to encourage commuters and travelers to use teleshopping,
teleconferencing, telecommuting, and distance learning as alternate modes of communica-
tion [155,156].

The policy interventions of the governments of respective nations or states are cru-
cial for reducing GHG emissions from the aviation sector. Though the ICAO intends to
address GHG emissions from international aviation globally, the success of reducing GHG
emissions largely depends on the decisions and policy interventions of the governments
of the sovereign states or nations. Incentives for technological research, development of
novel aircraft engines, promotion of SAFs, and the introduction of modern airport infras-
tructure are some of the important measures for emission reduction, where interventions
of governments are crucial [157].

5. Conclusions

The aviation sector plays a crucial role in the facilitation of domestic and interna-
tional trade, commerce, and tourism. Over the past two decades, the aviation sector has
experienced rapid growth. However, the growth is not sustainable. As the environmen-
tal consequences, including the amount of GHG emissions released, are also increasing
rapidly. Both the number of flights and the amount of GHG emissions have increased
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by 80% between 1990 and 2014. If the current low level of technological improvements
continues, GHG emissions will increase by another 45% by 2035 [37].

Challenges associated with the reduction of GHG emissions from the aviation sector
are highly diverse. Some of these challenges are associated with technological innovation
and design, SAFs, aircraft operations, air traffic and airport management, MBMs, etc. Costs
associated with a change in design and technological innovation are very high. There is
also a time constraint to develop and introduce new technologically advanced airplanes
into the fleets. Low fuel price elasticity and high dependency on carbon-intense fossil fuels
have limited the production and use of low-carbon alternate fuels in this sector. Moreover,
researchers often pose questions on the sustainability of the use of biofuels, as there are
major environmental, financial, and regulatory issues attached to it.

Challenges faced by the ICAO also contribute to the increase in GHG emissions from
this sector. Except for the aspirational goals, ICAO has not set mitigation targets or bind-
ing measures before 2020. Political disagreements between developing and developed
nations on ambitious emissions reduction targets are hindering many emissions reduc-
tion initiatives. In addition, disagreements among the ICAO member states on aircraft
engine emissions are impeding the establishment of new emissions standards for CO2
and particular matter for the aircraft. The ICAO’s failure in establishing mandatory MBM
and appropriate emissions allocation strategy seems to be slowing down global efforts to
curb emissions. Moreover, the ICAO member states seldom adopt the ICAO standards on
climate change as their national laws.

Although scientific knowledge and technological advancement have resulted in im-
provements in the aviation sector, aggressive and sophisticated technologies are required
to reduce emissions beyond the current levels to achieve ICAO’s low-carbon growth. Con-
tinued R&D efforts are necessary to ensure that efficient emission reduction technologies
become affordable and commercially viable for large-scale deployment. Specifically, tech-
nological advancements that target aircraft design and fuel-burn reduction, while reducing
the GHG emissions, should be the prime focus and objective of the R&D efforts. The
adoption of SAFs such as liquid hydrogen, FT kerosene-type jet fuels, and synthetic bio-
based fuels has to be increased rapidly, while improving technologies capable of reducing
NOx emissions. Technological improvement, alternate fuels, and operational efficiencies
alone are not enough to achieve future emissions reduction targets in the aviation indus-
try. Hence, modernization of the airports and the ATM systems are also required for
the steady reduction of GHG emissions. The necessity of different MBMs also has to be
realized. Effective market-based policies such as the ETS, carbon tax, and the CORSIA
must be established and implemented globally. Carbon offsetting, for example, can be
an immediate and pragmatic approach to encourage various stakeholders (i.e., airline
passengers and corporate customers) to take collective and concerted action to curb CO2
emissions and climate change impacts. Given that air travels are likely to increase in the
post-COVID-19 era due to increased economic activities both in developing and developed
countries, rigorous implementation of market-driven policies is likely to incentivize the
development and adoption of low-emission technologies. Additionally, it is essential to
educate and enhance the knowledge of passengers as well as airline workers on the climate
change impacts of aviation emissions. Finally, a national emissions mitigation plan must be
incorporated by the member states of the ICAO, together with building public awareness
along with other initiatives. New or updated nationally determined contributions of the
ICAO member states that ratified the Paris Agreement would be essential for assessing the
progress made in national emission reduction efforts.
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Abbreviations

ASBU Aviation system block upgrades
ATM Air traffic management
BAU Business as usual
CAEP Committee on aviation environmental protection
CO2 Carbon dioxide
CORSIA Carbon Offsetting and Reduction Scheme for International Aviation
EEA European economic area
ETS Emissions trading scheme
EU ETS European Union emissions trading scheme
FAA Federal aviation administration
FGBs Fourth generation biofuels
FT Fischer-Tropsch
Gen II Generation II
GHG Greenhouse gas
GM Genetically modified
IATA International air transport association
ICAO International civil aviation organization
IEA International energy agency
ktCO2 Kilo-tonnes of CO2
MBMs Market-based measures
MCMOED Million cubic meters of oil equivalent per day
MtCO2 Million tonnes of CO2
Mtoe Million tonnes of oil equivalent
NOx Nitrogen oxide gases
OECD Organization for economic co-operation and development
PM Particulate matters
PtL Power to liquid
R&D Research and development
RVSM Reduced vertical separation minimums
SAF Sustainable aviation fuels
UNFCCC United Nations Framework Convention on Climate Change
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