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Abstract: Crude Monte Carlo simulation (MCS) is the most robust and easily implemented method
for performing time-variant reliability analysis (TRA). However, it is inefficient, especially for high
reliability problems. This paper aims to present a random simulation method called the multilevel
Monte Carlo (MLMC) method for TRA to enhance the computational efficiency of crude MCS while
maintaining its accuracy and robustness. The proposed method first discretizes the time interval
of interest using a geometric sequence of different timesteps. The cumulative probability of failure
associated with the finest level can then be estimated by computing corrections using all levels.
To assess the cumulative probability of failure in a way that minimizes the overall computational
complexity, the number of random samples at each level is optimized. Moreover, the correction
associated with each level is independently computed using crude MCS. Thereby, the proposed
method can achieve the accuracy associated with the finest level at a much lower computational cost
than that of crude MCS, and retains the robustness of crude MCS with respect to nonlinearity and
dimensions. The effectiveness of the proposed method is validated by numerical examples.

Keywords: time-variant reliability analysis; crude Monte Carlo simulation; Multilevel Monte Carlo

1. Introduction

Reliability is an important measure of structures and systems [1–4]. It is defined as the
probability that a structure or system successfully performs its intended function under
specified conditions in a given time interval. Because of material degradation, time-variant
loads, etc., a mechanical structure commonly has a time-variant response in performance
function and its reliability decreases over service time. Accurately estimating reliability
in the time interval of interest is extremely important for design optimization, reliability-
based maintenance and risk control, which makes time-variant reliability analysis (TRA)
methods urgently required in engineering. In recent decades, a number of methods have
been developed for assessing time-variant reliability [5]. They can be generally divided
into two categories, i.e., analytical methods [6–9] and sampling-based methods [10–12].

The representatives of analytical methods include first-crossing based methods [6,13] and
time discretization-based methods [14,15]. After proposing the Rice formula, first-crossing
based methods have gained much attention. Renaud et al. [7] presented an approach called
PHI2, computing the outcrossing rate by solving a two-component parallel system reliability
problem. Sudret [13] provided an analytical expression of the outcrossing rate in order to
improve PHI2 in terms of accuracy. Despite the fact that classical first-crossing based methods
are popular for TRA, they still experience poor accuracy because of the assumption that out-
crossing events are mutually independent. Hu and Du [6] relaxed the assumption using the
concept of joint crossing rate, and Yu et al. [16] proposed an approximation of the first-crossing
probability density function (PDF) method to avoid directly computing the out-crossing
rate. Meanwhile, time discretization-based methods were proposed in recent years, which
implicitly accounted for the co-dependence among out-crossing events. Jiang et al. [14,17]
transformed the time-variant reliability problem into a time-invariant series system reliability
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problem by employing stochastic process discretization and solving the transformed problem.
Gong et al. [15] first discretized the time interval of interest into uniform time instants and
then adopted the first order reliability method (FORM) to estimate instantaneous reliability
at each instant. The time-variant reliability was finally computed by multivariate normal
distribution function. Considering that the accuracy of time discretization-based methods
relied on the discretization density (i.e., the number of time instants the considered time
interval was discretized into), Zhang et al. [18] first approximated the trajectory of the most
probable point of failure using a Kriging model and then transformed the stochastic process
of the time-variant performance of a structure into an equivalent Gaussian process. Moreover,
methods based on failure process decomposition [19], perturbation method [20], composite
limit state [21] and total probability theorem [22] have also been proposed in the literature.

Compared with analytical methods, sampling-based methods present an advantage
in robustness, especially for time-variant reliability problems with time-consuming mod-
els [23,24], e.g., finite element methods. The representatives of sampling-based methods
include crude Monte Carlo simulation (MCS) [18], importance sampling (IS) [12,25,26], and
subset simulation (SS) [27]. Yang et al. [25] proposed a method of deteriorating structures
for TRA. The method was an extension of the cross-entropy-based adaptive importance
sampling method for time-invariant reliability analysis [28] and was capable of dealing
with multiple important regions. SS methods with Markov Chain Monte Carlo, or splitting
methods, or both have shown their efficiency. Ching et al. [29] proposed SS with split-
ting to estimate the reliability of a dynamic system subject to stochastic excitation. The
method employed splitting of a trajectory that reaches an intermediate failure level into
multiple trajectories. Wang et al. [30] partitioned the stochastic process of time-variant
performance into a series of correlated processes and adopted SS with splitting to reduce
the computational cost. Du et al. [11] introduced the idea of parallel SS into TRA, and
proposed a method to determine the so-called “principal variable” involved in parallel SS.
Wang et al. [31] combined SS with splitting and time-variant copula function to estimate
the cumulative probability of failure over a given time interval. To address time-variant
problems involving a time-consuming performance function, Kriging [32,33] and poly-
nomial chaos expansion [34,35] are commonly used in order to reduce the number of
calls to time-consuming models. A limited number of samples are first used to train a
surrogate model of the original performance function. Next, the cumulative probability of
failure is estimated by a random sampling method. The strategies of determining the set of
training samples are of the utmost importance for the accuracy and efficiency of surrogate
model-based methods, on which a number of studies can be found [36,37]. For example,
Jiang et al. [38] proposed an active failure-pursuing Kriging method to identify the most
valuable samples for improving the accuracy of the Kriging model; Wang et al. [37] devel-
oped two methods based on projection outline adaptive Kriging to handle time-variant
problems with random and interval uncertainties.

Even though a number of methods have been developed for TRA, crude MCS still
has widespread use as reference and combined with other methods to enhance compu-
tational efficiency because of its robustness and easy implementation. However, its poor
efficiency especially when dealing with high reliability problems impedes its extensive ap-
plication in engineering. The widely used procedure of crude MCS can be summarized as:
(1) discretizing the time interval of interest into uniform time instants and using the
discretized instants to represent the continuous time interval; (2) generating random trajec-
tories of the time-variant performance function and using performance values at discretized
instants to determine whether a trajectory is safe or not. Subsequently, the cumulative
probability of failure can be estimated. Note that the accuracy and efficiency of crude
MCS rely on the number of discretized instants (or the associated timestep). Decreasing
the discretized timestep means increasing its accuracy level, but reducing the efficiency.
In order to enhance the computational efficiency of the procedure above, while retaining
its accuracy, we present a sampling method called the multilevel Monte Carlo (MLMC)
method. The idea of multilevel Monte Carlo path simulation is introduced into TRA.
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The so called Multilevel Monte Carlo path simulation was first developed by Giles for
stochastic differential equations [39]. The method uses a geometric sequence of timesteps
to discretize the considered time interval. The discretization error would be small, but the
computational cost large if only the finest level were used. The situation would be reversed
if only the coarsest level were used. To reduce the computational cost of computing the
expectation of a random quantity defined by a stochastic differential equation, Giles [39]
solved the problem on the finest level by estimating corrections using all the levels, thereby
achieving the accuracy associated with the finest level at a lower cost. The idea is adopted
herein, retaining the accuracy associated with the finest level but performing MCS at
coarser levels to reduce the variance of the estimate of cumulative failure probability. The
total number of function evaluations is minimized by optimizing the number of random
trajectories allocated to each level.

The rest of the paper is organized as follows. Section 2 introduces the crude MCS for
time-variant reliability analysis, including its main procedure in Section 2.1 and computa-
tional complexity in Section 2.2. MLMC for time-variant reliability analysis is elaborated in
Section 3 and validated in Section 4. Section 5 provides the conclusions.

2. Crude MCS for Time-Variant Reliability Analysis
2.1. Crude MCS

This paper considers the time-variant performance function with the typical expression
G(X,Z(t),t), where X is the vector of time-invariant random variables and Z(t) is the vector
of stochastic processes. This special case G(X,Z(t),t) appears in many engineering scenarios,
e.g., structures under stochastic loads and material degradation. We assume that G(X,Z(t),t)
is computationally cheap and a function evaluation can be performed at any time τ.
For problems with implicit and time-consuming performance function, one can build an
asymptotically explicit expression through employing a surrogate model, such as Kriging
and polynomial chaos expansion [34,38].

Without loss of generality, the failure of a structure, whose performance function is
fully described by G(X,Z(t),t), is defined as G(X,Z(t),t) ≤ 0. In the time interval of interest
[0, T], a failure event occurs if the response value of the performance function G(X,Z(t),t)
crosses the failure threshold 0. Accordingly, the cumulative probability of failure can be
expressed as,

Pf,c(0, T) = Pr{∃τ ∈ [0, T]|G(X, Z(τ), τ) ≤ 0}

= Pr
{

min
0≤τ≤T

{G(X, Z(τ), τ)} ≤ 0
}

(1)

where Pr{·} is the probability operator, and “∃” means “there exists”. Herein, the failure
indicator function I(x,z(t)) is introduced, whose expression is,

I(x, z(t)) =

{
1 min

0≤τ≤T
{G(x, z(τ), τ)} ≤ 0

0 otherwise
(2)

where z(t) is a trajectory of Z(t). Thus, Pf,c(0,T) can be rewritten as follows:

Pf,c(0, T) = Pr{I(X, Z(τ)) = 1} = E{I(X, Z(τ))} (3)

As illustrated in Section 1, crude MCS is the most robust method to estimate Pf,c(0, T).
It is commonly implemented as follows:

Step 1: Discretize the time interval [0, T] into K + 1 uniform instants with time step
∆t. For convenience of the illustration below, we control the number of discretized time
instants and the corresponding timestep using two positive integers, i.e., K0 and L.

K = K0 · 2L and ∆t = T/K (4)
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Then, Pf,c(0,T) can be approximated by:

Pf,c(0, T) = lim
K→∞

E
{

I(L)(X, Z(τ))
}
≈ E

{
I(L)(X, Z(τ))

}
(5)

Let P(L)
f,c (0, T) denote the approximation of the cumulative probability of failure:

P(L)
f,c (0, T) = E

{
I(L)(X, Z(τ))

}
(6)

where I(L)(x,z(t)) is an approximation of the indicator function I(x,z(t)):

I(L)(x, z(t)) =

{
1 min

0≤k≤K
{G(x, z(τk), τk)} ≤ 0

0 otherwise
(7)

Step 2: Generate i.i.d. (independent and identically distributed) samples of X and
trajectories of Z(t), and estimate Pf,c(0,T) according to the law of large numbers:

Pf,c(0, T) ≈ P(L)
f,c (0, T) ≈ 1

NMC

NMC

∑
n=1

I(L)(xn, zn(t)) (8)

where NMC is the number of random simulations crude MCS performs. Multiple techniques
are capable of generating random trajectories of stochastic processes, e.g., the expansion
optimal linear estimation method (EOLE) and Karhunen-Loève (KL) expansion are widely
used in the literature [40–42]. In the section of method validation below, EOLE is adopted.

Let P̂MC
f,c (0, T) denote the estimate obtained by crude MCS:

P̂MC
f,c (0, T) =

1
NMC

NMC

∑
n=1

I(L)(xn, zn(τ)) (9)

It is worth noting that the error in the estimate P̂MC
f,c (0, T) can be asymptotically

determined using the following equation:∣∣∣P̂MC
f,c (0, T)− Pf,c(0, T)

∣∣∣≈ ∣∣∣E{I(L)(X, Z(τ))
}
− Pf,c(0, T)

∣∣∣+ ∣∣∣P̂MC
f,c (0, T)− E

{
I(L)(X, Z(τ))

}∣∣∣ (10)

The first term is the bias introduced by the uniform discretization, and the second
term corresponds to the error due to the random sampling. Given values of N0 and L, this
paper uses a multilevel method to reduce the error caused by MCS, leaving unchanged the
bias due to the discretization.

The coefficient of variation associated with P̂MC
f,c (0, T) is:

covPf =

√
var
(

P̂MC
f,c (0, T)

)
P(L)

f,c (0, T)
(11)

where

var
(

P̂MC
f,c (0, T)

)
=

P(L)
f,c (0, T)

(
1− P(L)

f,c (0, T)
)

NMC
(12)

2.2. Computational Cost of Crude MCS

Given a realization of X and a trajectory of Z(t) (e.g., xn and zn(t)), K0 · 2L + 1 evalua-
tions of the time-variant performance function G(X,Z(t),t) are needed in order to determine
the value of I(L)(xn, zn(τ)). This paper ignores the asymptotically negligible cost of gener-
ating random realizations of X and trajectories of Z(t), and uses the number of function
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evaluations to measure the computational cost of crude MCS as well as the method pro-
posed in Section 3.

According to Equations (11) and (12), to achieve a coefficient of variation smaller than
δPf, i.e.,

covPf < δPf (13)

the number of trajectories of G(X,Z(t),t), i.e., NMC, needs to satisfy that:

NMC >
1− P(L)

f,c (0, T)

δ2
PfP

(L)
f,c (0, T)

(14)

Hence, the computational cost of crude MCS corresponding to the accuracy require-
ment δPf, i.e., the total number of function evaluations, is:

CS =
1− P(L)

f,c (0, T)

δ2
PfP

(L)
f,c (0, T)

(K0 · 2L + 1) (15)

3. Multilevel Monte Carlo for Time-Variant Reliability Analysis

Crude MCS is capable of achieving any required accuracy regardless of nonlinearity
and dimensions of the time-variant performance function if K and NMC are sufficiently large.
However, its commonly computationally expensive. To overcome this issue, multilevel
Monte Carlo is applied herein to deal with TRA.

MLMC discretizes the time interval [0, T] using a geometric sequence of different
timesteps ∆tl = T/(K0 · 2l) (l = 0, . . . ,L). The smallest timestep ∆tL corresponds to the
discretization bias defined by the first term of Equation (10). The multilevel method
optimizes the computational cost on each level in order to reduce the overall computational
complexity of estimating the cumulative probability of failure, retaining the accuracy
associated with the level L.

3.1. Multilevel Monte Carlo

Consider a sequence of approximations
{

P(l)
f,c (0, T)

}
of the cumulative failure prob-

ability with different timesteps. It is clearly true that P(l)
f,c (0, T) approximates to Pf,c(0,T)

with an increasing accuracy as the increase of level l, but the computational complexity
also increases with l. MLMC utilizes the characteristic of P(l)

f,c (0, T) (l < L) to reduce the

computational complexity of P(L)
f,c (0, T). It first expresses P(L)

f,c (0, T) in terms of a linear

combination of P(l)
f,c (0, T) (l = 0, . . . , L), and then optimizes the computational cost allocated

to each level l.
P(L)

f,c (0, T) can be rewritten as:

P(L)
f,c (0, T) = P(0)

f,c (0, T) +
(

P(1)
f,c (0, T)− P(0)

f,c (0, T)
)
+ . . . +

(
P(L)

f,c (0, T)− P(L−1)
f,c (0, T)

)
(16)

Then, it is easily concluded that:

P(L)
f,c (0, T) = P(0) + P(1) + . . . + P(L) (17)

where
P(0) = E

{
I(0)(X, Z(τ))

}
and P(l) = E

{
∆I(l)(X, Z(τ))

}
∆I(l)(X, Z(τ)) = I(l)(X, Z(τ))− I(l−1)(X, Z(τ))

l = 1, 2, . . . , L

(18)
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MLMC independently estimates each expectation on the right side of Equation (17).
An unbiased estimate of the cumulative probability of failure is then obtained, which has
the following expression:

P̂ML
f,c (0, T) = P̂(0) + P̂(1) + . . . + P̂(L) (19)

where

P̂(0) =
1

N0

N0

∑
n=1

I(0)(x0,n, z0,n(τ)) and P̂(l) =
1
Nl

Nl

∑
n=1

∆I(l)(xl,n, zl,n(τ))l = 1, 2, . . . , L (20)

Nl represents the number of random simulations on level l to estimate P̂(l) (l = 0, . . . ,L).
The coefficient of variation of the multilevel estimate P̂ML

f,c (0, T) can be calculated as:

covPf =

√
var
(

P̂ML
f,c (0, T)

)
P(L)

f,c (0, T)
(21)

where var
(

P̂ML
f,c (0, T)

)
is the variance of P̂ML

f,c (0, T):

var
(

P̂ML
f,c (0, T)

)
=

L

∑
l=0

P(l) · (1− P(l))

Nl
(22)

According to Equations (7) and (18), determining the value of ∆I(l)(x, z(τ)) needs
K0 · 2l + 1 function evaluations. Therefore, the total number of function evaluations MLMC
needs is,

CM =
L

∑
l=0

Nl(K0 · 2l + 1) (23)

In order to acquire an estimate P̂ML
f,c (0, T) whose coefficient variation satisfies

Equation (13), the combination of [N0, . . . ,NL] must meet with:

L

∑
l=0

P(l) · (1− P(l))

Nl
<
(

δPf · P
(L)
f,c (0, T)

)2
(24)

It is noticed that a great number of combinations of (N0, . . . , NL) are available but
computational costs associated with the combinations may be considerably different. For
given K0 and L, the combination of (N0, . . . , NL) is optimal if it requires the least number
of function evaluations while maintaining the coefficient variation of P̂ML

f,c (0, T) smaller
than the prescribed threshold δPf. That is to say, one can obtain the optimal (N0, . . . , NL)
(i.e., [N∗0 , . . . , N∗L ]) by solving the optimization problem below:

[N∗0 , . . . , N∗L ] = argmin
L
∑

l=0
Nl(K0 · 2l + 1)

L
∑

l=0

P(l) ·(1−P(l))
Nl

<
(

δPf · P
(L)
f,c (0, T)

)2

Nl ≥ 0 (l = 0, . . . , L)

(25)

Treating Nl (l = 0, . . . , L) as continuous variables, the optimal number of random
simulations on level l is easily obtained using the Lagrange Multiplier method:

N∗l =
1(

δPf · P
(L)
f,c (0, T)

)2

√
Vl
Cl

L

∑
l=0

√
Vl · Cl (26)
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where
Vl = P(l) · (1− P(l)) and Cl = K0 · 2l + 1 (27)

We denote the computational cost associated with [N∗0 , . . . , N∗L ] by C∗M. According to
the optimal allocation of computational resource determined by Equation (26), one can
implement the MLMC method and estimate the cumulative probability of failure in a way
that minimizes the computational complexity.

3.2. Implementation of MLMC

Equation (26) indicates that the knowledge of Vl and P(L)
f,c (0, T) is essential for cal-

culating the optimal numbers of simulations MLMC needs to perform on each level l
and judging whether or not MLMC is more efficient than crude MCS by comparing CS

(Equation (15)) with C∗M (Equations (23) and (26)). However, values of Vl and P(L)
f,c (0, T) are

unavailable before performing TRA. Therefore, it is difficult to make a decision in practical
engineering on employing MLMC or crude MCS to assess the time-variant reliability of a
mechanical structure or system, and the optimal allocation of computational cost is hardly
obtained in advance if MLMC is adopted.

In order to address the issues above, this subsection proposes a procedure for TRA
to adaptively choose the more efficient method between crude MCS and MLMC. The
flowchart is given by Figure 1. It consists of eight steps:
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Step 1 Set values of parameters, including K0, L (or K) and δPf.
This paper sets K0 = 10. It will be verified in Section 4 that K0 has little effect on the

efficiency of MLMC. One can set L (or K) and δPf according to the accuracy requirement of



Sustainability 2021, 13, 3646 8 of 16

TRA. According to Equation (10), the accuracy of MLMC as well as crude MCS increases
with L and decreases with the threshold of the coefficient of variation δPf.

Step 2 Discretize the time interval of interest [0,T] into K0 · 2l + 1 uniform instants
(l = 0, . . . ,L).

The relationship between the accuracy level of P(L)
f,c (0, T) and the largest number

of discretized time instants K0 · 2L + 1 is still an open issue, which is not discussed in
this paper.

Step 3 Pre-estimate the number of function evaluations of crude MCS and MLMC.
According to Equations (15), (23) and (26), P(l) (l = 0, . . . , L) are essential for calculating

CS and C∗M. However, considerable samples are needed if one independently estimates each
P(l) (l = 0, . . . , L). In order to reduce the computational cost of the pre-estimate, this step
makes an assumption that P(0) ≈ P(1) ≈ . . . ≈ P(L). Thus, only P(0) is needed to pre-estimate
the computational cost of crude MCS and MLMC.

Generate random sample set S0:

S0 = {(x0,n, z0,n(τ))|n = 1, . . . , N0} (28)

Then, estimate P(0) as follows:

P̂(0) =
1

N0

N0

∑
n=1

I(0)(x0,n, z0,n(τ)) (29)

This step sets N0 meeting with the following accuracy requirement:

cov(P̂(0)) ≤ 0.2 (30)

Under the assumption made above, the computational cost of crude MCS and MLMC
can be pre-estimated according to Equations (15), (23) and (26).

Step 4 If ĈS > Ĉ∗M, MLMC is more efficient and adopted to estimate the cumulative
probability of failure. Continue the procedure to Step 5. Otherwise, crude MCS is adopted
and the procedure goes to Step 7.

Step 5 Implement MLMC as follow:
(a) Calculate [N∗0 , . . . , N∗L ] according to Equation (26) and the current P̂(l) (l = 0, . . . ,

L). Considering that P̂(l) pre-estimated in Step 3 may have a large error, we provisionally
set the accuracy requirement equal to 2δPf in the first iteration and restore it to δPf after the
first iteration.

(b) Supplement Sl with random samples and increase the number of samples in Sl to
N∗l (l = 0, . . . , L).

(c) Refresh P̂(l) according to Equation (20).
Step 6 Calculate P̂ML

f,c (0, T) and the corresponding covPf according to Equations (19)
and (21), respectively. If covPf < δPf, P̂ML

f,c (0, T) is accurate enough, the procedure stops.
The last estimate of the cumulative probability of failure is regarded as the result of the
procedure; otherwise, go back to Step 5.

Step 7 Estimate the cumulative probability of failure using crude MCS according to
Equations (9) and (14).

Step 8 Output the estimate of cumulative probability of failure.

4. Numerical Validation

This section aims to validate the computational efficiency of the method proposed
in Section 3. In the validation, the proposed method is only compared with crude MCS
in terms of the total number of function evaluations. As a large number of function
evaluations is needed by both methods, examples studied in this section have explicit
performance functions.
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4.1. A Steel Bending Beam

As depicted by Figure 2, the first example studies a steel bending beam whose cross
section evolves linearly in time because of isotropic corrosion. The beam is submitted
to two loads, i.e., a dead load p = ρstb0h0 caused by the gravity and a pinpoint load F(t)
modeled by a Gaussian process. The time-variant performance function of the beam is
given by:

G(X, F(t), t) =
b(t)h2(t)

4
−
(

F(t)L0

4
+

ρstb0h0L2

8

)
(31)

where X = [fy,b0,h0]T. The time interval of interest is (0, 20 year). Table 1 gathers the input
parameters of the time-variant performance function.
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Figure 2. The steel bending beam (example 1).

Table 1. The input parameters (example 1).

Variable Distribution Mean Standard
Deviation

Autocorrelation
Coefficient
Function

fy Lognormal 240 MPa 24 MPa -
b0 Lognormal 0.2 m 0.01 m -
h0 Lognormal 0.04 m 0.004 m -

F(t) Gaussian 3500 N 700 N exp(−(t2 − t1)2)
ρst Deterministic 78.5 kN/m3 - -
ω Deterministic 0.03 mm/year - -

This subsection regards crude MCS with 109 random simulations as the reference
to compute P(l) and P(l)

f,c (0, T) (K0 = 5 and L = 8), as shown by Figure 3. It can be found
that P(l) decreases dramatically with the increase of l. To investigate the performance
of the proposed method, it is implemented with several combinations of (K, δPf, K0).
Results coming from the proposed MLMC and crude MCS are summarized in Table 2.
According to the presented results, the proposed method remarkably reduces the total
number of function evaluations while both methods achieve the level of accuracy satisfying
the threshold of the coefficient of variation δPf. It is worth mentioning that all results
coming from the proposed procedure are achieved using MLMC. Integrating crude MCS
into the proposed procedure is to account for special cases in which MLMC needs more
computational cost even though we have not yet encountered such cases.

According to the theory of MLMC, information about P(l) (or P(l)
f,c (0, T), l = 0, . . . , L) is

needed to optimize the number of random simulations allocated to each level of MLMC.
However, the information is unavailable in advance. Thus, we propose a method in
Section 3.2 to pre-estimate P(l). Based on the pre-estimate, the computational cost of crude
MCS and MLMC is compared and the size of random population MLMC allocates to each
level l is optimized. Therefore, in order to validate the effectiveness of the proposed proce-
dure, crude MCS, the proposed MLMC and the optimal MLMC in terms of total number of
function evaluations are also compared by Figure 4, and the numbers of random simula-
tions on each level determined according to the proposed procedure and the optimal MLMC
are depicted by Figure 5. Figure 4 indicates that the optimal MLMC and the proposed
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MLMC are remarkably more efficient than crude MCS. The total number of function evalu-
ations of the proposed method does not significantly increase with K, whereas that of crude
MCS linearly increases with K. According to Figure 5, the computational cost allocated
according to the proposed procedure is very close to that of the optimal MLMC, i.e., the true
optimal allocation.
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Figure 3. P(l) and P(l)
f,c (0, T) of the steel bending beam. l = 0 and 8 corresponds to K = 5 and 1280,

respectively. According to Equation (17), P(l)
f,c (0, 20) = P(0) + . . . + P(l).

Table 2. Results of the steel bending beam. Ncall denotes the total number of calls to the time-variant
performance function, and δ represents the coefficient of variation associated with P̂f,c.

K δPf K0 Method P̂f,c Ncall δ

640

- - Benchmark 1.24 × 10−4 - 2.8 × 10−3

0.03

- Crude Monte Carlo
simulation (MCS) 1.19 × 10−4 6.01 × 109 3.0 × 10−2

5

The proposed method

1.27 × 10−4 2.22 × 109 2.96 × 10−2

10 1.21 × 10−4 1.86 × 109 2.92 × 10−2

20 1.28 × 10−4 2.04 × 109 2.86 × 10−2

40 1.23 × 10−4 1.71 × 109 2.87 × 10−2

80 1.23 × 10−4 2.05 × 109 2.89 × 10−2

640

0.1

10

Crude MCS 1.14 × 10−4 5.7 × 108 9.95 × 10−3

The proposed method 1.25 × 10−4 1.68 × 108 9.04 × 10−2

0.05
Crude MCS 1.17 × 10−4 2.19 × 109 4.99 × 10−2

The proposed method 1.18 × 10−4 5.04 × 108 4.99 × 10−2

0.03
Crude MCS 1.19 × 10−4 6.01 × 109 3.0 × 10−2

The proposed method 1.21 × 10−4 1.86 × 109 2.92 × 10−2

0.01
Crude MCS 1.24 × 10−4 5.15 × 1010 1.0 × 10−3

The proposed method 1.22 × 10−4 1.74 × 1010 9.7 × 10−3

320

0.03 10

Benchmark 1.23 × 10−4 - 2.8 × 10−3

Crude MCS 1.25 × 10−4 2.85 × 109 3.0 × 10−2

The proposed method 1.24 × 10−4 1.48×109 2.86 × 10−2

640
Benchmark 1.24 × 10−4 - 2.8 × 10−3

Crude MCS 1.19 × 10−4 6.01 × 109 3.0 × 10−2

The proposed method 1.21 × 10−4 1.86 × 109 2.92 × 10−2

1280
Benchmark 1.24 × 10−4 - 2.8 × 10−3

Crude MCS 1.23 × 10−4 1.15 × 1010 3.0 × 10−2

The proposed method 1.23 × 10−4 2.36 × 109 2.94 × 10−2
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Figure 4. The change of computational cost with K. Crude MCS, the optimal MLMC and the proposed
method are compared with δPf = 0.03 and K0 = 10. The optimal MLMC denotes the MLMC method
whose computational cost is optimized according to Equations (25)–(27) using P(l) (l = 0, . . . , L)
shown in Figure 3. Since P(l) is unavailable in practice, the computational cost of the optimal MLMC
is theoretically minimum for MLMC.
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4.2. A Cantilever Tube Structure

The second example studies the cantilever tube structure shown by Figure 6. Four
time-variant loads, i.e., F1(t), F2(t), P(t) and T(t), are applied to the structure. The yield
strength of the structure linearly decreases with time caused by material degradation. The
performance function is defined as:

G(X, Z(t), t) = σu(t)−
√

σ2
x(t) + 3τ2

zx(t) (32)
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where
σx(t) =

F1(t) sin(θ1)+F2(t) sin(θ2)+P(t)
A + M(t)d

2I
τzx(t) =

T(t)d
4I

M(t) = F1(t) cos(θ1)L1 + F2(t) cos(θ2)L2

A = π
4 [d

2 − (d− 2h)2]

I = π
64 [d

4 − (d− 2h)4]
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Figure 6. The cantilever tube structure (example 2).

X = [d, h, σ0]T and Z(t) = [F1(t), F2(t), T(t), P(t)]T. The time interval of interest
is [0, 5 year]. Input parameters are listed in Table 3.

Table 3. The input parameters (example 2).

Variable Distribution Mean Standard
Deviation

Autocorrelation
Coefficient
Function

F1(t) (N) Gaussian
process 1800 180 exp(−|t2 − t1|/4)

F2(t) (N) Gaussian
process 1800 180 exp(−|t2 − t1|)

T(t) (Nm) Gaussian
process 1900 190 exp(−4(t2 − t1)

2)

P(t) (N) Gaussian
process 1800 180 exp(−4|t2 − t1|)

d (mm) Normal 42 0.5 -
h (mm) Normal 5 0.1 -

σ0 (MPa) Normal 560 56 -
L1 (mm) Deterministic 60 - -
L2 (mm) Deterministic 120 - -

θ1 (◦) Deterministic 10 - -
θ2 (◦) Deterministic 5 - -

The benchmark values of P(l) and P(l)
f,c (0, T) (K0 = 5 and l = 8) are calculated by crude

MCS with 108 random simulations, which is shown by Figure 7and Table 4. According
to Figure 3 in Section 4.1 and Figure 7, P(l) with smaller l (e.g., l < 5) contributes most
of the cumulative probability of failure P(L)

f,c (0, T). Considering that the computational
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cost on lower levels is much less than that on the highest level, optimizing the alloca-
tion of the computational cost is necessary in order to reduce the variance of MCS in
a way that minimizes the over computational cost, which is exactly the purpose of the
proposed procedure.
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Figure 7. P(l) and P(l)
f,c (0, T) of example 2. l = 0 and 8 corresponds to K = 5 and 1280, respectively.

Table 4. Results of example 2.

K δPf K0 Method P̂f,c Ncall δ

640

- - Benchmark 9.933 × 10−3 - 1.0 × 10−3

0.05

- Crude MCS 1.03 × 10−2 2.49 × 107 4.97 × 10−2

5

The proposed method

1.05 × 10−2 3.59 × 106 4.95 × 10−2

10 9.80 × 10−3 4.60 × 106 4.94 × 10−2

20 9.61 × 10−3 4.26 × 106 4.91 × 10−2

40 9.36 × 10−3 5.42 × 106 4.95 × 10−2

80 1.04 × 10−2 5.16 × 106 5.0 × 10−2

640

0.1

10

Crude MCS 9.90 × 10−3 6.67 × 106 9.80 × 10−3

The proposed method 1.06 × 10−2 1.14 × 106 8.49 × 10−2

0.05
Crude MCS 1.03 × 10−2 2.49 × 107 4.97 × 10−2

The proposed method 9.80 × 10−3 4.60 × 106 4.94 × 10−2

0.03
Crude MCS 1.01 × 10−2 7.1 × 107 2.98 × 10−2

The proposed method 1.03 × 10−2 1.28 × 107 2.89 × 10−2

0.01
Crude MCS 9.98 × 10−3 6.42 × 108 9.95 × 10−3

The proposed method 9.94 × 10−3 1.42 × 108 9.40 × 10−3

320

0.05 10

Benchmark 9.931 × 10−3 - 1.0 × 10−3

Crude MCS 1.01 × 10−2 1.27 × 107 4.97 × 10−2

The proposed method 1.02 × 10−2 3.40 × 106 4.98 × 10−2

640
Benchmark 9.933 × 10−3 - 2.8 × 10−3

Crude MCS 1.03 × 10−2 2.49 × 107 4.97 × 10−2

The proposed method 9.80 × 10−3 4.60 × 106 4.94 × 10−2

1280
Benchmark 9.934 × 10−3 - 1.0 × 10−3

Crude MCS 9.92 × 10−3 5.03 × 107 5.0 × 10−2

The proposed method 1.037 × 10−2 8.41 × 106 4.86 × 10−2

The performance of the proposed method considering different combinations of
(K, δPf, K0) is investigated and compared to crude MCS. Results are summarized in
Table 4. It can be noticed from Table 4 that achieving similar levels of accuracy, the
proposed method needs significantly less evaluations of performance function than crude
MCS. The saving of the proposed method increases with the accuracy requirement (small
δPf means high accuracy requirement). Figure 8 compares crude MCS, the proposed MLMC
and the optimal MLMC. It shows that MLMCs hold considerable advantage over crude
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MCS in terms of computational cost. The allocation of computational cost determined
according to the proposed method is near to that of the optimal MLMC, which is concluded
from Figure 9.
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5. Conclusions

This paper presents a random simulation method called MLMC for TRA to enhance
the efficiency of MCS. The proposed method discretizes the time interval of interest using
a geometric sequence of timesteps and then estimates the cumulative probability of failure
P(L)

f,c (0, T) (Equation (17)) associated with the finest level by computing corrections P(l)

(Equations (17) and (19)) coming from all levels. Considering the computational complexity
of each level (Cl, Equation (27)) and the contribution that each P(l) makes to P(L)

f,c (0, T), the
allocation of computational cost is optimized (Equation (26)).

In the proposed procedure of MLMC, the switch between MLMC and crude MCS
is proposed, which is merely to circumvent the complex deduction of conditions that
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MLMC is more efficient than crude MCS. The switch performs practically no function in
Section 4 because all pre-estimates of the computational cost of crude MCS and MLMC
show that MLMC needs less function evaluations, which indicates that MLMC is commonly
more efficient. As the random trajectories of the time-variant performance function are
generated in the same way with crude MCS, the proposed method retains most of the
characteristics of robustness with respect to nonlinearity and dimensions of performance
function. However, since a geometric sequence of different timesteps is essential for
the proposed methods, the number of discretized time instants is limited by K0 and L
(Equation (4)).

The effectiveness of the proposed method is validated by two examples. Results
demonstrate that the proposed method remarkably reduces the total number of func-
tion evaluations while maintaining the accuracy, meeting the prescribed requirement.
The saving increases with the accuracy requirement. Moreover, results indicate that
the total number of function evaluations of the proposed method increases slowly with
K. This characteristic means that one can use large K to reduce the discretization error
(Equation (10)) without a significant increase in the computational cost, like crude MCS.
The proposed method can be combined, in principle, with surrogate models (e.g., the
Kriging model and polynomial chaos expansion) and variance reduction techniques
(e.g., IS and SS for TRA) to obtain great savings.
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